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Abstract
Recent genomic studies have identified genes
related to specific phenotypes. In addition
to marginal association analysis for individ-
ual genes, analyzing gene pathways (func-
tionally related sets of genes) may yield
additional valuable insights. We have de-
vised an approach to phenotype classification
from gene expression profiling. Our method
named “group Nearest Shrunken Centroids
(gNSC)” is an enhancement of the Near-
est Shrunken Centroids (NSC) (Tibshirani,
Hastie, Narasimhan and Chu 2002) which
is a popular and scalable method to ana-
lyze big data. While fully utilizing the vari-
able structure of gene pathways, gNSC shares
comparable computational speed as NSC if
the group size is small. Comparing with
NSC, gNSC improves the power of classifica-
tion by utilizing the gene pathway informa-
tion. In practice, we investigate the perfor-
mance of gNSC on one of the largest microar-
ray datasets aggregated from the internet.
We show the e↵ectiveness of our method by
comparing the misclassification rate of gNSC
with that of NSC. Additionally, we present
a novel application of NSC/gNSC on context
analysis of association between pathways and
certain medical words. Some newest biologi-
cal findings are rediscovered.

1 Introduction
Recent advances in DNA microarray experiment are
generating data sets of the expression levels of large
number of genes simultaneously. The aggregation of
these data sets across experiments provides better
representation of the overall population and contains
more information which allows better insights into cer-
tain diseases and their causing genes. The aggregated
data, however, is often of large scale, high-dimensional
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(number of variables > number of observations), with
non-Gaussian structure, and thus beyond the ability
of typical analysis. This kind of data is so called “big
data” (Manyika, Chui, Brown, Bughin, Dobbs, Rox-
burgh and Byers 2011). It was only recently that peo-
ple have begun to develop methods of analyzing big
data deriving from microarray experiments. One of the
aims of such data is to identify a small subset of func-
tional genes which discriminate between certain phe-
notypes such as the tumor and the normal tissues. Tra-
ditional discriminant analysis methods such as linear
discriminant analysis (LDA), support vector machine
(SVM), and logistic regression are either restricted to
relatively small data set or not consistent under the
high-dimensional situation. Take the standard LDA as
an example. The standard LDA, which uses a linear
combination of features as the criterion for classifica-
tion, has been shown to perform well and enjoy certain
optimality as the sample size tends to infinity while
the dimension is fixed. In the high-dimensional set-
tings, however, Bickel and Levina (2004) show that the
classical LDA is asymptotically equivalent to random
guessing when p/(n

1

+ n
2

) ! 1, even if a Gaussian
assumption is made. To handle this problem, known
as “the curse of dimensionality,” a sparsity condition
has to be added, which leads to a variety of works:
Cai and Liu (2011) made a sparsity assumption on
the precision matrix and proposed a direct estimation
method for sparse LDA by estimating ⌦� (the prod-
uct of the precision matrix and the di↵erence of the
means) through a constrained l

1

minimization method;
Ravikumar, Wainwright and La↵erty (2010) presented
a sparse logistic regression method which involves per-
forming l

1

-regularized logistic regression of each vari-
able on the remaining variables and then using the
sparsity pattern of the regression vector to infer the un-
derlying neighborhood structure; Zhu, Rosset, Hastie
and Tibshirani (2004) considered the l

1

norm SVM
to accomplish the goal of automatic feature selection
in the SVM and Friedman, Hastie, Rosset, Tibshirani
and Zhu (2004) shows that the l

1

norm is preferred if
the underlying true model is sparse.

Although significant process has been made in this di-
rection, the Nearest Shrunken Centroids (NSC) pro-
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posed by Tibshirani et al. (2002) is still one of the most
scalable method in the field of large-scale data analy-
sis. Comparing with sparse LDA, l

1

norm SVM and
sparse logistic regression, the NSC is appealing in the
sense that the algorithm is much faster, able to deal
with big data, and easy to implement. Moreover good
empirical performances have been constantly verified
in recent years (Kobayashi, Absher, Gulzar, Young,
McKenney, Peehl, Brooks, Myers and Sherlock 2011).
Particularly useful is the NSC’s ability to simultane-
ously conduct feature selection and classification via
shrinking the marginal centroids. Theoretically speak-
ing, the NSC works the best in a Naive Bayes situation
(Fan and Fan 2008), where variables are supposed to
be independent of each other; its robustness is such
that a high-degree of e�ciency is maintained even un-
der more complicated high dimensional models (Fan
and Fan 2008).

In this paper, we propose a new high dimensional dis-
criminant analysis method of group Nearest Shrunken
Centroids (gNSC). Our new method is one of the ear-
liest attempts to deal with big data of microarray ex-
pressions with context information. Also, this is the
first paper provide theoretical justification for NSC
like methods. Similar with the NSC, gNSC can si-
multaneously perform sample classification and fea-
ture selection. The non-gaussianity of the data is
overcome by conducting a normal score transforma-
tion in data prepocessing. This has been discovered
to work well when the true data are coming from
the Nonparanormal (Liu, Han, Yuan, La↵erty and
Wasserman 2012) and lose little when the true data are
indeed Gaussian. Moreover, in addition to marginal
association analysis for individual genes, gNSC enables
us to use gene pathway information. Genes work in-
dependently and interactively to perform various bi-
ological functions. A gene pathway refers to a set
of genes that work together to finish a specific bio-
logical function. Utilizing the variable structure in-
formation of gene pathways may lead to valuable in-
sight into the disease etiology or treatment e↵ect and
could inform clinical decisions concerning disease pre-
vention or therapeutic maneuvers. Furthermore, when
multiple genes from a same pathway show concerted
signals, there may be enhanced the power of sam-
ple classification, which is convinced in our experi-
ment. We test the e↵ectiveness of gNSC in analyz-
ing big data against GPL96, a large-scale microarray
dataset aggregated from the internet (McCall, Bol-
stad and Irizarry 2010). Pathway information for the
genes is extracted from Molecular Signature Database
(MSigDB) (Subramanian, Tamayo, Mootha, Mukher-
jee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lan-
der et al. 2005). We compare our gNSC with NSC
to show that gNSC improve the power of sample clas-
sification by utilizing the pathway information. We

also apply gNSC to a context analysis where we com-
bine the sample text information into the GPL96 data
(McCall et al. 2010). Our results are consistent with
the newest biological finding: the expression of MYC
target genes is correlated with B cell lymphomas and
Wilms tumor (Ji, Wu, Zhan, Nolan, Koh, De Marzo,
Doan, Fan, Cheadle, Fallahi et al. 2011).

We arrange the rest of the paper as follows. In Sec-
tion 2, sees the introduction of the Nearest Shrunken
Centroids (NSC) proposed by Tibshirani et al. (2002)
and normal score transformation (Liu, La↵erty and
Wasserman 2009). In Section 3, the theoretical body,
sees our group Nearest Shrunken Centroids method.
We prove some theoretical properties of gNSC. No-
tably, we prove that (i) under certain regularity condi-
tions, the sparsity pattern can be recovered in an ex-
ponential rate; (ii) under certain conditions, we prove
that C(g) � C(g⇤) = O

P

(n�1), where we denote by
C(g⇤) and C(g) the Bayes risk and the gNSC misclas-
sification rate. We also show the semiparametric ef-
ficiency of performing normal score transformation in
data preprocessing. In Section 4, we apply both our
gNSC method and our context analysis algorithm to
the GPL96 microarray dataset.

2 Background

2.1 Nearest Shrunken Centroids (NSC)

Tibshirani et al. (2002) proposed the Nearest Shrunken
Centroid method for sample classification in DNA mi-
croarray studies. They use shrunken centroids as pro-
totypes for each class and identify subsets of genes that
best characterize each class. The NSC shrinks each of
the class centroids toward the overall centroid for all
classes by a threshold and makes the classifier more
accurate by eliminating the e↵ect of noisy genes. As
a result it also has an internal gene selection facility
(Zou and Hastie 2005). In detail, given x

ij

for vari-
able j and sample i where j = 1, .., d and i = 1, .., n,
we have M classes, each with n

m

samples. i 2 C
m

means that the i-th sample is in class m. The NSC
utilizes the simple two sample t-test statistic between
{x

ij

, i 2 C
m

} and {x
ij

, i = 1, .., n}, and define the
classification score d

mj

as:

d
mj

:=
x̄
mj

� x̄·j
⌘
m

· (s
j

+ s
0

)
, (2.1)

where s2
j

= 1

n�M

P

m

P

i2C

m

(x
ij

� x̄
mj

)2, x̄
mj

=
P

i2C

m

x

ij

n

m

, x̄·j =
P

n

i=1 x

ij

n

, where ⌘
m

:= (1/n
m

+

1/n)�1/2 and s
0

is chosen as a global constant to con-
trol the variance term. In practice, Tibshirani et al.
(2002) suggest setting s

0

equal to the median of the s
j

over all genes, i.e., s
0

:= median{s
1

, . . . , s
d

}. Tibshi-
rani et al. (2002) recommend using a soft thresholding
function to balance the estimation bias and the model
complexity: bd

mj

= sign(d
mj

)(|d
mj

| � �)
+

, where for
any x 2 R,
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(x)
+

:=

(

x, if x > 0,

0, otherwise,

and consider j-th variable to be nonfunctional to the
m-th class if bd

mj

= 0. With regard to classification,
given a new sample x

0 = (x0
1

, . . . , x0
d

)T , the discrimi-
nant score for class m is defined as:

�
m

(x0) =
d

X

j=1

(x0
j

� bx
mj

)2

s2
j

� 2 log(
n
m

n
),

with bx
mj

= x̄·j + (⌘
m

(s
j

+ s
0

))bd
mj

and bd
mj

defined
in Equation (2.1). � is accordingly chosen by 10-fold
cross validation procedure.

It is further shown in Wang and Zhu (2007) and
Hastie, Tibshirani and Friedman (2009) that the Near-
est Shrunken Centroids can be explained as a solution
to an optimization problem, provided that the data
has a certain type of structure. In detail, suppose that
x
ij

⇠ N(µ
j

+µ
mj

,�2

j

) for i 2 C
m

with
P

M

m=1

µ
mj

= 0
to make the model identifiable, then

(x̄·j , bdmj

) = argmin
µ

j

,µ

mj

1

2

d

X

j=1

M

X

m=1

X

i2C

m

(x
ij

� µ
j

� µ
mj

)2

s2
j

+ �
M

X

m=1

p
n
m

d

X

j=1

|µ
mj

|
s
j

, (2.2)

where bd
mj

is shown in Equation (2.1) with s
0

= 0 and
⌘
m

=
p

1/n
m

.

2.2 Normal Score Transformation

More recently, the Gaussian assumption commonly
adopted by almost all high dimensional discriminant
analysis methods is weakened by Liu et al. (2009).
They generalize the Gaussian distribution family to a
strictly larger Nonparanormal (Gaussian Copula) fam-
ily. A random variable X := (X

1

, ..., X
d

)T 2 Rd be-
longs to a nonparanormal family if and only if there
exist a set of univariate monotone functions {f

j

}d
j=1

such that (f
1

(X
1

), ..., f
d

(X
d

))T is multivariate Gaus-
sian. Liu et al. (2009) utilize the normal score transfor-
mation to infer the variable structure, which is proved
to be semiparametric e�ciency in low dimensional
settings by Klaassen and Wellner (1997). Moreover,
they analyze its theoretical performance in high di-
mensional settings (Liu et al. 2012). We refer to their
papers for further discussions.

In detail, given n data points x
1

, . . . , x
n

2 R, we define
eF (t;x

1

, . . . , x
n

) :=
1

n+ 1

n

X

i=1

I(x
i

 t), (2.3)

to be the skewed empirical cumulative distribu-
tion function. Let ��1(·) be the quantile func-

tion of standard Gaussian, we define ef(t) =
��1

�

eF (t;x
1

, . . . , x
n

)
�

. The normal score transformed
data points {z

1

, . . . , z
n

} are then defined to be:

z
i

:= bµ+ b� · ef(x
i

), i = 1, . . . , n,

where bµ = 1

n

P

n

i=1

x
i

and b� =
q

1

n�1

P

n

i=1

(x
i

� bµ)2,

are the sample mean and standard deviation.

3 Method

We begin by establishing some notations. Let M =
[M

jk

] 2 Rd⇥d and v = (v
1

, ..., v
d

)T 2 Rd. Let v’s
subvector with entries indexed by I be denoted by v

I

,
M ’s submatrix with rows indexed by I and columns
indexed by J be denoted by M

IJ

, M ’s submatrix with
all rows and columns indexed by J is denoted by M·J .

We define kvk
2

= (
d

X

i=1

|v
i

|2)1/2 and kvk1 = max
1id

|v
i

|.

We define the matrix `
max

norm as the elementwise
maximum value: kMk

max

= max{|M
ij

|} and the `1

norm as kMk1 = max
1im

n

X

j=1

|M
ij

|. ⇤
min

(M) and

⇤
max

(M) are the smallest and largest eigenvalues of
M . We further define the matrix operator norm as
kMk = �

max

(M).

3.1 Model

Let X = [x
ij

] be the dataset we are interested in,
with i = 1, . . . , n and j = 1, . . . , d representing the n
samples and d variables. We assume that there are d
variables belonging to K groups, and collect the set
of indices of the d

k

variables in the k-th group in the
set G

k

, k = 1, . . . ,K. Similarly, we assume that there
are n samples belonging to M classes, and that C

m

is
equal to the set of indices of the n

m

samples in the m-
th class, m = 1, . . . ,M . For simplicity, we rearrange
the variables such that X

i· = (XT

iG1
, . . . ,XT

iG

K

)T .

We consider the data matrix X and denote by: x
ik

=
(x

ij

, j 2 G
k

)T 2 Rd

k , x⇤
ik

= (x
ij

� x̄·j , j 2 G
k

)T . We
suppose that for k = 1, . . . ,K,

x

ik

⇠i.i.d N(µ
k

+ µ

mk

,⌃
k

), 8 i 2 C
m

, (3.1)

where µ

k

and µ

mk

are both unknown vectors with
P

M

m=1

µ

mk

= 0, to make the model identifiable.

3.2 Group Nearest Shrunken Centroids

Let e⌃
k

be an arbitrary estimator of ⌃
k

. We propose a
loss function with a similar version as the NSC’s shown
in Equation (2.2), but with a group penalty:

L := 1

2

P

K

k=1

P

M

m=1

P

i2C

m

kx
ik

� µ

k

� µ

mk

k2
k

+�
P

K

k=1

P

M

m=1

(n
m

!
mk

)kµ
mk

k
k

,
(3.2)

where for any v 2 Rd

k , kvk
k

is defined as:
kvk

k

:= (vT

e⌃�1

k

v)1/2. (3.3)

The following theorem, whose proof we defer to Ap-
pendix A, provides the closed form of the minimizers
to Equation (3.2):

Theorem 3.1. We denote by {eµ
k

}K
k=1

and

{eµ
mk

}m=M,k=K

m=1,k=1

the optima to Equation (3.2):
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{{eµ
k

}K
k=1

, {eµ
mk

}m=M,k=K

m=1,k=1

} := argminL. (3.4)

Then for all k 2 {1, . . . ,K} and m 2 {1, . . . ,M},

e

µ

k

=
1

n

n

X

i=1

x

ik

and e

µ

mk

= (1� �!
mk

kbµ
mk

k
k

)
+

b

µ

mk

,

(3.5)
where

b

µ

mk

:= 1

n

m

P

i2C

m

x

⇤
ik

.

Remark 3.1. In practice, while defining k·k
k

in Equa-

tion (3.3), we adopt a similar idea as Tibshirani et al.

(2002) and choose

e⌃
k

= b⌃
k

+ s2
0

I
d

k

⇥d

k

, (3.6)

where

b⌃
k

is the sample covariance matrix of the

k-th group of variables using the whole samples,

I
d

k

⇥d

k

is the d
k

⇥ d
k

identity matrix and s2
0

=

median(((diag(b⌃
1

))T , . . . , (diag(b⌃
K

))T )T ), is the me-

dian of all marginal sample variances.

Given a new data point x 2 Rd, the discriminant score
for class m is defined as:

�
m

(x) =
K

X

k=1

kx
G

k

� e

µ

k

� e

µ

mk

k2
k

� 2 log(
n
m

n
). (3.7)

3.3 Theoretical Properties of gNSC

For simplicity, we analyze the theoretical performance
of a slightly simpler version of the model proposed in
Section 3.1, where for any k 2 {1, . . . ,K}, µ

k

:= 0.
In this way, the estimators in Equation (3.5) can be
reduced to:

e

µ

k

= 0 and e

µ

mk

= (1� �!
mk

kbµ
mk

k
k

)
+

b

µ

mk

, (3.8)

where b

µ

mk

= 1

n

m

P

i2C

m

x

ik

and kvk
k

:= vT b⌃�1

k

v.

Remind that b⌃
k

is the sample covariance matrix of
the k-th group of variables using the whole samples.
Furthermore, to achieve a better theoretical perfor-
mance, we define the sparse set of {µ

m1

, . . . ,µ
mK

}
with respect to the sample class C

m

to be S
m

:=
{k 2 {1, . . . ,K} : µ

mk

6= 0}, and the corresponding
estimated sparse set with respect to the m-th sam-
ple class to be bS

m

:= {k 2 {1, . . . ,K} : e

µ

mk

6= 0}.

3.3.1 Estimation Consistency.

To achieve the estimation consistency result, we need
the following three “boundedness” assumptions:

(A1) There exist two finite constants c
1

, c
2

2 (0,1)
such that
c
1

< min
1mM

min
k2S

m

n

(µT

mk

⌃�1

k

µ

mk

)
1
2 , kµ

mk

k
o



max
1mM

max
k2S

m

n

(µT

mk

⌃�1

k

µ

mk

)
1
2 , kµ

mk

k
o

< c
2

;

(A2) There exists 0 < c
3

= min{⇤
min

(⌃�1

k

), k =
1, ...,K} < 1.

(A3) !
mk

/
p
d
k

is upper bounded by !
0

=
O(( min

1mM

n
m

)�0/2) for some 0  �
0

< 1.

Theorem 3.2. (Estimation Consistency) Under as-

sumption (A1)-(A3), for any m 2 {1, . . . ,M}, for

large enough n
m

, if we further suppose that � ! 0,

n
1/2

m

� ! 1, and ✏ = ��2

with � > !2

0

c2
2

/c2
1

, we have

P(keµ
mk

� µ

mk

k2
2

> 2✏) = O(exp(�C
k

n2

m

�4)) ! 0,

where C
k

= min( 3�
2
c

2
3

16d

k

,
3!

4
k

64d

k

).

3.3.2 Sparsity Recovery and Misclassification

Consistency.

For sparsity recovery and misclassification consistency,
we only consider the situation when there are only two
groups of samples, indexed by C

1

and C
2

. We denote
by y

i

the label of i-th sample: y
i

= 0 if i 2 C
1

and
y
i

= 1 if i 2 C
2

. Suppose that (X
i·, yi) are i.i.d drawn

from the joint distribution of (X,Y ), where X 2 Rd

and Y 2 {0, 1}. The target of the classification is
to determine the value of Y given a new data point
x 2 Rd. Here we further suppose that

(X|Y = 0) ⇠ N(µ
1

,⌃) and (X|Y = 1) ⇠ N(µ
2

,⌃),

where µ

1

= (µ
11

, . . . , µ
1d

)T := (µT

11

, . . . ,µT

1K

)T , µ
2

=
(µ

21

, . . . , µ
2d

)T := (µT

21

, . . . ,µT

2K

)T , and ⌃
G

k

G

k

= ⌃
k

,
8k 2 {1, . . . ,K}. Define the prior probabilities ⇡

1

=
P(Y = 0), ⇡

2

= P(Y = 1), and we assume that ⇡
1

=
⇡
2

. It is easy to extend it to the case where ⇡
1

6= ⇡
2

(Hastie et al. 2009). In this way, the Bayes rule is
given by:

g⇤(x) =

(

1, if
⌦

⌃�1(µ
2

� µ

1

), x� µ

a

↵

> 0

0, otherwise
(3.9)

where ha, bi is the inner product of a and b and µ

a

:=
(µ

1

+ µ

2

)/2. Define

S := {k : kµ
1k

� µ

2k

k
2

> 0},
bS := {k : keµ

1k

� e

µ

2k

k
2

> 0}, (3.10)

where e

µ

1

= (eµ
11

, . . . , eµ
1d

)T := (eµT

11

, . . . , eµT

1K

)T , and
e

µ

2

= (eµ
21

, . . . , eµ
2d

)T := (eµT

21

, . . . , eµT

2K

)T . Remind
that e

µ

mk

is defined in Equation (3.8). Define s =
card(S). It is easy to see that

S ⇢ S
1

[ S
2

and bS = bS
1

[ bS
2

, a.s.. (3.11)

Given ⇡
1

= ⇡
2

, the gNSC classification procedure g
proposed in Equation (3.7):

g(x) =

(

1, if �
2

(x)� �
1

(x) > 0,

0, otherwise,
(3.12)

can be further written as:

g(x) =

(

1, if
D

b⌃�1(eµ
2

� e

µ

1

), x� e

µ

a

E

> 0,

0, otherwise,
(3.13)

where e

µ

a

= eµ1+eµ2

2

, b⌃ and b⌃�1 are defined to be:

b⌃ =

0

B

B

B

@

b⌃
1

0 . . . 0
0 b⌃

2

. . . 0
0 0 . . . 0
· · . . . ·
0 0 . . . b⌃

K

1

C

C

C

A

. (3.14)
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The corresponding misclassification errors are

C(g⇤) = �̄( 
⌃

(�, ⇠)) and C(g) = �̄( 
⌃

(e�, b⇠)),

where �̄ is the survival probability of the standard
Gaussian distribution, i.e. �̄(·) = 1 � �(·), and � :=

µ

2

� µ

1

, e� := e

µ

2

� e

µ

1

, ⇠ := ⌃�1�, b⇠ := b⌃�1

e�

 
⌃

(a, b) := aT b
2

p
bT

⌃b
.

To obtain a fast rate on the misclassification consis-
tency, we need the following assumption:

(A4) For any k 2 S
1

\ S
2

, we have k 2 S. In other
words, S

1

[ S
2

= S.
The next theorem states that the sparsity pattern can
be recovered consistently:

Theorem 3.3. (Sparsity Recovery) Under assump-

tions (A1)-(A4), if we further suppose that ✏ = ��2

,

� > c2
2

!2

0

/c2
1

, � ! 0 and �n1/2 ! 1. Then if

K = o(eCn

2
�

4

), C > 0 is a su�cient small constant,

we have: P(bS 6= S) ! 0.

Finally, we define M := {j 2 {1, . . . , d} : j 2
G

k

for some k 2 S}.
Theorem 3.4. (Misclassification Consistency) Un-

der assumptions (A1)-(A4), if we define k(⌃MM)�1�
(⌃�1)MMk := O(a

n,d

), where a
n,d

scales with (n, d)

and further suppose � = O(n� 1
2 [log(n) log(K)]

1
4 ), then

we have

C(g)� C(g⇤) = O
P

(c
s

s2!4

0

· log s log!0

n
) + c

s

O(a2
n,d

),

where c
s

:= kµ
2

� µ

1

k2
2

.

As alluded to previously, we defer the proofs of the
above theoretical results to Appendix A.

3.4 Nonparanormal and Normal Score
Transformation

To the extent that both gNSC and NSC are only well-
justified when data are Gaussian, their applications to
the “real” data, e.g. gene expression data, is highly
limited. To attack this problem, Liu et al. (2009)
weaken the Gaussian assumption via introducing the
Nonparanormal distribution family. In detail, a ran-
dom variableX = (X

1

, ..., X
d

)T is said to follow a non-
paranormal distribution if and only if there exist a set
of univariate monotone transformations f = {f

j

}d
j=1

such that: f(X) = (f
1

(X
1

), ..., f
d

(X
d

))T := Z ⇠
N(µ,⌃), where µ = (µ

1

, ..., µ
d

)T , ⌃ = [⌃
jk

] are the
mean and covariance matrix of the Gaussian distri-
bution Z. {�2

j

:= ⌃
jj

}d
j=1

are the corresponding
marginal variances. To make the model identifiable,
we assume, for 1  j  d, E(X

j

) = E(f
j

(X
j

)) = µ
j

and Var(X
j

) = Var(f
j

(X
j

)) = �2

j

. For notational con-
venience, we denote such X by X ⇠ NPN(µ,⌃, f).
Liu et al. (2009) prove that if the transformation
functions are monotone, the nonparanormal family is
equivalent to the Gaussian Copula.

In practice, a parallel model to Equation (3.1) can
be constructed: x

ik

⇠i.i.d. NPN(µ
k

+ µ

mk

,⌃
k

,f
k

),
8i 2 C

m

, k 2 {1, . . . ,K}, where f

k

= {f j

k

}dk

j=1

is a
set of univariate monotone functions common across
di↵erence classes. Under this model, a natural data
preprocessing approach is to do normal score transfor-
mation first on the data and achieve Z = [z

ij

] 2 Rn⇥d

such that for all m 2 {1, . . . ,M}: z
ij

= bµ
mj

+ b�
j

·
��1( eF (x

ij

; {x
i

0
j

}
i

02C

m

)), 8i 2 C
m

, where eF (·; ·) is
defined in Equation (2.3), bµ

mj

= 1

n

m

P

i2C

m

x
ij

and

b�2

j

= 1

n�1

P

n

i=1

(x
ij

� 1

n

P

x
ij

)2. Its theoretical perfor-
mance has been deeply studied by Klaassen and Well-
ner (1997) and Bickel (1998). Its theoretical and em-
pirical performance in high dimensional settings has
been further verified by Liu et al. (2012). We there-
fore recommend conducting normal score transforma-
tion while preprocessing the data and use Z as the
input to the gNSC algorithm. With regard to classifi-
cation, given a new data point x 2 Rd, we transform
it to a new data z = (z

1

, . . . , z
d

)T by:

z
j

=
1

M

M

X

i=1

(bµ
mj

+ b�
j

· ��1( eF (x
j

; {x
i

0
j

}
i

02C

m

))).

We then apply z to Equation (3.7) to obtain the dis-
criminant score for classification.

4 Application

Gene expression is the process by which information
encoded within a gene is used in the synthesis of a func-
tional gene product, such as proteins. After genome
sequencing, microarray analysis has become one of the
indispensable tools that many biologists use to moni-
tor genome-wide expression levels of genes in a given
organism. Scientists use DNA microarrays to mea-
sure the expression levels of large numbers of genes
simultaneously. To the extent that the quantity of
data collected from such experiments is overwhelm-
ing, e�ciently synthesizing these expression levels, via
microarray analysis, is an essential part of current
methodology. The GPL96 set (A↵ymetrix GeneChip
Human Genome U133 Array Set HG-U133A) (McCall
et al. 2010), a collection of publicly available mi-
croarray data from hundreds of di↵erent experiments,
is among the highest accessible microarray datasets.
This set includes over 1,000,000 unique oligonucleotide
features covering more than 39,000 transcript variants,
which in turn represent greater than 33,000 of the best
characterized human genes. Sequences were selected
from GenBank, dbEST, and RefSeq. Sequence clusters
were created from Build 133 of UniGene and refined
by analysis and comparison with a number of other
publicly available databases including the Washington
University EST trace repository and the University
of California, Santa Cruz golden-path human genome
database.

We will apply our above-discussed technique (cf. Sec-
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tion 3), to 20,248 genes and 8,124 microarray samples
from A↵ymetrixs HG-U133A platform. Each sam-
ple belong to a certain tissue type (e.g., lung can-
cers, brain tumor etc.), of which we have 312 types
total. We also are interested in certain gene path-
ways extracted from the one of the largest pathway
databases, Molecular Signature Database (MSigDB)
(Subramanian et al. 2005). This database consists of
12,713 genes, notably including information concern-
ing biological pathways and responses to a drug treat-
ment. The pathway information is extracted from the
MSigDB. A total of 6,769 pathways are obtained. The
main purpose of our experiment is to test the associ-
ation between gene pathways and certain diseases or
tissue types. To demonstrate the e↵ectiveness of our
new approach for high dimensional discriminant anal-
ysis, we look at the performance of both classification
and feature selection of group Nearest Shrunken Cen-
troids. The task of sample classification is to classify
and predict the diagnostic category of a sample on the
basis of its gene expression profile. We show our e↵ec-
tiveness of sample classification by comparing the per-
formance of our new method with Nearest Shrunken
Centroids. The misclassification rates of both of the
two methods are calculated in Section 4.1. The perfor-
mance of gNSC on feature selection is shown in Section
4.2, where we apply gNSC on context analysis. We
show that the power of feature selection is improved
by utilizing the text information.

4.1 gNSC for Classifcation

The raw data of GPL96 contain 20,248 genes and 8,124
samples belonging to 312 tissue types. Since the tis-
sue types with too few samples may not follow the
asymptotic properties, we exclude from consideration
tissue types with fewer than 30 samples. 5,510 sam-
ples, belonging to 24 tissue types, form our data set.
To explore the association between the gene pathways
and the tissues, we utilize the gene structure informa-
tion extracted from the Molecular Signature Database
(MSigDB), which contains 6,769 pathways and 12,713
genes. To preserve e�ciency, we exercise data-rich
gene pathways – those with more than 50 genes. We
finally have 4,005 pathways, containing 10,990 di↵er-
ent genes. Consequently, the final dataset we use con-
tains 10,990 genes belonging to 4,005 pathways, 5,510
samples belonging to 24 tissue types. Finally, we ar-
range the genes by pathways, giving us a matrix with
dimension 5, 510 ⇥ 88, 396. gNSC is then applied to
this data for detecting the association between gene
pathways and tissue types. Note that there are 88,396
columns instead of 10,990. This is because the genes
can belong to more than one pathway.

4.1.1 Procedures.

In Section 3.3, we have shown that the asymptotic
variable selection and misclassification consistency re-
sults of gNSC hold under the assumption of normality

of the data. Therefore we first test the normality of
the dataset. For each gene in each sample class we
present the Quantile-to-Quantile plot (QQ plot) to vi-
sualize the normality. Three of them are shown in
Appendix C. It can be observed that all the three
marginal distributions are severely away from Gaus-
sian. Accordingly, we utilize the idea of normal score
transformation (NST) to generalize the model to non-
paranormal (Liu et al. 2012).

We calculate e

µ

k

and e

µ

mk

by using the Equation (3.5),
where !

mk

=
p

d
k

/n
m

, e⌃
k

is calculated using Equa-
tion (3.6), and � is a tuning parameter. We use two
types of cross validation methods to tune the param-
eter �. 10-fold cross-validation is used by (Tibshirani
et al. 2002) to find the � with the lowest average mis-
classification error. In practice, however, the new data
points usually come from a new experiment. We there-
fore propose an alternative way, “leave experiment
out” cross-validation, to select �. In detail, we isolate
all samples from a single experiment as our “testing
data;” remaining data is used as “training data.” We
calculate the discriminant scores of all classes for each
data point in the testing data using Equation (3.7).
The estimated class for each data point is the one that
achieves the lowest discriminant score. Then, for each
�, we calculate an average misclassification error by
summing up the number of misclassified data points
for all experiments and dividing it by the total num-
ber of samples. The parameter � is chosen to be the
one with the lowest average misclassification error.

4.1.2 Results.

We say that the pathway k is significantly associated
with the sample class m if eµ

mk

is greater than 0. We
call the combination of one certain pathway and one
certain tissue type a block. There are then M ⇥ K
blocks.

We compare our method of group Nearest Shrunken
Centroids with the Nearest Shrunken Centroids. The
averaged misclassification error for each � from 0.1
to 10 is calculated using both “leave fold out” and
“leave experiment out” cross-validation, where “leave
fold out” represents the commonly used 10-fold cross
validation. The � with the lowest averaged misclassi-
fication error is picked up using these two cross val-
idation methods. The corresponding averaged mis-
classification errors with their standard deviations are
calculated. Moreover, we present the corresponding
averaged significant numbers of unique genes across
di↵erent tissue types with their standard deviations.
All the results are illustrated in Table 1. It can be ob-
served that group Nearest Shrunken Centroids has –
on average – lower misclassification errors than Near-
est Shrunken Centroids, as the gNSC requires much
fewer genes to obtain a better prediction result. We
also provide two tables to show the general trend of the
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averaged misclassification errors and the correspond-
ing genes with increasing of � in Appendix B.
Table 1: Leave Fold Out v.s. Leave Experiment Out
Cross Validation.

gNSC sd NSC sd

leave experi- gene number 3901 22.50 4495 17.26
ment out error 0.089 0.0505 0.149 0.0479

leave fold gene number 5502 21.33 5670 11.14
out error 0.139 0.0866 0.136 0.0906

By using “leave experiment out” cross validation, the
tuning parameter with lowest averaged misclassifica-
tion error is around � = 6.5. To illustrate our re-
sult more clearly, we randomly pick 12 tissue types
and 50 gene pathways for visualization. Figure 1
presents the significant associations, i.e. the threshold
term (1� �!

mk

kbµ
mk

k
k

)
+

, between gene pathways and tissue
types: red color suggests that the corresponding path-
way and tissue type are estimated to be associated.
The heatplots of the negative “shrinkage amount,” i.e.
(1 � �!

mk

kbµ
mk

k
k

) and the biological expression levels are
shown in Appendix D.

lung cancer

squamous cell cancer

skin melanoma

bronchial epithelia

atrial myocardium normal

wilms tumor

prostate normal

brain normal

vastus lateralis

breast tumor

myloma

lymphoma blood

PTW
Y50

PTW
Y49

PTW
Y48

PTW
Y47

PTW
Y46

PTW
Y45

PTW
Y44

PTW
Y43

PTW
Y42

PTW
Y41

PTW
Y40

PTW
Y39

PTW
Y38

PTW
Y37

PTW
Y36

PTW
Y35

PTW
Y34

PTW
Y33

PTW
Y32

PTW
Y31

PTW
Y30

PTW
Y29

PTW
Y28

PTW
Y27

PTW
Y26

PTW
Y25

PTW
Y24

PTW
Y23

PTW
Y22

PTW
Y21

PTW
Y20

PTW
Y19

PTW
Y18

PTW
Y17

PTW
Y16

PTW
Y15

PTW
Y14

PTW
Y13

PTW
Y12

PTW
Y11

PTW
Y10

PTW
Y9

PTW
Y8

PTW
Y7

PTW
Y6

PTW
Y5

PTW
Y4

PTW
Y3

PTW
Y2

PTW
Y1

Figure 1: Significant Association Between Pathways
and Tissue Types
Using the parameters extracted from our data, we can
reclassify the samples associated with di↵erent tissue
types and compare them with the true labels. The re-
sult is shown in Figure 2, with the y-axis as true labels
and x-axis as predictive labels. The integer with the
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Figure 2: The True Tissue Types v.s. the Predictive
Tissue Types.

coordinates (A,B) represents the number of the tissues
that is truly B and is predicted to be A. For exam-
ple, the value 1448 in the left top corner means that
there are 1448 samples that are truly acute lymphoma
blood and are successfully predicted to be so. We suc-
ceed in accurately predicting over 80% of the samples.

Moreover, our errors are largely due to similarity in
tissue types, which are also hard to di↵erentiate bio-
logically. For example, we fail to di↵erentiate between
wilms tumor that is relapse and the wilms tumor that
is non-relapse.

We find 3,220 significant relations in all and 174 sig-
nificant relations based on the tissue types and path-
ways we present in Figure 5(a). Note that each rela-
tion involves one tissue type and one pathway which
includes a number of genes. One gene can be in-
volved in several significant relations and one relation
involves all the genes in the corresponding pathway.
Even for the subset with only 174 significant relations,
many have been found to be biologically meaningful.
Part of the results are showed in Table 2. For ex-

Table 2: True relations learnt from the GPL96 data.

(Pathway Name) Disease Related to the Class

(GAUSSMANN MLL AF4 FUSION TARGETS B DN) leukemia
(OZANNE AP1 TARGETS UP) breast tumor
(GOLUB ALL VS AML DN) blasts and mononuclear cells: leukemia
(CHESLER BRAIN D6MIT150 QTL CIS) barin: glioblastoma
(PODAR RESPONSE TO ADAPHOSTIN DN) breast tumor
(HAHTOLA MYCOSIS FUNGOIDES UP) b cell: lymphoma
(HEDVAT ELF4 TARGETS UP) blasts and mononuclear cells: leukemia
(STEIN ESTROGEN RESPONSE NOT VIA ESRRA) breast tumor
(MACLACHLAN BRCA1 TARGETS DN) breast tumor
(VETTER TARGETS OF PRKCA AND ETS1 DN) breast tumor
(NIKOLSKY BREAST CANCER 22Q13 AMPLICON) breast tumor
(DONATO CELL CYCLE TRETINOIN) breast tumor
(CAFFAREL RESPONSE TO THC 8HR 3 DN) b cell: lymphoma
(SINGH NFE2L2 TARGETS) breast tumor
(WANG RESPONSE TO ANDROGEN UP) prostate tumor
(WAGNER APO2 SENSITIVITY) breast tumor
(DE YY1 TARGETS UP) breast tumor
(SABATES COLORECTAL ADENOMA SIZE UP) breast tumor
(MYLLYKANGAS AMPLIFICATION HOT SPOT 11) breast tumor

(The information used here are from http://www.broadinstitute.org/.)

ample, “CHESLER BRAIN D6MIT150 QTL CIS” is
a Cis-regulatory quantitative trait loci found at the
D6Mit150 region. It is believed to regulate the central
nervous system. Therefore, this pathway is considered
to be highly related to certain brain diseases (Chesler,
Lu, Shou, Qu, Gu, Wang, Hsu, Mountz, Baldwin,
Langston et al. 2005) and is successfully identified by
our techniques.

4.2 Context Analysis of Myc pathway

Myc is a regulator gene that codes for a transcription
factor. A mutated version of Myc is found in many
cancers. Translocation involving Myc is critical to cer-
tain kinds of B-cell lymphoma (Lovec, Grzeschiczek,
Kowalski and Möröy 1994). A very recent result ob-
tained by Ji et al. (2011) concludes that microarray
samples enriched in Wilms tumor have low Myc. A
list of 51 genes are believed to be highly positively
correlated with Myc in Myc pathways, 37 of which
are included in GPL96. To show the e↵ectiveness of
feature selection, we use context analysis to identify
most related genes of medical terms including “wilms
tumor” and “b-cell lymphoma”. Since it is not the
main part of this paper, we put the detailed procedure
of conducting context analysis in the Appendix G. We
will discuss more about it in our future papers.

The 37 positively related genes in Myc pathways are
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Figure 3: gNSC Results of Keywords v.s. Myc pathway. (a) The mean relevance levels of synonym word groups
with the 37 genes in Myc pathway; (b) The figure illustrates eµ

mk

calculated by Equation (3.5).

believed to be related to both “Wilms tumor” and “b-
cell lymphoma”. Both NSC and gNSC are used in our
analysis. By including the text information, we show
that both “Wilms tumor” and “b-cell lymphoma” are
predicted to be significantly related to the Myc path-
way which coincides with the finding of Ji et al. (2011).
For the sake of comparison, we used both NSC and
gNSC without including the text information. To the
extent that the results of these “control” experiments
were insignificant, we conjecture that text information
is necessary to the discernative power of context analy-
sis in feature selection. We show the results of context
analysis using NSC and gNSC separately below.
4.2.1 Context Analysis using NSC

Similar to Section 4.1, we consider only tissue types
with more than 30 samples. After further screening
out the samples without document information, there
remain 5,484 samples for study, leading to an expres-
sion matrix with a dimension of 5, 484 ⇥ 12, 713. We
extract 11,220 meaningful single terms from the text
information of GPL96, from which 4,308 terms are in-
cluded in the 5,484 sample documents we have in the
gene expression matrix. The dictionary we use con-
sists of 1,048,576 words and phrases in total. Among
them we only need nouns, resulting in 565,308 words
and phrases left. Each word and phrase has been in-
dexed to a specific synonym cluster. We exclude those
with no terms belonging to any sample document.
There are 4,560 synonym clusters left with di↵erent
indices. In summary, we end up with an index-doc
matrix with a dimension of 4, 560 ⇥ 5, 484 (see Ap-
pendix G for more details). Based on the expression
matrix and the index-doc matrix, we can construct the
index-gene relevance matrix, which has a dimension of
5, 484 ⇥ 4, 560 ⇥ 12, 713. We then implement NSC to
analyze the associations between synonym clusters and
the genes.
Remark 4.1. Although the dimension of the index-

gene relevance matrix is over 3 ⇥ 1011, the clean en-

coding of the data in R allows for e�cient analysis of

this large-scale information: by calculating su�cient

statistics of the original microarray data, we were able

to finish our whole procedure in minutes.

Since it is impossible to obtain all true relations be-
tween genes and words , we use a simpler algorithm to
choose the amount of shrinkage instead of doing cross
validation. We choose � to be the 95% quantile of
|d

mj

| with m = 1, 2, · · · ,M and j = 1, 2, · · · , d. Here
we have M = 4, 560 and d = 12, 713. Therefore 5%
of the index-gene relations are considered to be signif-
icant. This gives us a � around 0.00348.

To show the e↵ectiveness of our method, we count the
number of genes in the list that are significantly related
to the word “wilms tumor” and “b-cell lymphoma”.
All the 37 genes are significant related with “wilms
tumor” and 32 of them are significant related to “b-
cell lymphoma”. Both words are significantly related
to Myc. The heatplot of the relevance of certain words,
including “wilms tumor” and “b-cell lymphoma”, with
the 37 genes is shown in Appendix E.

4.2.2 Context Analysis using gNSC

We can also include the pathway information into the
context analysis and use gNSC to identify the most
related pathways of certain words. Similar to Section
4.1, we screen out the gene pathways with more than
50 genes and sort the matrix of expression levels by
pathways. We end up with a matrix with a dimension
of 5, 484 ⇥ 88, 396. As above, we can construct the
index-gene relevance matrix, which has a dimension of
5, 484⇥ 4, 560⇥ 88, 396. The mean relevance levels in
one synonym block of the relevance matrix are defined
to be the means of all relevance values restricted to
the pertaining block. The result can be visualized in
Figure 3(a). Figure 3(b) shows the relevance of certain
words and the 37 genes in Myc pathway. The red block
shows high relevance of the word and the genes. As we
can see, the Myc gene pathway is significantly related
to both “wilms tumor” and “b-cell lymphoma”.
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