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Abstract

We prove the existence of a canonical form for semi-deterministic transducers with sets of
pairwise incomparable output strings. Based on this, we develop an algorithm which learns
semi-deterministic transducers given access to translation queries. We also prove that
there is no learning algorithm for semi-deterministic transducers that uses only domain
knowledge.
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1. Introduction

Transducers, introduced by Reutenauer and Schützenberger (1991, 1995), are a type of
abstract machine which defines a relation between two formal languages. As such, they are
interpreted as modeling translation in any context where formal languages are applicable.
We provide no background on formal languages in this paper; an overview of the subject
can be found in Berstel (1979) and Sakarovich (2009). Alternatively, transducers can be
viewed as a generalization of finite state machines. This view was introduced by Mohri,
who uses transducers in the context of natural language processing Mohri (1997, 2000) and
Mohri et al. (2000).

A fundamental task when studying the theory of transducers is to look for classes of
transducers that can be learned given access to some form of data. If a class of transducers,
C , is found to be learnable, then a predictive model can be produced in any application
where a translation from the class C is in use. The significance of transducers, specifi-
cally expanding the range of the learnable classes, is clear from the scope of applications of
transducers. Among many others, some well known applications are in the fields of mor-
phology and phonology (Roark and Sproat, 2007), machine translation (Amengual et al.,
2001; Casacuberta and Vidal, 2004; Clark, 2001), web wrappers (Carme et al., 2005), speech
(Mohri, 1997) and pattern recognition (Bernard et al., 2006). In each of these cases, dif-
ferent classes of transducers are examined with characteristics suitable to the application.
Distinguishing characteristics of different classes include determinism properties, the use of
probabilites or weights, as well as details of the types of transitions that are permitted.

c© 2014 A. Beros & C. de la Higuera.



Beros de la Higuera

1.1. Transducer learning

An important step in the theory of transducers was the development of the algorithm Os-
tia. Introduced in Oncina et al. (1993), Ostia was designed for language comprehension
tasks (Castellanos et al., 1993). A number of elaborations on the original algorithm have
since arisen, many of them aimed at trying to circumvent the restriction to total functions
that limited Ostia. Typically, these attempts involved adding some new source of infor-
mation. For example, Ostia-N uses negative (input) examples and Ostia-D supposes the
algorithm has some knowledge of the domain of the function (Oncina and Varó, 1996). Sim-
ilar ideas were explored later by Kermorvant and de la Higuera (2002), Coste et al. (2004)
and Kermorvant et al. (2004). An application of Ostia for active learning is presented in
Vilar (1996). Using dictionaries and word alignments has been tested by Vilar (2000). A
demonstrated practical success of Ostia came in 2006. The Tenjinno competition (Starkie
et al., 2006) was won by Clark (2006) using an Ostia inspired algorithm.

1.2. Towards nondeterminism with transducers

Non-deterministic transducers pose numerous complex questions – even parsing becomes a
difficult problem (Casacuberta and de la Higuera, 1999, 2000). Interest in non-deterministic
models remains, however, as the limitations of subsequential transducers make them un-
acceptable for most applications. The first lifting of these constraints was proposed by
Allauzen and Mohri (2002). They propose a model in which the final states may have mul-
tiple outputs. In his PhD thesis, Akram introduced a notion of semi-determinism (Akram,
2013) that strikes a balance between complete non-determinism and the very restrictive
subsequential class. He provided an example witnessing that semi-deterministic transduc-
ers are a proper generalization of deterministic transducers, but did not pursue the topic
further, focusing instead on probabilistic subsequential transducers. We examine an equiva-
lent formulation of Akram’s semi-determinism based on methods of mathematical logic. In
particular, by viewing the definition from a higher level of the ranked universe, we convert
what would be a general relation into a well-defined function. Kunen (1980) provides an
overview of a number of important topics in set theory including the ranked and definable
universes. Some more recent developments in set theory is Jech (2013).

A significant obstacle in learning non-deterministic transducers is the fact that an ab-
sence of information cannot be interpreted. One approach to overcoming this problem is to
use probabilities. We eschew the probabilistic approach in favor of a collection of methods
that have their antecedents in Beros’s earlier work distinguishing learning models (Beros,
2013) and determining the arithmetic complexity of learning models (Beros, 2012).

1.3. The learning model

There are two principal learning models in grammatical inference: identification in the
limit (Gold, 1967) and PAC-learning (Valiant, 1984). Each of these models admits variants
depending on what additional sources of information are provided. In order to learn semi-
deterministic transducers, we use queries (Angluin, 1987) as an additional resource. These
queries are very limited; the oracle will be interrogated about a possible translation pair and
the oracle will return either a true or false. We also prove that learning is not possible
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without queries. We write [x,X]f to indicate a query if 〈x,X〉 is in the bi-language f . The
precise definition of learning we use is adapted from the one used in de la Higuera (1997):

Definition 1 An algorithm, A, polynomial identifies in the limit with translation queries
a class of transducers, C , if for any G ∈ C there is a set, CSG, such that on any D ⊇ CSG
generated by G, A outputs a G′ equivalent to G. The algorithm must converge within a
polynomial amount of time in |D| and |G|; |CSG| must be polynomial in |G|.

Note that in the above definition the number of calls to the oracle is also bounded by the
overall complexity of the algorithm and is therefore polynomial in the size of the sample.

2. Notation

We make use of following common notation in the course of this paper. Throughout, the
symbols x, y and z denote strings and a and b will denote elements of a given alphabet. We
shall use the standard notation λ for the empty string.

• A tree is a directed acyclic graph. T ′ is a subtree of T if both T and T ′ are trees and
T ′ is contained in T . A strict subtree is a subtree that is not equal to the containing
tree.

• Given T , a tree, Tx = {z : xz ∈ T}. For a set of strings, S, T [S] is the prefix closure
of S.

• We write x ≺ y if there is a string z such that y = xz. We write x � y if x ≺ y or
x = y. This order is called the prefix order.

• P(X) = {Y : Y ⊆ X} and P∗(X) = {Y : Y ⊆ X ∧ |Y | <∞}.

• Following the notation of set theory, the string x = a0 . . . an is a function with domain
n + 1. Thus, x�k = a0 . . . ak−1 for k ≤ n + 1. |x| is the length of x and x− is the
truncation x�(|x|−1). Note that the last element of x is x(|x|−1) and the last element
of x− is x(|x| − 2).

• We write x ‖ y if x = y, x ≺ y or x � y and say x and y are comparable. Otherwise,
we write x ⊥ y and say that x and y are incomparable.

• By <lex and <llex we denote the lexicographic and length-lexicographic orders, re-
spectively.

• For an alphabet Σ, Σ∗ is the set of all finite strings over Σ and Σ∗x = {y ∈ Σ∗ : y � x}.
A tree over Σ is a tree whose members are members of Σ∗, where the ordering of the
tree is consistent with the prefix order on Σ∗ and the tree is prefix closed.

• We reserve a distinguished character, #, which we exclude from all alphabets under
consideration and we will use # to indicate the end of a word. We will write x# when
we append the # character to x.
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3. Bi-Languages and Transducers

Bi-languages are the fundamental objects of study. They capture the semantic correspon-
dence between two languages. In principle, this correspondence does not specify any or-
dering of the two languages, but translation is always done from one language to another
language. As such, we refer to the input and the output languages of a bi-language. For
notational simplicity, in everything that follows Σ is the alphabet for input languages and
Ω is the alphabet for output languages. Using this notation, the input language is a subset
of Σ∗ and the output language is a subset of Ω∗. We now present the standard definition
of a bi-language.

Definition 2 Consider two languages, L ⊆ Σ∗ and K ⊆ Ω∗. A bi-language from L to K
is a subset of L×K.

For our purposes, we wish to indicate the direction of translation and to aggregate all
translations of a single string. To this end, in the remainder of this paper, we will use the
following equivalent definition of a bi-language.

Definition 3 Consider two languages, L ⊆ Σ∗ and K ⊆ Ω∗. A bi-language from L to K is
a function f : L→P(K). L is said to be the input language and K the output language
of f . When defined without reference to a specific output language, a bi-language is simply
a function f : L→P(Ω∗)

We are interested in languages whose generating syntax is some form of transducer.

Definition 4 A transducer is a finite state machine in which an output string is com-
piled from the outputs of transitions along the path that an input string follows through the
machine. A transducer, G, consists of a finite set of states, written states[G], a set of
transitions, E, and a collection of initial states, q0, q1, . . . , qk. A transition, e ∈ E, has four
components: a start state, start(e), an end state, end(e), an input, i(e) and an output,
o(e). There is a special type of transition called a #-transition. If e is a #-transition, then
end(e) is an initial state (by convention) and the input is #. Termination of the processing
of an input string occurs if and only if the final transition is a #-transition.

This paper addresses semi-deterministic bi-languages which are bi-languages generated
by semi-deterministic transducers. These were defined in Akram (2013). We use an equiv-
alent formulation.

Definition 5 A semi-deterministic transducer (SDT) is a transducer with a unique initial
state such that

1. i(e) ∈ Σ for every transition e,

2. given a state, q, and a ∈ Σ, there is at most one transition, e, with start(e) = q and
i(e) = a and

3. given a transition, e, o(e) is a finite set of pairwise incomparable strings in Ω∗ (i.e.,
o(e) ∈P∗(Ω∗)).
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When it is necessary to refer to a transition as a single tuple, we will write the components in
the following order: 〈start(e), end(e), i(e), o(e)〉. A semi-deterministic bi-language (SDBL)
is a bi-language that can be generated by an SDT.

Two useful properties of SDTs follow from the definition. First, if e ∈ E and λ ∈ o(e),
then o(e) = {λ}. Second, although there may be multiple translations of a single string,
every string follows a unique path through an SDT. We must also note that, while SDBLs
can be infinite, the image of any member or finite subset of L is finite. Thus, an SDBL is
a function f : L→P∗(Ω∗).

Definition 6 Let G be an SDT with input language L. A path through G is a string
e0 . . . ek ∈ E∗, where E is the set of transitions, such that start(ei+1) = end(ei) for i < k.
G[p] is the collection of all outputs of G that can result from following path p. px is the
unique path through G defined by x ∈ Σ∗. If x ∈ L, then we assume px ends with a
#-transition. We denote the final state of the path px by qx.

4. Ordering maximal antichains

The following definitions and results pertain to sets of strings and trees over finite alphabets.

Definition 7 Given a set of strings, S, we call P ⊆ T [S] a maximal antichain of S if
(∀x, y ∈ P )

(
x ⊥ y

)
and (∀x ∈ S)(∃y ∈ P )(y ‖ x). P is a valid antichain of S if P is

a maximal antichain of S and (∀x, y ∈ P )
(
T [S]x = T [S]y

)
. We define, Vac(S) = {P :

P is a valid antichain of S}.

Example 1 Consider the following set of
strings over the alphabet {a, b}: S = {a5, a4b,
a2ba, a2b2, ba4, ba3b, baba, bab2, b2a3, b2a2b,
b3a, b4}. Graphically, we can represent S
as a tree where branching left indicates an a
and branching right indicates a b.

In the picture to the right, we highlight
the four valid antichains of S: P0 = {λ},
P1 = {a2, ba, b2}, P2 = {a4, a2b, ba3, bab,
b2a2, b3} and P3 = S.

P0

P1
b2baa2

P2

• P3•••••

••••••

It is interesting to note that the valid antichains in the above example have a natural
linear ordering. As we shall see in Theorem 11, this is not an artifact of the particular
example, but is true of any finite set S.

Definition 8 For P and Q, sets of strings over some common alphabet, we say that P <ac
Q (P is “antichain less than” Q) if either

1. |P | < |Q|, or

2. |P | = |Q| and, for all x ∈ P and y ∈ Q, if x ‖ y, then x ≺ y.
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We will use valid antichains to parse a set of strings as one would parse a single string
into a prefix and suffix. The validity of an antichain ensures that the corresponding suffix
set is well-defined. When parsing sets of strings, we will often use the following operations.

Definition 9 Let S and P be two sets of strings. Define P ∗S = {xy : x ∈ P ∧ y ∈ S} and
P−1S = {y : (∃x ∈ P )

(
xy ∈ S

)
}.

Proposition 10 Let S be a finite set of strings. If P is a valid antichain of S, then
P ∗ (P−1S) = S. If P and Q are maximal antichains of the same finite set of strings, then
there is a relation R ⊆ P ×Q such that

1. dom(R) = P

2. ran(R) = Q and

3. xRy ↔ x ‖ y.

Furthermore, if |P | = |Q|, then R is a well-defined and injective function as well.

Proof Observe that, if P is a valid antichain of S, then T [P−1S] = T [S]x for all x ∈ P ,
thus P ∗ (P−1S) = S. The proof of the second claim follows from the definitions of valid
antichains, P ∗ S and P−1S.

Theorem 11 If S is a finite set of strings, then
(
Vac(S), <ac

)
is a finite linear order.

Proof Consider a finite set of strings, S, and let T = T [S]. We begin by fixing P,Q ∈
Vac(S). We may assume that |P | = |Q|; if |P | 6= |Q| then the claim is trivial. We pick an
element x ∈ P and observe that, by Proposition 10, there is a unique y ∈ Q such that x ‖ y.

Suppose that x = y and let x′ be any other member of P . By Proposition 10, there
is a unique y′ ∈ Q such that x′ ‖ y′. Since P and Q are valid antichains and x = y,
Tx′ = Tx = Ty = Ty′ . Given that x′ ‖ y′, T is finite and Tx′ = Ty′ we conclude that x′ = y′.
Now assume x ≺ y. In the case y ≺ x simply exchange the roles of x and y. As above, we
pick x′ ∈ P and its unique comparable element y′ ∈ Q. Clearly Ty is a strict subtree of Tx
and hence, Ty′ is a strict subtree of Tx′ . We conclude that x′ ≺ y′.

We have shown that any two members of Vac(S) are comparable. The remaining order
properties follow immediately from the definitions.

While the proof of Theorem 11 is quite simple, we highlight it as a theorem because it
is the critical result for the applications of valid antichains that follow.

Definition 12 Given a set of strings, S, a finite sequence of sets of strings, P0, . . . , Pn,
is a factorization of S if S = P0 ∗ · · · ∗ Pn. Such a factorization is said to be maximal if,
for each i ∈ N, Vac(Pi) = {{λ}, Pi}; equivalently, if Pi+1 is the <ac-least non-trivial valid
antichain of P−1i · · ·P

−1
0 S.
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Example 2 We consider the following set of strings: S = {a5, a4b, a3ba2, a3bab, a3b2a, a3b3, aba2,
abab, ab2a2, ab2ab, ab3a, ab4, ba4, ba3b, ba2ba2, ba2bab, ba2b2a, ba2b3, b2a2, b2ab, b3a2, b3ab, b4a2,
b4ab, b5a, b6}. In the figure below, we display the tree, T [S], as well as the <ac-least non-
trivial valid antichain, P0 = {a, b}.

P0

••••

••••••••••••

••••••••

The corresponding set of suffixes is P−10 S = {a4, a3b, a2ba2, a2bab, a2b2a, a2b3, ba2, bab, b2a2, b2ab,
b3a, b4}. Iterating, we find the next factor is P1 = {a2, b} and its set of suffixes is (P0 ∗
P1)
−1S = {a2, ab, ba2, bab, b2a, b3}.
We next pick P2 =

{a, ab, b2}. Once we factor
out P2, all that remains is
{a, b}. The only antichains
of {a, b} are {λ} and {a, b},
both of which are valid an-
tichains. We pick the final
factor to be P3 = {a, b} and
conclude that P0 ∗P1 ∗P2 ∗P3

is a maximal factorization of
S.

P1

••

••••••

••••

P2••

••••

Corollary 13 Every finite set of pairwise incomparable strings has a unique maximal fac-
torization. Also, if S0, S1, S2, . . . are finite sets, then

⋂
i∈N Vac(Si) is linearly ordered under

<ac.

Proof The proof can be found in Beros and de la Higuera (2014).

5. Semi-Deterministic Bi-Languages

We cover three topics in this section: onwarding, merging, and the non-learnability of
SDBLs. Onwarding is the process of moving decisions earlier in the identification process
and merging is the process of conflating identical portions of a learning machine. Taken
together, onwarding and mergin prove the existence of a canonical SDT for each SDBL.
Onwarding yields a “maximal” function on prefixes of the input language. Merging produces
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a finite-order equivalence relation on those prefixes. Together, they will allow us to define
a canonical grammar for an arbitrary SDBL. We demonstrate that, given only domain
knowledge, SDBLs are not learnable. In section 6, we prove that SDBLs are learnable given
access to an additional, very limited, oracle. Detailed proofs of the results in this section
can be found in Beros and de la Higuera (2014).

5.1. Onwarding

Definition 14 Let f be an SDBL. F : T [L] → P∗(Ω∗) is a semi-deterministic function
(SDF) of f if, for x ∈ L, f(x) = F (x�1) ∗F (x�2) ∗ · · · ∗F (x) ∗F (x#). We define ΠF (x) =
F (x�1) ∗ F (x�2) ∗ · · · ∗ F (x). If F and F ′ are SDFs of f , we say that F <sdf F

′ if ΠF (x)
is a valid antichain of ΠF ′(x) for all x. The SDF induced by f is the SDF, F , such that
F (x) = {λ} for all x ∈ T [L] and F (x#) = f(x) for all x ∈ L.

Example 3 Suppose that A,B,C ⊆ Ω∗ are finite and non-empty. Let Σ = {a} be the
input alphabet. Define an SDBL, f , over L = {a2} by f(a2) = A ∗ B ∗ C. We define two
incomparable SDFs of f as follows. The first SDF: F (λ) = {λ}, F (a) = A ∗B,F (a2) = {λ}
and F (a2#) = C. The second SDF: F ′(λ) = {λ}, F ′(a) = A,F ′(a2) = B∗C and F ′(a2#) =
{λ}. Since ΠF (a) is not a valid antichain of ΠF ′(a), F 6<sdf F ′. Likewise, since ΠF ′(a2)
is not a valid antichain of ΠF (a2), F ′ 6<sdf F .

Example 3 demonstrates that <sdf is not a linear ordering of the SDFs of a fixed SDBL.
Nonetheless, there is a <sdf -maximum SDF of f .

Theorem 15 If f is an SDBL and F and F ′ are SDFs of f , then is a <sdf -maximum SDF
of f .

Proof The proof is inductive. We sketch the construction of a <sdf -maximum SDF. Con-
sider x ∈ T [L] and the factorizations of the images under f of all extensions of x in L. The
product of the common factors of all the factorizations are taken to be output on input x of
the SDF under construction. By implementing this strategy inductively, we construct the
desired SDF.

5.2. Merging

The second phase of building a canonical form for SDTs is to define an equivalence relation
on the domain of a maximum SDF. This means identifying which paths lead to the same
state.

Definition 16 Let F be an SDF of f over L and x ∈ T [L]. We define futureF [x] =
F �{y ∈ T [L] : y � x}. If x, y ∈ dom(F ), we say that x ≡ y if futureF [x] = futureF [y].
Given x, we define (x) to be the <llex-least element of dom(F ) that is equivalent to x.

Proposition 17 ≡ is an equivalence relation on the domain of an SDF. If x ≡ y and
xz, yz ∈ T [L], then xz ≡ yz. If F is an SDF of f over L, then there are only a finite
number of ≡-equivalence classes on the domain of F . Thus, there is an n such that for all
x, y ∈ T [L], x ≡ y if and only if futureF [x]�xΣn = futureF [y]�yΣn.
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Proof The proof follows immediately from the definitions.

The maximum SDF and the equivalence relation on its domain depend only on the
underlying SDBL. Thus, we have defined a machine-independent canonical form. As a
footnote, we demonstrate how to produce an SDT from the canonical form which is unique
up to isomorphism. Let f be an SDBL, let Fm be the maximum SDF for f and let ≡ be
the equivalence relation on the domain of Fm. We define a finite state machine, Gf , with

1. states[Gf ] = {q(x) : x ∈ T [L]},

2. initial state qλ, and

3. EGf
= {〈q(x−), q(x), x(|x| − 1), Fm(x)〉 : x ∈ T [L]} ∪ {〈q(x), qλ,#, Fm(x#)〉 : x ∈ L}.

Although L and T [L] may be infinite sets, the set of transitions, EGf
, and the set of states,

states[Gf ], are finite by Proposition 17.

5.3. SDBLs are not learnable

We assume domain knowledge (i.e., access to the characteristic function of the input lan-
guage). In the proof of the following theorem, we encode a standard example of a “topo-
logical” failure of learning in the limit. In particular, we encode the family H = {N} ∪ {A :
|A| <∞} into a sequence of SDTs.

Definition 18 Let f be a bi-language. We define DKf to be the oracle that, when asked
about x, returns a boolean value DKf (x). If DKf (x) = true, then x is in the input
language of f (in other words, the domain of f). Otherwise, x is not in the input language
of f . An algorithm which has access to DKf is said to have domain knowledge about f .

Theorem 19 There is a collection of SDBLs, C , such that there is no algorithm which
learns in the limit every member of C , even given domain knowledge of each member of C .

Proof To avoid degenerate cases, we assume the output alphabet has at least two charac-
ters, A and B, and the input alphabet has at least one character, a. We exhibit a sequence of
SDTs, {Gi}i∈N, such that no program can successfully learn every member of the sequence.
In the following graphical representation of {Gi}i∈N we omit the #-transitions, indicating
terminal nodes with a double border.

G0

qλ
�� rz

a:A,B

G1

qλ qa
��

+3
a:A,B

rz
a:A

G2

· · ·qλ qa qaa
��

+3
a:A,B

+3
a:A,B

rz
a:A

Let fi be the SDBL generated by Gi. The fact that no algorithm can learn every fi follows
from the fact that any finite sequence of translation pairs from fi (for i ≥ 1) can be extended
to an enumeration either of fi+1 or f0. Thus, given any fixed learning machine M , we can
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construct an enumeration of a member of C that M cannot identify. C = {fi : i ∈ N} is
the desired collection of SDBLs.

6. Learning with translation queries

We define an oracle which answers questions of the form “is y a valid translation of x?”;
equivalently, the oracle answers membership queries about the graph of the bi-language.

Definition 20 Let f be a bi-language. The translation query [x, y]f returns true if y ∈
f(x) and false otherwise. We call this oracle [f ]. Where it is clear from context, we will
write [x, y] instead of [x, y]f .

In the remainder of the paper, we exhibit an algorithm that can learn any SDBL, f ,
in the limit, provided the algorithm has access to the oracles DKf and [f ]. We present
some of the algorithms that witness the learnability of SDBLs and summarize the result in
Theorem 22. A detailed presentation of the algorithms is given in Beros and de la Higuera
(2014)

6.1. The characteristic sample

The characteristic sample must contain sufficient data to unambiguously perform two op-
erations: onwarding and merging. Throughout this section f is an SDBL over L and G is
the canonical SDT that generates f . We define x′ to be the <llex-least member of L that
extends x. We now proceed to define the characteristic sample for f , denoted CSf .

Let x0, . . . , xn enumerate the minimal paths to each of the states of G. For each xi, let
Pi be the <ac-greatest maximal antichain that is a member of Vac(f(xiy)) for all y such that
xiy ∈ L. Fix i ≤ n and let Pi−1 = {λ} if i = 0. Define `i to be the <llex-least member of
P−1i−1f(x′i). For each `, a prefix of `i that is not a member of a valid antichain of P−1i−1f(x′i),

there is a y ∈ P−1i−1f(x′i) no prefix of which has the same future in P−1i−1f(x′i) as `. For each
prefix of y there is either an extension in f(xi) which is not in the future of ` or there is an
extension of ` which is not in the future of the prefix of y under consideration. Let N∗0 (`)
be the set which consists of y together with the witnesses required to show that each prefix
of y has a different future from `. Let N0(xi) =

⋃
`≺`i N

∗
0 (`) and N0(f) =

⋃
i≤nN0(xi).

Observe that N0(f) is polynomial in the size of G since Pi, `i, y < |G| for i ≤ n.
Consider x ∈ T [L]. Let Vac =

⋂
x≺y∈L Vac(f(y)). For each P ∈ Vac(f(x))\Vac, observe

that there is an example that witnesses the fact that P is not in Vac. Such examples
demonstrate either violations of the maximality or the validity of the given antichain. In
both cases, the witness is a single element of the graph of f . Since Vac(f(x)) is finite,
we can define a finite set, N1(f), which contains a sufficient number of examples for each
minimal path to a state of G.

N0 and N1 are required to perform onwarding correctly. In order to perform merges,
we must include enough data to identify the equivalence classes of states whose futures are
the same. There are two ways in which the futures may differ:
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1. there is a string, z, such that xz ∈ L, but yz 6∈ L or

2. for X ∈ G[px] and Y ∈ G[py], there are z and Z such that XZ ∈ G[pxz], but
Y Z 6∈ G[pyz].

For each member of states[G] there is a finite collection of examples which uniquely identify
the state. Let N2(qx) be a canonically chosen collection of such examples for qx. Let e be
a transition and p′ be the <llex-least path starting at the initial state, ending with a #-
transition and including e. Define N∗2 (e) to be the set of those translations of p′ each of
which uses a different output of the transition e and is <llex-least amongst the translations
of p′ that use that output. |N∗2 (e)| = |o(e)|. We define the final component of CSf as
follows. N2(f) =

⋃
x∈W N2(qx) ∪

⋃
e∈EG

N∗2 (e), where W consists of the minimal paths to
each state of G as well as all paths that are immediate extensions of those paths.

Definition 21 For an SDBL, f , we define the characteristic sample of f , CSf = N0(f) ∪
N1(f) ∪N2(f).

6.2. Algorithms

Rather than present all the algorithms in detail, we will describe how we use each com-
ponent of the characteristic sample to make onwarding and merging decisions. This will
simultaneously provide the intuition of the algorithms, justify the characteristic sample and
sketch the proof of the learnability result. For a detailed presentation, we direct the reader
to Beros and de la Higuera (2014).

Consider a dataset, D. We define an initial transducer by creating a state for every
member of T [dom(D)]. A tree-like transducer is produced where all transitions output only
λ except for the #-transitions at members of dom(D). All outputs in the dataset are as-
signed to the #-transitions. Next, by following the <llex-least path (and translation) to a
state, we can accurately form an array of valid antichains of the outputs of subsequent tran-
sitions using the N0-component of CSf . We accomplish this using a function, COMPARE.
Given an input string, x, output strings, Z and W , the function COMPARE(x, Z,W,D)
returns true if, for every 〈x, ZR〉, 〈x,WS〉 ∈ D, the queries [x,WR]f and [x, ZS]f return
values of true. Otherwise, COMPARE(x, Z,W,D) returns false. From this array, we
eliminate those members that are not valid antichains of output trees in the future using the
N1-component of CSf and translation queries. The <ac-greatest antichain that remains is
onwarded. As the onwarding method we present is one of the key novel concepts, we include
the two algorithms that execute the antichain selection process described above.
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In the following algorithm, LLEX-LEAST returns the <llex-least member of a set. For
sets of strings P and S, we will use P−1S, P ∗ S and some set theoretic mainpulations as
built-in arithmetic operations.

Algorithm 1: List the valid antichains (VAC)

Data: A collection of translation pairs, D; x ∈ L; X`, the current least translation prefix
for x.

Result: An array, A, of all maximal antichains of the translations of x in D which extend
X` and are not demonstrably invalid.

X−1` {Y : Y � X` ∧ 〈x, Y 〉 ∈ D} → T
LLEX − LEAST (T )→ Z
for Ẑ ≺ Z do

Ẑ → AC[0]
for R ∈ T ∧R 6= Z do

for R̂ ≺ R do

COMPARE(x,X`Ẑ,X`R̂,D)→ status
if status = true then

R̂→ AC[|AC|]
break

end

end
if status = false then

break
end

end
if status = true then

AC → A[|A|]
end

end
return A

One of the inputs of Algorithm 1 is the “current least translation prefix of x”. The
current translation prefix will converge to the <llex-least output string generated along the
unique path corresponding to x. X` provides a canonical input prefix for testing outputs
using translation queries.
Algorithm 1 restricts to the tree of transla-
tion pairs whose second component extends
the least translation prefix. Every antichain
of the tree must contain a prefix of the <llex-
member of the tree. Because of the linear
ordering of the valid antichains (see Theo-
rem 11), there is at most one valid antichain
for each prefix of the least member of the
tree. COMPARE is used to look for match-
ing nodes to form valid antichains.

••••••
X`

••••••
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As can be seen in the figure, all valid antichains include prefixes of the<llex-least member
and no two valid antichains contain the same prefix. This provides both a bound on the
number of valid antichains and a convenient method to search for the valid antichains.

The next algorithm takes an array of antichains and produces the <ac-greatest antichain
that appears to be a valid antichain of all trees of outputs on inputs extending x. As data
may still be absent, testing the validity for other trees is done using translation queries.

Algorithm 2: Testing an array of antichains against a dataset (TESTVPS)

Data: A string, x, over the input alphabet; an array, A, of antichains for the output tree
of input x′; a collection of translation pairs, D.

Result: The <ac-greatest member of the array, A, for which there is no evidence in D
that the selected antichain is not valid for all output trees in the future of x.

for i = |A| − 1; i ≥ 0; i−− do
‘not valid’→ status
for 〈xy, Z〉 ∈ D do

for R ∈ A[i] do
if R ≺ Z then

R−1Z →W
‘valid’→ status
for Q ∈ A[i] do

if [xy,QW ]f = false then
‘not valid’→ status
break

end

end
if status = ‘not valid’ then

break
end

end

end

end
if status = ‘valid’ then

return A[i]
end

end

Observe that there will always be a valid antichain that causes the above algorithm to
terminate; if there is no other, then it will terminate on {λ}.

Merging is accomplished using a function, FUTURE, that compares the futures of input
strings. Define FUTURE(x, y,G,D) = true if (∀X ∈ G[px], Y ∈ G[py], 〈z, Z〉 ∈ D)

(
(x �

z ∧ X � Z → [yx−1z, Y0X
−1Z]f = true) ∧ (y � z ∧ Y � Z → [xy−1z,X0X

−1Z]f =
true)

)
, where X0 and Y0 are the <llex-least members of G[px] and G[py], respectively.

Otherwise, FUTURE(x, y,G,D) = false. If FUTURE(x, y,G,D) = true, then the
states corresponding to x and y can be merged.

We proceed through the states of the initial transducer in <llex-order, first onwarding
and then attempting to merge with lesser states. If a state cannot be merged with any lesser
state, it is fixed and will not subsequently be changed. The first onwarding and merging
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decisions (those about the initial state) are trivially correct. For subsequent decisions, if
all previous decisions are correct and we are still using data from CSf , then we will make
correct decisions. Since we will never have to consider any decisions not covered by CSf ,
the learning result follows. We state this result in Theorem 22.

Theorem 22 The class of SDBLs is polynomial identifiable in the limit with translation
queries.

Proof See Beros and de la Higuera (2014) for the precise algorithms, proof that SDBLs
are learned by the algorithms and that polynomial bounds are respected.

7. Conclusion

We have presented a novel algorithm that learns a powerful class of transducers with the help
of reasonable queries. A probabilistic version of these transducers was defined by Akram
(2013). We are unaware of any results involving this version. As both probabilities and
translation queries can serve the purpose of answering questions about translation pairs not
present in the given data, it seems possible that probabilistic transducers could be learned
without translation queries, with statistical analysis taking the role of translation queries.
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