
JMLR: Workshop and Conference Proceedings 34:79–93, 2014 Proceedings of the 12th ICGI

An Abstract Framework for Counterexample Analysis
in Active Automata Learning

Malte Isberner malte.isberner@tu-dortmund.de

Bernhard Steffen steffen@cs.tu-dortmund.de

TU Dortmund, Department of Computer Science, Chair for Programming Systems

D-44227 Dortmund, Germany

Editors: Alexander Clark, Makoto Kanazawa, and Ryo Yoshinaka

Abstract

Counterexample analysis has emerged as one of the key challenges in Angluin-style active
automata learning. Rivest and Schapire (1993) showed for the L∗ algorithm that a single
suffix of the counterexample was sufficient to ensure progress. This suffix can be obtained
in a binary search fashion, requiring Θ(logm) membership queries for a counterexample of
length m. Correctly implementing this algorithm can be quite tricky, and its correctness
sometimes even has been disputed. In this paper, we establish an abstract framework
for counterexample analysis, which basically reduces the problem of finding a suffix to
finding distinct neighboring elements in a 0/1 sequence, where the first element is 0 and
the last element is 1. We demonstrate the conciseness and simplicity of our framework by
using it to present new counterexample analysis algorithms, which, while maintaining the
worst-case complexity of O(logm), perform significantly better in practice. Furthermore,
we contribute—in a second instantiation of our framework, highlighting its generality—the
first sublinear counterexample analysis procedures for the algorithm due to Kearns and
Vazirani (1994).

Keywords: Automata learning, counterexamples, Rivest&Schapire, binary search, expo-
nential search

1. Introduction

When Angluin (1987) presented her famous L∗ algorithm for inferring regular languages,
a novelty was not only the algorithm as such, but also the formalization of a Minimally
Adequate Teacher (MAT). Besides answering queries regarding the language membership of
words, the MAT—or, more precisely, an equivalence query—also provides the learner with
counterexamples once a hypothesis is conjectured. However, the way these counterexamples
were handled was not very sophisticated: in the original version of L∗, all prefixes of a
counterexample were added to the observation table. This has several drawbacks: first,
“unproductive” prefixes of the counterexample can account for a significant portion of all
membership queries. Second, it does not make explicit where exactly the hypothesis is
erroneous. Third, it introduced the phenomenon of inconsistencies, a symptom of forgoing
uniqueness of representatives of states in the hypothesis.

Rivest and Schapire (1993) showed that it was possible to add a single distinguishing
suffix to ensure progress, and that furthermore this suffix is contained in the counterexample
and can be found efficiently using binary search. Extracting such a suffix thus requires only

c© 2014 M. Isberner & B. Steffen.



Isberner, Steffen

dlogme membership queries for a counterexample of length m. However, the correctness of
the search algorithm is not at all obvious, and implementing it correctly requires avoiding
several pitfalls. These aspects have even led to its correctness being disputed (Irfan, 2012).

Another problem of Rivest&Schapire’s algorithm concerns its practical performance:
while dlogme is a relatively small number even for larger values ofm, many heuristics—while
possibly suffering from a linear worst-case query complexity—frequently perform better,
yield shorter suffixes, or both.

In this paper, we address all of the above aspects. Essential for this is a new, simplified
perspective on counterexample analysis. Our main contributions are the following:

• a framework that facilitates both understanding and implementing counterexample
analysis algorithms based on finding suffixes,

• new analysis algorithms that maintain Rivest&Schapire’s upper bound of O(logm)
queries, but may perform better in practice,

• another instance of the framework for the algorithm by Kearns and Vazirani (1994),
yielding sublinear counterexample analysis procedures for this algorithm, and

• an experimental comparison of these algorithms on randomly generated automata,
focusing on the cost of counterexample analysis.

Related Work. Active Automata Learning in its modern form can be attributed to An-
gluin (1987), who established the MAT framework with its membership and equivalence
queries, as well as L∗, the first (and best-known) active automata learning algorithm formu-
lated in the MAT framework. Rivest and Schapire (1993) proposed the above-mentioned
modification to L∗, i.e., adding only a single distinguishing suffix found using binary search.
Irfan et al. (2010) have proposed other modifications to the counterexample handling of L∗,
motivated by the problem of non-optimal (i.e., long) counterexamples that result from equiv-
alence query approximations. Despite performing good in practice, these heuristics have a
linear worst-case complexity, and moreover are only applicable to observation table-based
learning algorithms. Howar (2012) combined Rivest&Schapire’s counterexample analysis
algorithm with the discrimination tree data structure introduced by Kearns and Vazirani
(1994), forming the Observation Pack algorithm. We will use this algorithm for our eval-
uation, exploiting the fact that the counterexample analysis is interchangeable, as long as
the analysis algorithms satisfies certain properties.

Outline. The paper is structured as follows. Section 2 establishes the mathematical
notation and the formalization of DFA and related concepts that are used throughout the
paper. Section 3 revisits active automata learning, using the Observation Pack algorithm
as an example, particularly highlighting the role of counterexample analysis. In Section 4,
we establish our abstract framework for counterexample analysis, which is used to discuss
further optimization and alternative algorithms in Section 5. In Section 6, we demonstrate
how the framework can be instantiated for an algorithm of a different flavor, namely the
one due to Kearns and Vazirani (1994). Section 7 reports on the results of our experimental
evaluation, before Section 8 concludes the paper.

80



An Abstract Framework for Counterexample Analysis in Active Automata Learning

2. Preliminaries

2.1. Mathematical Notation

Let N denote the set of all natural numbers, including 0. For n,m ∈ N, we write [n,m) =
{i ∈ N |n ≤ i < m} to denote the half-open integer interval containing all natural numbers
between n (inclusive) and m (exclusive).1 We identify the Boolean truth values true and
false with 1 and 0, respectively; i.e., B = {0, 1}.

2.2. Alphabets, Words, and Deterministic Finite Automata

Let Σ be a finite set of symbols (the “input alphabet”). A word w over Σ is a finite sequence
of symbols ranging over Σ. The set of all words is denoted by Σ∗, and includes the empty
word ε (i.e., the unique word of length 0). The set of all words of positive length is denoted
by Σ+, and we have Σ+ = Σ∗ \ {ε}.

For a word w ∈ Σ∗, we denote its length by |w|. The single symbols constituting the
word are usually referred to by wi, 0 ≤ i < |w|; thus, w = w0w1 . . . w|w|−1. For some integer
interval I ⊆ [0, |w|), wI is the word resulting from taking into account only the indices
contained in I. Hence, w[0,k) is the prefix of w of length k, and w[k,|w|) is the suffix of w
starting at index k. Note that w[0,0) = w[|w|,|w|) = ε and w[0,|w|) = w.

The concatenation of words w,w′ ∈ Σ∗ is denoted by w · w′, or simply ww′. We use
the former notation whenever we want to emphasize the logical subdivision a concatenation
operation reflects.

Definition 1 (DFA) Let Σ be a finite alphabet. A deterministic finite automaton A over
Σ is a quintuple A =

〈
QA,Σ, δA, qA0 , F

A〉, where

• QA is a finite set of states,

• δA : QA × Σ→ QA is the transition function,

• qA0 ∈ QA is the initial state, and

• FA ⊆ QA is a set of final (or accepting) states.

The intuition behind a DFA is the following: at every point in time, A is in some state
q ∈ QA, starting with the initial state qA0 . Upon reading a symbol a ∈ Σ, it moves to a
successor state δA(q, a), according to the transition function δA.

A word w ∈ Σ∗ is accepted by a DFA A iff, after processing all the symbols in w from
left to right, A is in an accepting state (i.e., a state q ∈ FA). We formalize this description
by extending the transition function δA from symbols to words. We define:

δA(q, ε) = q, δA(q, w · a) = δA(δA(q, w), a) for all q ∈ QA, w ∈ Σ∗, a ∈ Σ.

For the extended transition function originating from the initial state qA0 , we use a notation
borrowed from Kearns and Vazirani (1994), defining A[w] = δA(qA0 , w). A word w ∈ Σ∗

is thus accepted by A iff A[w] ∈ FA. We naturally extend this notation to sets of words
W ⊆ Σ∗: A[W ] = {A[w] |w ∈W}.

1. To avoid confusion, we will only consider half-open intervals in this paper. Thus, we will generally favor
[n,m+ 1) over [n,m]. Note that [0, n) coincides with the index range of a C/Java array of length n.

81



Isberner, Steffen

In the context of active automata learning, it is usually more convenient to regard
acceptance as an output function. Let λAq : Σ∗ → B be the output function for state q ∈ QA,

defined by λAq (w) = 1 iff δA(q, w) ∈ FA. We use λA as shorthand for λA
qA0

. Obviously,

λA(w) = 1 iff A[w] ∈ FA. We define two DFA A, A′ to be equivalent, denoted A ∼= A′, iff
they have the same output function, i.e., iff λA = λA

′
.

Definition 2 (Isomorphy of DFA) Let A and A′ be DFA over Σ. A and A′ are called
isomorphic iff there exists a bijection f : QA → QA

′
satisfying the following conditions:

1. f(qA0 ) = qA
′

0

2. ∀q ∈ QA : q ∈ FA ⇔ f(q) ∈ FA′

3. ∀q ∈ QA, a ∈ Σ : f(δA(q, a)) = δA
′
(f(q), a)

In this case, f is also called an isomorphism.

Isomorphy is a stronger requirement than equivalence: isomorphic DFA are also equivalent,
but in general not vice versa.

Definition 3 (Canonical DFA) Let A be a DFA over Σ. A is called canonical iff the
following holds:

1. All states are reachable: A[Σ∗] = QA.

2. All states are pairwisely separable: ∀q 6= q′ ∈ QA : ∃w ∈ Σ∗ : λAq (w) 6= λAq′(w).

Intuitively speaking, a canonical DFA A does not contain any redundant states. For any
DFA A, there exists exactly one (up to isomorphism) canonical DFA Â satisfying A ∼= Â
(Nerode, 1958).

3. Angluin-style DFA Learning

Active automata learning is the problem of identifying (up to equivalence) an unknown
(“target”) DFA A over a given alphabet Σ.2 To this end, the “learner” may pose two kinds
of queries to a “teacher”: a membership query for a word w ∈ Σ∗ corresponds to evaluating
λA(w). If the learner has conjectured a hypothesis DFA H, it may pose an equivalence
query, asking if H ∼= A. If this is the case, ok is returned, and learning can terminate.
Otherwise, a counterexample is returned, i.e., a word w ∈ Σ∗ satisfying λA(w) 6= λH(w). A
teacher capable of answering these queries is called a minimally adequate teacher (MAT).
Angluin (1987) showed that in the presence of a MAT, A can be learned using polynomially
many membership and linearly many equivalence queries, where both the target DFA as well
as the counterexamples are treated as inputs (thus, “polynomially” means polynomially in
both the number of states of the target DFA and the length of the longest counterexample).
Angluin also presented L∗, the first algorithm accomplishing this task.

2. Without loss of generality, we assume A to be canonical

82



An Abstract Framework for Counterexample Analysis in Active Automata Learning

3.1. Realization: The Observation Pack Algorithm

Despite the popularity of L∗, we choose the Observation Pack algorithm, due to Howar
(2012), to illustrate the key concepts of active learning. However, a large amount of the
following description also applies to other active automata learning algorithms, such as L∗.

The Observation Pack algorithm uses a finite, prefix-closed set Sp ⊂ Σ∗ to identify
states in both A and the hypothesis H. Every state q ∈ QH uniquely corresponds to a
word (called short prefix ) u ∈ Sp, and it is ensured that H[u] = q. We call u the access
sequence of q (wrt. H), denoted bqcH. The above condition can thus be formulated as
∀q ∈ QH : H[bqcH] = q. The initial state qH0 of H is the state with access sequence ε.

We extend the access sequence notation to arbitrary words w ∈ Σ∗: bwcH = bH[w]cH.
Hence, the mapping b·cH : Σ∗ → Sp transforms words into access sequences.

A short prefix u ∈ Sp naturally corresponds to a state in A, namely A[u]. We refer to
A[Sp] as the discovered states of A. Short prefixes thus establish a mapping fSp between
states in the hypothesis and discovered states in the target DFA, defined as follows:

fSp : QH → QA, fSp(q) = A [bqcH] .

Note that fSp(q
H
0 ) = fSp(H[ε]) = A(ε) = qA0 . This mapping lays the foundation for

the following three learning invariants, maintaining of which guarantees correctness upon
termination:

(I1) Different short prefixes u 6= u′ ∈ Sp correspond to different states in the target DFA:
A[u] 6= A[u′]. In other words, fSp is an injection.

(I2) Acceptances of identified states are correct in H: ∀q ∈ QH : q ∈ FH ⇔ fSp(q) ∈ FA.

(I3) Transitions in H point to the correct target state, if the latter has already been
discovered: ∀q ∈ QH, a ∈ Σ : δA(fSp(q), a) ∈ A[Sp]⇒ fSp(δ

H(q, a)) = δA(fSp(q), a)

It is clear that augmenting Sp while maintaining (I1) will eventually lead to all of the (finitely
many) states of A being discovered. If this is the case, fSp becomes a bijection. Combined
with (I2) and (I3), fSp satisfies the requirements of an isomorphism (cf. Definition 2).

Relation to Consistency and Closedness. The aforementioned properties should not
be confused with the requirements of consistency and closedness, as introduced in the
context of the L∗ algorithm (Angluin, 1987): while the former are syntactic properties re-
ferring to the concrete data structure of an observation table, invariants (I1)–(I3) refer to
the abstraction of the state space through prefixes that is inherent to many non-observation
table-based learning algorithms, too. Also note that closedness and consistency are precon-
ditions for constructing a hypothesis from an observation table, while this hypothesis is the
subject of (I1)–(I3).

The original counterexample handling mechanism in L∗ actually constitutes a violation
of (I1), as multiple short prefixes (upper row labels in the observation table) might represent
the same state. The requirement of consistency however reconciles this, as it ensures that
any subset of representatives for all states can be chosen without the concrete choice affecting
the outcome.

83



Isberner, Steffen

q1q0

q2 q3

a

bb

a

b b

a

a

ε

abbba

ab

a ε

b

(a) (b)

Figure 1: (a) Possible hypothesis DFA H, (b) possible discrimination tree for H.

3.1.1. Discrimination Trees

The main data structure of the Observation Pack algorithm is the discrimination tree (Kearns
and Vazirani, 1994). The purpose of a discrimination tree is to organize observations from
past membership queries in an efficient manner that allows maintaining (I1)–(I3). The role
of a discrimination tree and its connection to a hypothesis H are shown in Figure 1. First,
note that some of the transitions of the DFA H in Figure 1a are drawn in bold. These tran-
sitions correspond to the access sequences in Sp = {ε, a, ab, b}, and they form a spanning
tree in H.

We will now describe how the discrimination tree shown in Figure 1b corresponds to H.
A discrimination tree is a full, rooted binary tree. Leaves are labeled with short prefixes
from Sp. Hence, there is a one-to-one correspondence between leaves in the discrimination
tree and states in H (dotted line). Inner nodes are labeled with arbitrary words (“discrimi-
nators”) v ∈ Σ∗. Every inner node has two children, the 0-child (dashed line) and the 1-child
(solid line). The discrimination tree reflects information gathered from past membership
queries as follows: a short prefix u ∈ Sp labels a leaf in the o-subtree (o ∈ B) of an inner
node labeled by v if λA(u ·v) = o has previously been observed. Therefore, a discrimination
tree ensures (I1): for u 6= u′ ∈ Sp, the least common ancestor of the respective leaves
contains a discriminator separating A[u] and A[u′].

The root of a discrimination tree is always labeled by ε. This allows for deriving the
acceptance of a state in H from the discrimination tree: the state in H corresponding to
u ∈ Sp is accepting iff u is in the 1-subtree of the root. This implies that λA(u · ε) = 1 has
previously been observed, thus ensuring (I2).

Before looking at (I3), we first need to discuss how transitions inH are defined. Essential
for this is the operation of sifting a word w ∈ Σ∗ into a discrimination tree: at every inner
node labeled by v ∈ Σ∗, we branch to either the 0- or the 1-child, depending on λA(w · v).
This procedure is repeated until a leaf is reached, the label of which forms the result of the
sifting operation.

Considering a state q ∈ QH represented by its access sequence u, the a-successor, a ∈ Σ,
of q is determined by sifting ua into the discrimination tree. Let u′ be the result of this
sifting operation, we then define δH(q, a) = H[u′]. If we have any indication that this
transition is not correctly wired, i.e., δA(A[u], a) 6= A[u′], we know for certain that the
real a-successor A[ua] has not been discovered yet, thus preserving (I3): while sifting ua

84



An Abstract Framework for Counterexample Analysis in Active Automata Learning

into the tree, by arriving at u′ we have definitely ruled out every other discovered state in
A[Sp \ {u′}] as a possible a-successor of A[u].

3.1.2. Counterexample Analysis

If the learning invariants (I1)–(I3) are maintained, augmenting Sp will eventually yield a
correct hypothesisH. We have remarked in Section 3 that equivalence queries (or, more pre-
cisely, counterexamples) are vital for terminating with a correct result. Therefore, analyzing
a counterexample w ∈ Σ∗ should result in Sp being augmented.

First, let us remark that we can assume counterexamples to be of positive length, i.e.,
w ∈ Σ+. This is due to the fact that λA(ε) = λH(ε), which follows from ε ∈ Sp and
invariant (I2).

The following result is originally due to Rivest and Schapire (1993), and has been further
clarified by Steffen et al. (2011).

Theorem 4 (Counterexample Decomposition) Let H be a hypothesis satisfying (I1)–
(I3), and let w ∈ Σ+ be a counterexample, i.e., λA(w) 6= λH(w). Then, there exists a
decomposition 〈u, a, v〉 ∈ Σ∗×Σ×Σ∗ such that w = u·a·v, and λA(bucH a·v) 6= λA(buacH·v).

Let q = H[u] be the state in H reached by u. Apparently, δH(q, a) = q′ is not the correct
target state (wrt. A), as λA(bq′cH · v) 6= λA(bqcH a · v). Therefore, by invariant (I3) we
have A[bucH a] /∈ A[Sp], meaning we can add bucH a to Sp without violating (I1). This
results in an additional state in the hypothesis, and is reflected in the discrimination tree
by splitting the leaf labeled by buacH: the leaf is replaced by an inner node labeled by v,
and its children are now leaves labeled by buacH and bucH a.

4. An Abstract Framework for Counterexample Analysis

In this section, we establish our abstract framework for counterexample analysis. We will
show that this framework allows us to formulate and implement counterexample analysis
algorithms in a very concise and simple manner. This facilitates the understanding of both
what the algorithm does, and why it is correct. We will demonstrate these aspects of our
framework by using it to formulate the counterexample analysis algorithm due to Rivest and
Schapire (1993). Optimizations and alternative approaches will be discussed in Section 5.

4.1. Prefix Transformations

Essential for the above Theorem 4 is the procedure of transforming a prefix of a counterex-
ample w ∈ Σ+ into an access sequence in Sp. This gives rise to the following definition.

Definition 5 (Prefix Transformation) Let H be a hypothesis. The prefix transforma-
tion with respect to H, πH, is defined as follows:

πH : Σ∗ × N→ Σ∗, πH(w, i) =
⌊
w[0,i)

⌋
H · w[i,|w|).

Note that, for w ∈ Σ∗, πH(w, 0) = w and πH(w, |w|) = bwcH ∈ Sp. Theorem 4 can thus be
rephrased as follows: given a counterexample w ∈ Σ+, there exists an i ∈ [0, |w|) such that
λA(πH(w, i)) 6= λA(πH(w, i+ 1)).

85



Isberner, Steffen

In the following, we fix the counterexample w ∈ Σ+, and assume its length to be
|w| = m. As w is a counterexample wrt. H, the hypothesis H (wrongly) predicts the
output λH(w) for w. Apparently, prefix transformations have no effect when considering
λH: for 0 ≤ i ≤ m, λH(πH(w, i)) = λH(w).

Since πH(w,m) ∈ Sp, by invariant (I2) we have λA(πH(w,m)) = λH(w). Similarly,
since πH(w, 0) = w and w is a counterexample, λA(πH(w, 0)) 6= λH(w). We extend this
consideration to all indices 0 ≤ i ≤ m, compactly representing it in the mapping α defined
as follows:

α : [0,m+ 1)→ B, α(i) =

{
1 if λA(πH(w, i)) = λH(w)
0 otherwise

.

The above considerations for indices 0 and m translate to α(0) = 0 and α(m) = 1. Since
B is two-valued, λA(πH(w, i)) 6= λA(πH(w, i + 1)) is equivalent to α(i) 6= α(i + 1). This
allows for concisely rephrasing the suffix-based counterexample analysis problem:

Theorem 6 (Counterexample Analysis Rephrased) Suffix-based counterexample anal-
ysis in active automata learning can be rephrased as the problem of, given a mapping
α : [0,m + 1) → B with α(0) = 0 and α(m) = 1, finding an index î, 0 ≤ î < m, satis-
fying α(̂i) 6= α(̂i+ 1).

The respective index î translates to the decomposition u = w[0,̂i), a = wî, v = w[̂i+1,m).

It hence yields a suffix of length m− î. The existence of an index î satisfying α(̂i) 6= α(̂i+1)
(i.e., the existence of a decomposition satisfying the requirements of Theorem 4) is a trivial
consequence of α(0) = 0 and α(m) = 1.3

Evaluating α(i), 0 < i < m, requires a single membership query. The number of mem-
bership queries required for analyzing a counterexample is thus equivalent to the number
of such evaluations.

A straightforward way to determine such an index î ∈ [0,m) satisfying α(̂i) 6= α(̂i+ 1)
is to scan through α linearly in descending order, and terminating as soon as the value 0
is encountered. Progressing in descending order guarantees finding the largest possible î,
resulting in the decomposition with the shortest suffix v. This approach is similar to the
Suffix1by1 heuristic due to Irfan et al. (2010) (which however is limited to observation
tables in its applicability). While it may in many cases terminate quickly, in the worst-case
it requires m− 1 membership queries.

4.2. Rivest&Schapire’s Method: Binary Search

A linear worst-case query complexity might at first not seem bad. However, in many
cases equivalence queries can only be approximated by means of membership queries (e.g.,
by random sampling). Such approaches yield non-optimal counterexamples (Irfan et al.,
2010), which may be significantly longer than the shortest possible ones.

Rivest and Schapire (1993) proposed a counterexample analysis algorithm which drasti-
cally reduces the number of membership queries required for finding a suitable decomposi-
tion (cf. Theorem 4) to dlogme. This algorithm is based on binary search, and its correctness
becomes apparent when formulated in our framework (Algorithm 1). For 0 ≤ l < h ≤ m,

3. This can be interpreted as a discrete variant of the well-known intermediate value theorem from contin-
uous function analysis.

86



An Abstract Framework for Counterexample Analysis in Active Automata Learning

Algorithm 1 Rivest-Schapire(α)

Require: Abstract CE α : [0,m+ 1)→ B
Ensure: Index î satisfying α(̂i) 6= α(̂i+ 1)

low ← 0
high ← m
while high − low > 1 do

mid ← b low+high
2

c
if A(mid) = 0 then

low ← mid
else

high ← mid
end if

end while
return low

Algorithm 2 Find-Exponential(α)

Require: Abstract CE α : [0,m+ 1)→ B
Ensure: Index î satisfying α(̂i) 6= α(̂i+ 1)

ofs ← 1, high ← m, low ← 0, found ← false
while high − ofs > 0and¬found do

if A(high − ofs) = 0 then
low ← high − ofs
found ← true

else
high ← high − ofs
ofs ← 2 · ofs

end if
end while
return Binary-Search(α, low , high)

α(l) = 0 and α(h) = 1 implies that an index î satisfying the requirements of Theorem 6
exists in the interval [l, h). Since α(0) = 0 and α(m) = 1, throughout the execution of
Algorithm 1 the invariant α(low) = 0 and α(high) = 1 is preserved.

Note that Algorithm 1 contains no break or return statements that could cause pre-
mature termination in its main loop. This flavor of binary research is commonly (e.g., in
Wirth (1985)) referred to as deferred detection of equality. Algorithm 1 thus always requires
dlogme queries.

5. Improved Counterexample Analysis

In this section, we will make use of our abstract framework by presenting optimized vari-
ations of Algorithm 1. These algorithms employ different search strategies, which aim for
reducing the number of counterexamples, the average length of the suffix (i.e., maximizing
î), or both. Even though the search strategies are well-known (see, e.g., Cormen et al.
(2001)), their application in the context of counterexample analysis in active automata
learning is novel.

5.1. Exponential Search

Even though we have α(0) = 0 and α(m) = 1, the value of α(·) may oscillate in between, i.e.,
α is not necessarily monotonic. An apparent disadvantage of Rivest&Schapire’s algorithm
is that it tends to result in relatively long counterexamples: if the first mid value tested in
Algorithm 1 happens to satisfy α(mid) = 1, the resulting suffix will be at least of length
dm/2e. A way of favoring short suffixes while maintaining the logarithmic worst-case query
complexity of Rivest&Schapire’s algorithm is to apply exponential search (in descending
order). This means testing α(m − 20), α(m − 21), α(m − 22) etc., until a range [l, h)
satisfying α(l) = 0, α(h) = 1 emerges, which is then searched for an index î using binary
search (cf. Alg. 1). Algorithm 2 shows the algorithm. Again, the key invariant we maintain
is α(low) = 0, α(high) = 1.

In the worst-case (if found never becomes true), Algorithm 2 requires 2blogmc mem-
bership queries: blogmc for the (unsuccessful) exponential search, and another blogmc for
the binary search on the left half of α. In practice, the search may terminate much earlier,
requiring only a single membership query in the best case (if α(m− 1) = 0).

87



Isberner, Steffen

Algorithm 3 Partition-Search(α)

Require: Abstract CE α : [0,m+ 1)→ B
Ensure: Index î satisfying α(̂i) 6= α(̂i+ 1)

step ← b m
logm

c, low ← 0, high ← m

found ← false
while high − step > low and¬found do

if α(high − step) = 0 then
low ← high − step
found ← true
break

else
high ← high − step

end if
end while
return Binary-Search(α, low , high)

Algorithm 4 RS-Eager(β)

Require: Mapping β : [0,m)→ {0, 1, 2}
Ensure: Index î satisfying β(̂i) = 1

low ← 0
high ← m− 1
while high > low do

mid ←
⌊
low+high

2

⌋
if β(mid) = 1 then

return mid
else if β(mid) = 0 then

low ← mid + 1 // β(mid + 1) ≤ 1
else

high ← mid − 1 // β(mid − 1) ≥ 1
end if

end while
return low

5.2. Partition Search

Exponential search may terminate quickly and with very short suffixes. However, the expo-
nentially fast growth of the search range may be disadvantageous in the unfortunate event
that the first few positions of form m− 2i that are tested all satisfy α(m− 2i) = 1.

A more balanced approach that still achieves a logarithmic worst-case query complexity
is to partition α into dlogme fields, each of approximate length s = b m

logmc. Then, the
values α(m− s), α(m− 2s) etc. are tested, until a range [l, h) satisfying α(l) = 0, α(h) = 1
emerges. Again, binary search is used to find î in this range, requiring an additional
dlog se = dlogb m

logmce membership queries.
This procedure is detailed in Algorithm 3. The invariant α(low) = 0, α(high) = 1 is

preserved throughout the algorithm. In the worst case, dlogme + dlogb m
logmce = O(logm)

membership queries are necessary. Note that the first term is an upper bound (searching
for a suitable range), while the second term is unavoidable (binary search). Thus, as m
grows larger, the proportion of the unavoidable term grows larger as well. We therefore
expect this algorithm to perform better for shorter counterexamples.

5.3. Eager Search

The binary search in Algorithm 1 always requires at least blogmc iterations, as the while-
loop contains no break or return statements. In the classical application of binary search,
this is referred to as deferred detection of equality (Wirth, 1985). This realization is due to
the fact that the mere value of α(i) for some i ∈ [0,m) is never sufficient to determine if i
satisfies the requirements from Theorem 6, as this requires to test α(i+ 1) as well.

However, we can aggregate the values of neighboring elements as follows. Consider the
mapping β, derived from α : [0,m+ 1)→ B:

β : [0,m)→ {0, 1, 2} , β(i) = α(i) + α(i+ 1).

Apparently, α(i) 6= α(i+1) iff β(i) = 1. While evaluating β(i) may require up to 2 member-
ship queries, any search may terminate immediately if a value of 1 has been encountered.

88



An Abstract Framework for Counterexample Analysis in Active Automata Learning

We illustrate the effect of eager search on Rivest&Schapire’s algorithm only (cf. Algo-
rithm 1), even though it may be applied to virtually any other abstract counterexample
analysis algorithm as well. The resulting algorithm is shown in Algorithm 4. Note that,
since α(0) = 0 and α(m) = 1, we have β(0) ≤ 1 and β(m − 1) ≥ 1. Also, consecutive
values of β(·) differ by at most 1. This makes clear why Algorithm 1 works: throughout
the algorithm, we maintain the invariant that β(low) ≤ 1 and β(high) ≥ 1.4

6. Application to Kearns&Vazirani’s Algorithm

Before moving on to the evaluation, we want to highlight the generality of our framework
by showing its applicability to a different active automata learning algorithm: the one by
Kearns and Vazirani (1994). This algorithm, which was the first one to use a discrimination
tree in the context of active learning, can be seen as dual to the Observation Pack algorithm,
reversing the way prefixes and suffixes are treated.

The Observation Pack algorithm maintains a prefix-closed set of short prefixes identi-
fying states in the hypothesis. Due to prefix-closedness and the fact that there is only one
short prefix per state, the length of short prefixes is bounded by n. Discriminators—which
label inner nodes in the discrimination tree—, are extracted as suffixes of former counterex-
amples, and follow no particular pattern. The length of discriminators is only bounded by
m, where m is the length of the longest counterexample.

Looking at the Kearns&Vazirani algorithm, we are facing almost the exact opposite: the
set of the state-identifying short prefixes is no longer prefix-closed, but they are extracted
as prefixes of former counterexamples and thus are only bounded by m. The separation of
states in the hypothesis is again maintained in a discrimination tree, but this time the set
of discriminators forms a suffix-closed set: every new discriminator that is added to the tree
is formed by prepending a single symbol to an existing discriminator. This ensures that the
length of discriminators is bounded by n.

6.1. Counterexample Analysis

The counterexample analysis in Kearns&Vazirani’s algorithm is rather straightforward:
given a hypothesis H and a counterexample w of length m, prefixes of w are considered in
ascending order of their length. The prefix w[0,i) is sifted into the discrimination tree, until
the resulting leaf differs from the leaf associated with H[w[0,i)]. Let then v be the label
of the lowest common ancestor (LCA) of these two leaves in the discrimination tree. By
prepending a = wi−1 to v, we obtain a new discriminator which separates

⌊
w[0,i−1)

⌋
H from

w[0,i−1). The leaf corresponding to H[w[0,i−1)] is then split, using av as the discriminator
and w[0,i−1) as the representative for the new state.

From this perspective, it seems impossible to apply Rivest&Schapire’s counterexample
analysis algorithm, as there is no natural notion of prefix transformations. Furthermore,
suffixes that are added to the discrimination tree have to be incrementally constructed
from existing suffixes. Consequently, there presently do not exist—to the best of our
knowledge—any approaches to replace the linear scanning from the original algorithm with
something more efficient (i.e., of sublinear worst-case complexity). However, in the follow-
ing we show how the counterexample analysis problem for Kearns&Vazirani’s algorithm can

4. Again in analogy to the intermediate number theorem, we can conclude the existence of î, low ≤ î ≤ high,
satisfying β(̂i) = 1.

89



Isberner, Steffen

be abstracted in a way which makes it amenable to the techniques developed in this paper.
Note that the main challenge here is again to transform the concrete counterexample w into
an abstract counterexample α. Once this is accomplished, the algorithms discussed in the
previous sections can be applied without further adaptations.

6.2. Counterexample Abstraction

Looking at the counterexample analysis procedure as described above, it is clear that we
are faced with the same abstract problem as in the Observation Pack algorithm: to find
an index i in the counterexample w which satisfies a given property (here: that the leaf
corresponding to H[w[0,i)] matches the result of the respective sift operation), while i + 1
does not. An abstract counterexample α in the context of the Kearns&Vazirani algorithm
can thus be derived as follows:

α : [0,m+ 1)→ B, α(i) =

{
0 if H[w[0,i)] = sift(w[0,i))

1 otherwise
.

Note that again we have α(0) = 0 (the empty word is identified with the initial state) and
α(m) = 1 (the counterexample is classified incorrectly, hence H[w[0,i)] and sift(w[0,i)) must
be in different subtrees of the root node).

This is already sufficient for enabling applicability of the counterexample analysis frame-
work presented in the paper. There is, however, a slight difference in practice: in the
context of the Observation Pack algorithm, it is desirable to minimize the length of the ex-
tracted discriminators. Therefore, it makes sense to start searching (e.g., in linear scanning
or using exponential search) from the end of the counterexample. In the context of the
Kearns&Vazirani algorithm, however, for minimizing the length of the extracted prefixes
one needs to start from the beginning of the counterexample.

7. Implementation and Evaluation

We have implemented our abstract framework, as well as the algorithms we presented, on
top of LearnLib. LearnLib5 is our open-source framework for active automata learning,
and is a reimplementation of the former closed-source version of LearnLib (Merten et al.,
2011). We have made our implementation, along with the environment for running experi-
ments (including scripts etc.), publicly available.6 We plan to fully integrate our work into
LearnLib in the near future.

We conducted a small evaluation to illustrate the impact of the optimizations presented
in Section 5 for both the Observation Pack and Kearns&Vazirani’s (cf. Sec. 6) algorithm.
For a randomly generated DFA with 500 states and an alphabet of size 10,7 we measured the
total number of membership queries during all counterexample analyses (Fig. 2, top) and
the average length of the returned suffixes/prefixes (Fig. 2, bottom). We did not consider

5. http://www.learnlib.de/

6. https://github.com/misberner/learnlib-abstract-counterexamples

7. Both changes in the size parameters and different outcomes of random DFA generator did not have a
major impact on the relative performance and the shape of the plots. We therefore consider it sufficient
to focus on a single instance of a randomly generated DFA only, especially since the evaluation resources
are publicly available. Whether randomly generated DFA are “representative” for typical automata
learning setups is a different question, which however is beyond the scope of this paper.

90

http://www.learnlib.de/
https://github.com/misberner/learnlib-abstract-counterexamples


An Abstract Framework for Counterexample Analysis in Active Automata Learning

Figure 2: Average total number of membership queries during counterexample analysis
(top) and average length of returned suffix/prefix (bottom), plotted against counterexample
length for both Observation Pack (left) and Kearns&Vazirani (right) algorithms

the number of membership queries not related to counterexample analysis, as we found
it to be by and large independent of the search strategy. We used the Observation Pack
algorithm (called Discrimination Tree algorithm in LearnLib), since it guarantees that the
number of counterexample analyses performed depends solely on the number of states of the
target automaton; the same is true for Kearns&Vazirani’s algorithm. We measured these
numbers as functions of the counterexample length, which we fixed for each learning process.
Counterexamples were generated by randomly sampling words of the required length, and
considering only those words that were in fact counterexamples. Finally, each experiment
was run 50 times in an effort to average out variations due to random counterexample
sampling.

Observation Pack. The results are shown in the left column of Figure 2 in graphical
form. As remarked in Section 4.1, linear scanning through the counterexample in descending
order yields the shortest suffixes, but is the most expensive approach in terms of member-
ship queries. Our results also show that an eager version of Rivest&Schapire’s algorithm
neither helps reducing the cost in terms of membership queries (in fact, the increase is quite
significant), nor does it yield shorter suffixes as the original version.

91



Isberner, Steffen

Partition search and exponential search outperform Rivest&Schapire’s algorithm in both
measures. As predicted, partition search requires slightly less membership queries for rel-
atively short counterexamples (up to 100 symbols), but then is quickly outperformed by
exponential search. Furthermore, the latter yields suffixes of length much closer to the
relative optimum (as established by LinearDesc) than any other algorithm.

Kearns&Vazirani. Our observations for Kearns&Vazirani’s algorithm are slightly dif-
ferent: the performance of linear scanning (which is the approach originally described by
Kearns and Vazirani (1994)), measured in terms of the number of queries, is extremely poor
for long counterexamples.8 The other search strategies perform much better. Interestingly,
both Rivest&Schapire (i.e., binary search) and partition search outperform exponential
search. However, in spite of that, exponential search yields shorter prefixes than the former
two, only being outperformed by linear scanning. This makes exponential search a good
all-rounder in this context, even though its advantages are not as clear as when employed
for counterexample analysis in the context of the Observation Pack algorithm.

8. Conclusion

We have presented an abstract framework for counterexample analysis in active automata
learning. This framework enables a perspective on counterexample analysis focusing on the
essentials: the problem of finding an adequate suffix index is reduced to finding distinct
neighbors in an array with distinct first and last elements. We have shown that this frame-
work facilitates formulating algorithms concisely, and with evident correctness properties.

An instantiation of the framework, based on prefix transformations, was used to spec-
ify variations to the counterexample analysis algorithm due to Rivest and Schapire (1993)
that, while maintaining the worst-case upper bound of O(logm) membership queries, re-
quire much less queries in practice and yield shorter suffixes. A second instantiation of
the framework was demonstrated for the algorithm due to Kearns and Vazirani (1994),
demonstrating the framework’s flexibility: the same (abstract) analysis procedures can be
used for both algorithms, in spite of them posing almost complementary requirements for
counterexample analysis. The sublinear analysis procedures which our framework enables
are—to the best of our knowledge—the first for Kearns&Vazirani’s algorithm.

We have implemented our framework and the presented algorithms on top of LearnLib,
and conducted experiments confirming our hypothesis that these algorithms in practice
frequently outperform Rivest&Schapire’s algorithm, and the classical, linear scanning-based
approach in Kearns&Vazirani’s algorithm, respectively.

As our experiments suggest that some of the analysis algorithm we presented yield much
shorter suffixes than Rivest&Schapire’s algorithm, it will be interesting to investigate how
this affects the performance of the recently presented TTT algorithm (Isberner et al., 2014),
which aims at completely eliminating any redundancies in the suffix. Finally, it remains an
open problem to generalize the established perspective on counterexample analysis to learn-
ing algorithms involving several layers of abstraction (e.g., an additional abstraction on the
alphabet, as opposed to an abstraction of the state-space only), such as Alphabet Abstrac-
tion Refinement (Isberner et al., 2013) or register automata learning (Howar et al., 2012).

8. Note that counterexample analysis is generally more expensive as in the Observation Pack algorithm, as
evaluating α(i) requires sifting of the respective prefix.

92



An Abstract Framework for Counterexample Analysis in Active Automata Learning

If it was possible to extend the notion of abstract counterexamples to these settings, all the
algorithms we discussed would be usable at once, without any additional implementation
effort.

References

Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Information and
Computation, 75(2):87–106, 1987.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001. ISBN 0070131511.

Falk Howar. Active Learning of Interface Programs. PhD thesis, TU Dortmund University,
2012. URL http://dx.doi.org/2003/29486.

Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring Canonical Register
Automata. In VMCAI, volume 7148 of LNCS, pages 251–266. Springer, 2012.

Muhammad Naeem Irfan. Analysis and Optimization of Software Model Inference Algo-
rithms. PhD thesis, Université de Grenoble, France, September 2012.

Muhammad Naeem Irfan, Catherine Oriat, and Roland Groz. Angluin style finite state
machine inference with non-optimal counterexamples. In Proceedings of the First Inter-
national Workshop on Model Inference In Testing, 2010.

Malte Isberner, Falk Howar, and Bernhard Steffen. Inferring Automata with State-local
Alphabet Abstractions. In NFM, volume 7871 of LNCS, pages 124–138, 2013.

Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT Algorithm: A Redundancy-
Free Approach to Active Automata Learning. In Runtime Verification. Springer-Verlag
Berlin Heidelberg, 2014. to appear.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA, USA, 1994. ISBN 0-262-11193-4.

Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. Next Generation
LearnLib. In TACAS, pages 220–223, 2011.

A. Nerode. Linear Automaton Transformations. Proceedings of the American Mathematical
Society, 9(4):541–544, 1958. ISSN 00029939.

Ronald L. Rivest and Robert E. Schapire. Inference of Finite Automata Using Homing
Sequences. Inf. Comput., 103(2):299–347, 1993. ISSN 0890-5401.

Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to Active Automata Learning
from a Practical Perspective. In SFM, volume 6659 of LNCS, pages 256–296. Springer,
2011.

Niklaus Wirth. Programming in MODULA-2 (3rd Corrected Ed.). Springer-Verlag New
York, Inc., New York, NY, USA, 1985. ISBN 0-387-15078-1.

93

http://dx.doi.org/2003/29486

	Introduction
	Preliminaries
	Mathematical Notation
	Alphabets, Words, and Deterministic Finite Automata

	Angluin-style DFA Learning
	Realization: The Observation Pack Algorithm
	Discrimination Trees
	Counterexample Analysis


	An Abstract Framework for Counterexample Analysis
	Prefix Transformations
	Rivest&Schapire's Method: Binary Search

	Improved Counterexample Analysis
	Exponential Search
	Partition Search
	Eager Search

	Application to Kearns&Vazirani's Algorithm
	Counterexample Analysis
	Counterexample Abstraction

	Implementation and Evaluation
	Conclusion

