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Abstract

Universal probabilistic programming lan-
guages (such as Church [6]) trade perfor-
mance for abstraction: any model can be rep-
resented compactly as an arbitrary stochas-
tic computation, but costly online analy-
ses are required for inference. We present
a technique that recovers hand-coded lev-
els of performance from a universal proba-
bilistic language, for the Metropolis-Hastings
(MH) MCMC inference algorithm. It takes
a Church program as input and traces its
execution to remove computation overhead.
It then analyzes the trace for each proposal,
using slicing, to identify the minimal compu-
tation needed to evaluate the MH acceptance
probability. Generated incremental code is
much faster than a baseline implementation
(up to 600x) and usually as fast as hand-
coded MH kernels.

1 Introduction

In order to achieve high performance, machine learning
practitioners typically intertwine the model represen-
tation and inference code. While this allows strong
control over the underlying software and hardware, it
is difficult to change the model, switch between infer-
ence algorithms, or express complex models.

To alleviate this, we can separate the model repre-
sentation and inference code. In systems like JAGS
[1], BLOG [2] and FACTORIE [3], graphical models
serve as the representation. Inference algorithms can
be switched without changing the model, and com-
plex models can be expressed using abstractions such
as plate models and template factors. Finally, many
optimizations are possible in this setting, such as FAC-
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TORIE’s DiffList mechanism, which restricts compu-
tation to a particular Markov blanket at a time.

However, this reliance on an underlying graphical
model limits the space of distributions that can be
represented. In particular, these systems do not sup-
port models with recursive dependencies or non-trivial
deterministic dependencies. For instance, FACTORIE
requires user-specified proposals that explicitly main-
tain deterministic relationships [3]. With a graphical
model, it is also necessary to explicitly declare the de-
pendencies between random variables, which can be-
come cumbersome.

A more intuitive and general representation is the uni-
versal probabilistic language (UPL). UPLs allow spec-
ification of any computable distribution [4,5] as a pro-
gram with random choice primitives. The space of ex-
pressible models is essentially the space of expressible
programs, including recursion and higher-order design
patterns. Combinations of arbitrary stochastic and
deterministic dependence is allowed as a matter of the
natural course of program execution, not through ex-
plicit user declaration. Posterior inference is expressed
using query functions that represent conditional prob-
abilities. Examples are Church [6], HANSEI [7],
IBAL [8], and Infer.NET Fun [9].

Unsurprisingly, inference in these languages can be
very slow. The set of random choices may change ar-
bitrarily and execution of the program must be closely
observed to track them. In particular, Metropolis-
Hastings (MH) for universal probabilistic languages
can be formulated in a straightforward way by re-
running the program from scratch when a proposal
is made to a random choice, using an expensive nam-
ing scheme based on the current stack trace to track
random choices [10].

In this paper we show that by adapting techniques
from the programming languages literature, tracing
and slicing, we can bridge the gap between gener-
ality and efficiency. We extend Lightweight-MH
[10], a general, robust MCMC algorithm for univer-
sal probabilistic languages. During inference on a
given program, our technique records the execution
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(letrec ([ num-sites (randint 3 5)]
[sites (repeat num-sites flip)]
[constr (for-each

(lambda (xy)
(soft-eq (car xy) (cadr xy)))

(bigram sites))])
sites)

Figure 1: An example model.
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Figure 2: A few iterations of our technique on the
example model.

of the language’s primitive operations, both stochastic
and deterministic. This builds a trace of the density
computation. By restricting this trace to structure-
preserving choices that do not influence existence of
random choices, we remove much of the overhead from
Lightweight-MH. This results in an order of magni-
tude speedup versus unoptimized Lightweight-MH
and performance similar to that of hand-written code
(and sometimes faster).

We then further optimize these traces using slicing to
extract the smallest sub-trace that needs to be run
when a single random choice changes—thus perform-
ing the minimum amount of work per proposal. With
this optimization, MCMC kernel performance can be
more than an order of magnitude faster than that of
the tracing interpreter alone, in total up to 600 times
the performance of unoptimized Lightweight-MH.

2 Overview

In this section we describe the inefficiencies of
Lightweight-MH. Then, we show how to use trac-
ing and slicing techniques to generate code for a
Lightweight-MH kernel specialized to a model. The
input program is run through our tracing interpreter,
generating traces that compute the density with less

work, thus allowing each MCMC iteration to perform
less work. Then, slicing produces sub-segments of
these traces that further reduce the work required.
The result is a faster MCMC kernel.

Figure 2 shows a 1D Ising model, with unknown num-
ber of sites and pairwise compatibility factors be-
tween consecutive sites. Many widely-used models
in machine learning follow this basic pattern. The
num-sites random variable samples the number of
variables using the randint random choice function.
sites is a list of random numbers of length num-sites
(generated by repeat), each a random boolean value
generated by flip (a Bernoulli). soft-eq is the com-
patibility factor and is defined as a random choice with
unit return value. It weights the distribution by prob-
ability 1.0 if the inputs are equal, and probability 0.1
otherwise. It is applied to every consecutive pair of
sites using bigram, which takes a list (x1 x2 ...) to
the list of consecutive pairs ((x1 x2) (x2 x3) ...).

One can perform MH on this model using
Lightweight-MH [10]: building and tracking a
database of random choices as the program runs,
perturbing one of the choices and re-running the
program with respect to the updated database to
obtain an acceptance ratio. Let N,N ′ be the current
(and proposed) values of num-sites, and xi, x

′
i be the

current and proposed values of the individual sites.
The acceptance ratio is then

J(x1 . . . xN → x′1 . . . x
′
N ′)

∏N ′

i=1 p(x
′
i)
∏N ′−1

i=1 f(x′i, x
′
i+1)∏N

i=1 p(xi)
∏N−1

i=1 f(xi, xi+1)
,

where J(· → ·) is the correction for the proposal.

This is inefficient in two ways:

1. To determine which choices in the program corre-
spond to which xi, the addressing scheme is used,
which is based on retrieving the stack trace at ev-
ery random choice. The identity of each choice
corresponds to the current stack. This is unnec-
essary when few or no random choices have been
added or removed during the proposal.

2. The entire acceptance ratio is always computed,
regardless of which variable was actually per-
turbed in the proposal.

Now, we describe how our incrementalizing compiler
removes the overhead of 1) by tracing, and automates
the algebraic simplification needed to mitigate 2) by
slicing. For illustrative purposes, suppose that N =
N ′ = 3, and we are proposing a change to x1.
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Tracing preserves structure. Our tracing inter-
preter generates a trace for the density computation
over xi given a fixed N . The result is a fixed set of pro-
gram variables that correspond to the xi, allowing den-
sity computation without re-computation of names:

X0 <- T-score randint R0 0 1
X1 <- T-score randint R1 0 1
X2 <- T-score randint R2 0 1
X3 <- T-score soft-eq X0 X1
X4 <- T-score soft-eq X1 X2

The trace computes the density as follows.
T-score randint ... corresponds to the p(xi)
factors and T-score soft-eq corresponds to the
f(xi, xi+1) factors. As these functions are called,
they implicitly increment a global score variable.
The current state (x1, x2, x3) is assigned to the input
variables R0, R1, R2, and the density is the value of
the score variable after being updated by the trace.

Yet, how do we determine which choices to treat as
fixed program variables in general? We need to dis-
tinguish choices that, when changed, require name re-
computation versus those that do not. We shall call
these two types of choices structural and structure-
preserving choices, respectively.

Control flow determines structure. A simple
concept distinguishes these two types of choices. In
a universal probabilistic language, the existence of
random choices (and therefore the need for name re-
computation) can only be influenced by control flow
constructs: branching, looping, and recursion. Going
back to the example, N was passed as a parameter to
repeat, whose definition is given here:

(define (repeat n f)
(if (= n 0) ’() (cons (f) (repeat (- n 1) f))))

We see that N flows into the if statement, possibly
causing the function f to be called, which in our case is
used to generate the xi choices. Therefore, N is struc-
tural. When N changes, so does the trace. On the
other hand, calls to flip influence subsequent soft-eq
choices but not their existence. This makes the xi
structure-preserving. Note that by this definition, the
subclass of programs corresponding to graphical mod-
els have no structural choices.

Slicing simplifies scoring. Slicing is based on a
conceptually simple optimization: with the proposal
to x1, there is no need to re-compute the entire density
in the acceptance ratio:

ShredMHLoop(niter , proposals , scorer , db, trace):
for(i = 0, i < niter; i++):

j = select_proposal_var_index(db)
if structural ?(db, j):

xj = proposals[j](j)
prop_hash = hash(db, j, xj)
if (trace_exists(prop_hash)):

prop_trace = traces[prop_hash]
else

prop_trace = gen_trace(db, j, xj)
bwfw = q(trace , db, j, xj, prop_trace);
diffscore = score(prop_trace) - score(trace);
accept? = logU(0, 1) < bwfw + diffscore;
if accept ?:

trace = prop_trace
db = prop_db

else
xj_prev = copy(db[j])
dscore_before = run_slice(trace , j)
db[j] = proposals[j](db[j])
dscore_after = run_slice(trace , j)
bwfw = q(trace)
diffscore = dscore_after - dscore_before;
accept? = logU(0, 1) < bwfw + diffscore;
if not accept ?:

db[j] = xj_prev
run_slice(trace , j)

Figure 3: Pseudocode summarizing our technique.

q(x1|x′1)

q(x′1|x1)

p(x′1)f(x′1, x2)

p(x1)f(x1, x2)

∏N
i=2 p(xi)

∏N ′−1
i=2 f(xi, xi+1)∏N

i=2 p(xi)
∏N ′−1

i=2 f(xi, xi+1)

=
q(x1|x′1)

q(x′1|x1)

p(x′1)f(x′1, x2)

p(x1)f(x1, x2)
;

i.e., it simplifies into factors relevant to the changed
variable.

With the traces above, automatically performing this
optimization amounts to following dependencies of
statements. We use slicing to do so. Slicing is a gen-
eral set of techniques for isolating the part of a pro-
gram dependent on a given variable or value. For a
proposal to x1, we calculate the values dependent on
R0, the corresponding input variable. This results in
the following slice, which performs less computation:

X0 <- T-score randint R0 0 1
X3 <- T-score soft-eq X0 X1
X4 <- T-score soft-eq X1 X2

Generating/switching traces. Each trace only
computes the density for a particular set of structure-
preserving choices. If a proposal to a structural choice
is made, we need to generate or retrieve a new trace.
For instance, if a proposal to N changes it from 3
to 4, the next state is N, (x1 . . . x4) and the trace for
N, (x1 . . . x3) cannot be used. Figure 2 depicts a sce-
nario of three MH iterations on this model, showing
how we alternate between running and existing trace
and building (or retrieving) a new trace if needed.

We give pseudocode summarizing our method in Fig-
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ure 3, depicting when we generate or retrieve a new
trace and when we run an existing trace. q is a function

that retrieves the proposal correction factor q(prev|next)
q(next|prev) .

run_slice is a function that runs the slice correspond-
ing to a certain variable, giving the corresponding den-
sity. It is run multiple times to maintain consistency
between iterations.

3 Tracing and Slicing

We formally describe our technique in this section. We
build on the formulation used in the paper [10] describ-
ing Lightweight-MH, which we briefly review here.
Each run of the probabilistic program assigns values
to a vector of random choices X = (x1 . . . xK), where
K is assumed to upper bound the maximum number
of steps in the computation, thus leaving some of the
elements in the vector to correspond to non-existent
random choices. Let θi be the parameters associated
with each xi. The distribution associated with the
program is then P (X) =

∏K
i=1 p(xi|θi, x1 . . . xi−1). To

save space, let fi denote p(xi|θi, x1 . . . xi−1).

We split the xi into structural choices xS that af-
fect existence of other choices and structure-preserving
choices xN that do not. Without loss of gener-
ality, let xS = x1 . . . xS and xN = xS+1 . . . XK

be the structure-preserving choices. Note that
this does not violate the conditional dependencies
p(xi|θi, x1 . . . xi−1). No structure-preserving choice
may influence any structural choice, otherwise it would
be structural. Then the probability density of program
executions is

P (X) =
S∏

i=1

fi

N∏
i=S+1

fi = P (S)P (N).

3.1 Tracing

Our tracing algorithm dynamically constructs subsets
of P (N) that correspond to extant sets of structure-
preserving choices. We define our tracing interpreter
as acting on a Church-like, call-by-value functional
probabilistic language. This is for clarity and preci-
sion; in principle, our technique applies to any lan-
guage admitting an implementation of Lightweight-
MH. The Church language syntax is given below as
a grammar. v are variables, c constants, p density
functions, op primitive operations (such as +,−,×,
cons, car, and cdr), and smp primitive sampling func-
tions. Brackets denote a list of the included element.

e = lambda [v] e | app e [e]
| if e e e | op [e]
| v | c | letrec v = e in e
| S p smp [e] | N p smp [e]

This is lambda calculus with structural (S) and
structure-preserving (N) elementary random choice
primitives (ERPs) [10]. Each ERP is parameterized
by a scoring function, a sampling function, and a list
of parameters. Our tracing interpreter is a procedure
T that turns each syntactic program construct into a
value or trace variable. It produces a trace, which
takes this form:

t = s t | END
s = tv <- T-Score p tv [tv] | tv <- T-PrimOp op [tv]

T-PrimOp represents a primitive operation. T-Score
takes a scoring function, the value of a random choice,
and parameters as input, returning the value and in-
crementing a global score variable as a side effect. Ex-
ecuting a trace computes a corresponding probability
density.

We now describe how traces are produced from
Church programs. Our tracing interpreter, with a
few exceptions, works just like a normal interpreter for
a call-by-value functional language. See SICP 4.1 [27]
for a canonical definition. We first run a pre-process
that puts a unique label lab at each syntax element for
computing ERP addresses [10]. Actual tracing starts
at a structure-preserving ERP:

T(addr , env , N lab p smp [e]):
v+ = next_trace_variable ();
i+ = next_trace_variable ();
x+ = [ T(addr , env , e_i), e_i <- [e] ];
x- = [ trvals[v], v <- x+];
this_addr = cons(lab , addr);
if ERP_exists(this_addr) then

trvals[v+] = ERP_val(this_addr);
this_score = p(trvals[v+], x-);
score = score + this_score;
update(this_addr , p, smp , this_score , trvals[v

+], p-);
else

v- = smp(x-);
trvals[v+] = v-;
this_score = p(v, x-);
score = score + this_score;
update(this_addr , p, smp , this_score , v-, p-);

add_stmt(v+ = T-score p i+ x+)
return v+;

This behaves identically to the inner loop body of Al-
gorithm 3 in the paper [10] describing Lightweight-
MH, except we also add a T-score statement to the
trace and return a trace variable, not the sampled
value. next_trace_variable produces a new unique
symbol for use as a trace variable. i+ is an free in-
put variable which will be set by the MCMC kernel at
each proposal. The result is a direct correspondence
between structure-preserving choices and input vari-
ables. [ f(x) , x <- l] depicts a mapping operation
over elements x in the list l, producing a new list with
the transformed elements. The function add_stmt ap-
pends its argument, a trace statement, to the global
trace. trvals associates trace variables with the nor-
mally interpreted values (if a normal value is input, it
acts as the identity function).
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For structural ERP’s, T works the same way except
no tracing is done and all parameters are normally
interpreted. This is key to our tracing technique: it
has the effect of partially evaluating (pre-computing)
away the computation associated with P (S) and all
naming computation.

The interpreter than resumes, working (mostly) just
like a normal interpreter for a call-by-value language,
treating the trace variable as another kind of value.
In fact, the interpretation of letrec bindings, non-
primitive functions lambda and calls app is the same as
that of a normal interpreter for Church. For branch-
ing and primitive operations, it is necessary to deal
with trace variables and their associated values explic-
itly. Branches are handled as follows.

T(addr , env , If e1 e2 e3):
v1 = T(addr , env , e1);
if trvals[v1] then

return T(addr , env , e2);
else

return T(addr , env , e3);

At this point, we are already in the structure-
preserving part P (N) of the distribution. This allows
us to assume that if the conditional part of the branch
e1 is a trace variable, the branch resulting from using
its actual value trvals[v1] is the one always taken.

For primitive operations, we trace if the arguments
contain trace variables and evaluate normally if not.
This is because it is not necessary to trace things like
X3 = 2 + 2; it is faster to use the computed result
somewhere else, e.g. X6 = 4 + X5. This is known
as constant folding in the compilers literature. Let
any_trace_var? be a function that checks whether or
not a trace variable occurs in a list of values.

T(addr , env , op [e]):
vs = [T(addr , env , e_i), e_i <- [e]];
if any_trace_var ?(vs) then

v+ = next_trace_variable ();
trvals[v+] = op([ trvals[v_i], v_i <- vs]);
add_stmt(v+ = T-PrimOp op vs);
return v+;

else
return op(vs);

Our final step is to translate the traces to a low-level
language. The generated traces do not contain any
control flow, looping, or recursion. Additionally, they
only assign a value to each variable once. Such pro-
grams are said to be in static single assignment (SSA)
[11] form. SSA programs are easily translated into a
number of low-level languages.

We generate a C++ function that calculates the subset
of P (N). Its arguments are the input variables corre-
sponding to each structure-preserving choice, and its
body is the C++-translated version of each trace state-
ment specialized to the types used at each point. This
is then used in the MCMC loop (Figure 3) as a way

to compute the density. Note that it is also possible
to compile to other low-level languages such as LLVM
[12] and Terra [13], which can more directly map to
machine instructions on common hardware.

3.2 Stochastic memoization

Although it is not necessary for our tracing technique,
models with Dirichlet processes [14] are included in
the benchmarks used in this paper. We elected to
represent them using the Church-specific syntax con-
structs: DPmem alpha f and mem f [10], the implemen-
tation of which is briefly described here.

DPmem takes a concentration parameter and a function
representing the base distribution, producing a func-
tion whose distribution is a Dirichlet process with the
given parameters. mem takes a function, transforming
it to only run once and have one return value for each
unique incoming argument. We deal with these primi-
tives in a manner that avoids control flow in our inter-
mediate trace language through tagging the sub-traces
produced by these primitives with a stack of names of
the DPmem/mem-transformed functions currently gener-
ating them. These sub-traces are then compiled to
C++ traces that conditionally execute based on the
corresponding stochastic memoization semantics.

3.3 Slicing

We adapt slicing, a technique from programming lan-
guages [15], to generate computations that do the
least amount of work in accept/rejecting proposals to
structure-preserving choices. We define the slice S(vi)
as all trace variables (i.e., statements) needing recom-
putation upon change to vi.

First, for a given trace variable vi, vi may appear
on the right hand side of the statements of other
trace variables vj : v_j = T-PrimOp op ... v_i .. or
v_j = T-Score op v ... v_i ... In this case, we de-
fine vj as directly dependent on vi. We use D(vi, vj)
to denote the set of all such pairs of trace variables.

We now define indirect dependency. For the T-PrimOp
above, it may be necessary to further compute the di-
rect dependenciesD(vj , vk) of the LHS variable, and so
on. For T-score statements it is not, as they merely
return the value of some other input variable. Let
Dp(x, y) = {(x, y)|y = T-PrimOp op vs, x ∈ vs} cap-
ture this fact. The indirect dependence relation I(·, ·)
is inductively defined as

I(x, y) = D(x, y)

∪ {(x, z)|(x, z) ∈ Dp(x, z) ∧ (z, y) ∈ I(z, y)}.
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Then, the slice S(vi) = {vi} ∪ {vj |vj ∈ I(vi, vj)}.

In code generation, we associate a function S_vi for
each trace variable’s slice S(vi) that executes its cor-
responding statements in order. We then promote all
trace variables to global scope so that they are visible
from every slice. We also avoid redundantly generating
code. For example, if we already computed S(v4), and
v4 ∈ S(v2), we replace the resulting set of statements
with a call to S_v4. Computing the density relevant
to each structure-preserving choice xk then amounts
to setting the input variable ik to xk and running the
corresponding slice S_ik.

Our algorithm for computing S(vi) is the memoized
depth-first search suggested by the definition of I(x, y)
above and our avoidance of generating redundant code.
It produces a directed graph where each node repre-
sents a trace variable and each edge a direct depen-
dency. The set of descendants of a node is the slice.

4 Results

We endeavor to answer the following questions:

1. What is the effect of tracing and slicing on kernel
efficiency?

2. What is the cost of tracing and slicing?

3. In an absolute sense, how fast are the resulting
kernels?

We analyzed a variety of widely-used models in ma-
chine learning, first running the following closed-
universe models:

linear-regression: This performs linear regres-
sion on a set of 100 (x, y) data points using Gaus-
sian priors on the slope and intercept of the un-
known line. There is nearly no independent struc-
ture.

hierarchical-regression: This is an adaptation
of the Rats example model in Volume I of the
OpenBUGS examples repository [16]. 30 rats
are modeled, each with five data points describ-
ing weight per week. There is much independent
structure; the estimated slope and intercept of a
particular rat can be updated independently of the
others.

mixture: A Dirichlet-multinomial mixture model
classifying four objects into three categories. This
is a small model.

infinite-mixture: Same as the mixture model
above, except for a Dirichlet process (DP) prior
on the set of categories.

topic-lda: A topic model with two topics, 21 doc-
uments and a vocabulary size of 4.

topic-hdp: Same as the topic model above, but
there is a DP prior on topics [17].

citation-matching: A citation matching model
with a DP prior on papers. It is run on 5 cita-
tions. There are pairwise citation-paper similarity
factors and paper-paper dissimilarity factors.

We begin our analysis with closed-universe models be-
cause they yield just one trace, directly representing
the efficiency of the generated kernels in iterations
per second. No extra time is spent in compiling and
switching between multiple traces, as would be the
case in open-universe models. We include a separate
analysis of open-universe models later that factors in
compilation time.

We ran the benchmarks with four different MH imple-
mentations: Church’s Lightweight-MH, our trac-
ing interpreter, Shred (tracing and slicing), and hand-
coding. The OS/hardware used was Mac OS X 10.9
running on a 2.3 GHz Intel Core i7 with 8 GB RAM.
Ikarus, a native-code Scheme compiler, was used to
implement Lightweight-MH and our tracing/slicing
algorithms. Hand-coded models were programmed in
C++. For probabilistic language implementations, we
ran each model for 105 iterations. Hand-coded mod-
els were run for 106 iterations each. The supplemental
materials include specifications of the benchmarks and
source code for hand-coded models.

Effect of tracing. Figure 4(a) compares our
tracing interpreter with Church and hand-
coding. We see that tracing results in an average
speedup of 32x, well over an order of magnitude.
hierarchical-regression is sped up by 68x.

However, mixture is sped up by only 17x. We
attribute this to the tracing interpreter primar-
ily removing overhead of the addressing scheme.
hierarchical-regression contains many more ran-
dom variables that go through a much longer loop
than mixture, resulting in more addressing overhead.
We also observe that larger models such as topic-lda
achieve fewer iterations per second than the simpler
models. This is a consequence of the amount of com-
putation needed per iteration.

Figure 4(b) shows performance relative to hand-
coding. We see that the code we generate using tracing
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Tracing: 32x avg. speedup
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Slicing: 5x avg. speedup vs. tracing
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Cost of Slicing (avg. 1.25x vs. tracing)
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Tracing vs. hand-coded
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Speedups Slicing Factor (SF) Traced / Untraced Shred / Traced Shred / Untraced Traced / Hand Shred / Hand-incr

linear-regression 1.5 37.72 0.63 23.60 1.41 0.58

hierarchical-regression 31.3 68.45 8.76 599.91 0.57 0.77

mixture 2.9 17.40 3.44 59.94 0.80 0.62

infinite-mixture 2.3 30.80 1.60 49.29

topic-lda 10.1 17.76 18.66 331.42 1.22 0.57

topic-hdp 1.1 21.57 2.31 49.82

citation-matching 1.2 29.33 1.34 39.40

38x

68x

17x

31x
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Figure 4: MCMC kernel performance (in itera-
tions/second) of tracing versus (a) Church running
Lightweight-MH and (b) hand-coding.

is on par with that of hand-coding, being close to the
same speed on average.

Effect of slicing. First, in analyzing performance
of our incrementalizing compiler, it is illustrative to
quantify the expected speedup in terms of the inde-
pendent structure available in the model: the slicing
factor. It is the trace length divided by the average
length of a slice (averaged over all variables). A slic-
ing factor of 1 means MH iterations using the full trace
take just as long as iterations using the slices, on aver-
age, and no speedup is expected. A slicing factor of 10
means that the trace is 10 times longer than the aver-
age slice, and therefore using the slices to be around
10 times faster.

Figure 5(a) shows speedups of slicing versus trac-
ing, along with slicing factors. In most cases,
speedup is on the order of the slicing factor. Slic-
ing benefits models with lots of independent struc-
ture such as hierarchical-regression and topic-lda
the most, with speedups of 8.8x and 19x respec-
tively. We attribute the decreased performance of
linear-regression to its lack of independent struc-
ture and running slices more than once per iteration
(see Figure 3) to ensure consistency.

Cost of slicing. In Figure 5(b), we see that slicing’s
contribution to compile time is always within a factor
of two. When considering the speedup obtained by
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Figure 5: Effect of Shred, our slicing-based incre-
mentalizing scheme. (a) compares performance versus
tracing and (b) compares cost in compilation time.

slicing, this is well worth it. For instance, the speedup
for lda-topic means that a trade of 43% longer com-
pile time results a 1200% faster kernel.

Overall, our technique generates MCMC kernels
that are dramatically faster than the unoptimized
Lightweight-MH. This is especially true when
models exhibit lots of independent structure, al-
lowing slicing to isolate smaller computations: In
the hierarchical-regression and topic-lda bench-
marks, we achieve speedups of 598x and 342x relative
to the untraced version.

Open-universe models. We now evaluate our
technique’s overhead in generating and switching be-
tween traces. We ran two open-universe models: 1)
model selection, choosing between the sum versus the
product of two Gaussian variables, and 2) polynomial
regression for polynomial degrees 1 through 4 on 9
(x, y) data points. We compared Shred against hand-
coding and Lightweight-MH(“lwmh”), evaluating
both iterations per second and total runtime.

Iter/s, Runtime (s) lwmh Shred Hand
model selection 8.5e4

12
1.1e6
2.1

8.8e6
0.11

polynomial regression 5.2e4
19

7.5e5
3.8

2.7e6
0.37
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We see that although our technique results in a clear
speedup of the kernel by around an order of magni-
tude, hand-coded versions of the open-universe models
are still much faster, by around an order of magnitude.
We attribute this to the need to repeatedly save and
load traces whenever a structural change occurs.

5 Related Work

Probabilistic programming languages. Our sys-
tem provides a much more efficient implementation
of Metropolis-Hastings-based queries for the Church
probabilistic programming language [6]. Other infer-
ence algorithms for Church can be better for some
classes of programs [10, 18]. Our techniques could
likely be used to accelerate these other Church al-
gorithms, and also algorithms for a variety of other
universal probabilistic programming languages (such
as Hansei [7] and Figaro [19]).

Other probabilistic programming languages take a dif-
ferent approach, using a simpler, non-Turing-complete
language specialized for certain kinds of probabilistic
computations. BUGS and JAGS [20, 1] focus on sim-
pler probabilistic models with fixed control flow. Our
techniques could apply to these languages as well.

Just-in-time compilation. Our technique has
some aspects in common with Just-in-time (JIT) com-
pilation, where we opportunistically replace segments
of a running program with optimized versions of it
to improve performance. JIT has a long history [21],
with trace-based JIT compilation receiving renewed
interest. Much of the work focuses on applying such
techniques to JavaScript, a widely used language for
specifying client-side scripts on web pages. In par-
ticular, by specializing the code in loops to the types
actually used in them at runtime, speedups of an order
of magnitude are possible [22].

Incremental computation. The discipline of in-
cremental computation aims at minimizing computa-
tion in the situation of a function receiving a series
of changing inputs. We do not address incremental
computation in the same generality as those who have
worked on self-adjusting computation [23]. Rather, we
focus incrementalizing only our traces, which do not
contain control flow and consist of a static sequence
of function calls. We use a program slicing-like [15]
method to compute the set of statements affected by
a proposal to a random choice.

6 Discussion and Future Work

We have shown that compilation techniques—tracing
and slicing—can generate MCMC kernels whose per-
formance is on par with hand-written code. While
the initial compilation overhead, which is sometimes
in seconds, is not justified for simple models that are
only run once, it is very useful in even somewhat com-
plex models. Nevertheless, improving compilation ef-
ficiency is a viable avenue of future work. Adapting
further techniques from the compilers literature such
as hot path detection and trace trees [14] would al-
low online detection of such complexity, adaptively se-
lecting paths to compile based on execution frequency.
For MCMC, this would mean only tracing paths where
MCMC will spend the most iterations. In addition,
for some programs it is not necessary to generate the
entire trace to determine the form of the slices. For
example, for an Ising line model on a thousand sites,
there are only three different forms the slice can take,
not a thousand.

Our technique also motivates further work that simply
use the optimized code. Two such ways include com-
piling ahead of time for an unknown data set and run-
ning several copies of the same compiled code in par-
allel, which both further amortize compilation time.
We are exploring the generation of probabilistic hard-
ware, which has extreme “compilation overhead” but
lends itself well to these use cases. Moreover, there
are inference algorithms such as locally-annealed re-
versible jump [25] that rely on running on a fixed set
of variables for many iterations.

The original Lightweight-MH paper [10] high-
lighted the possibility of using general code transfor-
mations to improve performance of probabilistic infer-
ence. We have largely succeeded, and we attribute this
to the fact that the model representation is program-
matic, allowing application and adaptation of general
compilation techniques. Our technique could be the
first of many ways in which such general techniques
can be adapted to perform efficient inference.
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