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Abstract

With the emergence of Machine Learning tools that allow handling data with a huge number
of features, it becomes reasonable to assume that, over the full set of features, the true labeling
is (almost) fully determined. That is, the labeling function is deterministic, but not necessarily
a member of some known hypothesis class. However, agnostic learning of deterministic labels
has so far received little research attention. We investigate this setting and show that it displays
a behavior that is quite different from that of the fundamental results of the common (PAC)
learning setups. First, we show that the sample complexity of learning a binary hypothesis class
(with respect to deterministic labeling functions) is not fully determined by the VC-dimension
of the class. For any d, we present classes of VC-dimension d that are learnable from Õ(d/ε)-
many samples and classes that require samples of size Ω(d/ε2). Furthermore, we show that in
this setup, there are classes for which any proper learner has suboptimal sample complexity.
While the class can be learned with sample complexity Õ(d/ε), any proper (and therefore,
any ERM) algorithm requires Ω(d/ε2) samples. We provide combinatorial characterizations of
both phenomena, and further analyze the utility of unlabeled samples in this setting. Lastly, we
discuss the error rates of nearest neighbor algorithms under deterministic labels and additional
niceness-of-data assumptions.

1. Introduction

We investigate the sample complexity of binary classification learning with respect to a concept
class, when the true labeling function is deterministic but does not necessarily belong to the class
(agnostic learning of deterministic labels). As far as we are aware, this case has not been fully
analyzed before. Situations in which the labeling rule may be deterministic include setups where
data is represented by a very large number of features. For example, document categorization
using a feature space containing all of the language’s dictionary. Such tasks are often handled
with sparsity-inducing regularization (over, say, linear classifiers). The motivation behind inducing
sparsity can either be due to some prior knowledge that the data model is sparse, but often it is due
to the computational and interpretability merits of sparse models. In such cases, the set of potential
output classifiers is not assumed to include a zero error classifier (Bach et al. (2012)).

The analysis of the sample complexity in the PAC model is divided into two main cases, accord-
ing to whether the class H contains a zero-error classifier or not. In the first case, usually referred
to as the realizable setup, the sample complexity of learning H is (roughly) Θ

(
VCdim(H)

ε

)
. In the

second case, the agnostic setup, no such assumption is made. In particular, the labeling function of
the underlying data-generating distribution is not necessarily deterministic. In this case, the sample
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complexity is (roughly) Θ
(
VCdim(H)

ε2

)
. Proving the lower bound in the agnostic case usually in-

volves taking advantage of the stochasticity in the labeling function. Non-realizability, the lack of a
zero-error classifier in the learner’s search space, can be caused by stochasticity, or “noise”, of the
labeling rule (with respect to the features considered) or by the limitations of the learner’s search
space.

The first case has attracted a lot of attention in the past decade. Mammen and Tsybakov (1999)
initiated some finer grained analysis. Assuming that the Bayes optimal classifier is a member of
the class, they analyze the sample complexity of ERM classifiers and prove a bound on their error
rates that interpolate between the realizable and the agnostic case. These bounds involve a param-
eter, Tsybakov’s noise exponent, usually denoted by α, that restricts the amount of noise in the
labeling. Table 1 illustrates the relationship between these three cases (realizable, fully agnostic,
and realizable with controlled noise). In this work, we turn the focus on the upper right corner:
agnostic learning under deterministic labellings. One can get the impression that the stochasticity
of the labeling procedure is the only reason for slow learning rates. One contribution of our work is
to show that slow rates (sample sizes Ω(VCdim/ε2)) are common for fully deterministic labellings
as well, once the assumption that the Bayes classifier is (almost) in the class is dropped. It turns

Table 1: Sample complexity of (PAC)-learning H

Bayes in H Agnostic

Deterministic labels VCdim(H)
ε ?

Probabilistic labels under Tsybakov noise: VCdim(H)
ε2−α

VCdim(H)
ε2

out that learning bounds in the agnostic-deterministic setup behave differently from what we know
in the other cases. First, the sample complexity of learning a binary hypothesis class is not fully
determined by the VC-dimension of the class. We show that, for any d, there exist classes of VC-
dimension d that are learnable with sample complexity Õ(d/ε), regardless of the approximation
error, and classes for which learning requires sample sizes of Ω(d/ε2). Note that in the case we
focus on, the noise condition is fixed (there is no noise whatsoever) and yet both fast-rate and slow-
rate convergence occurs. Furthermore, every class falls into one of these two categories. There are
no intermediate rates. We introduce a simple combinatorial parameter of a class, the class diameter
and prove that a class has fast convergence rates if and only if its class diameter is finite. We also
show that most “interesting classes” have infinite diameter, and thus slow convergence rates even in
our noise free setting.

We then analyze the sample complexity of proper learners. It is well known that proper learn-
ing, where the learner is required to output a member of the hypothesis class, is often computation-
ally harder than unrestricted learning (see for example Section 1.4 of Kearns and Vazirani (1995)).
However, in the common PAC setups, the restriction to proper outputs does not bear any sample
complexity consequences – optimal learning rates are achieved by any ERM procedure for every
hypothesis class. In contrast, for agnostic deterministic learning, we prove an inherent weakness
of proper learners from the sample complexity perspective. We show that, for every d, there ex-
ist classes of VC-dimension d that are learnable with sample complexity Õ(d/ε) while any proper
learner for these classes (and, in particular, any ERM learner) requires Ω

(
1/ε2

)
size samples. We

provide a combinatorial characterization of the classes that demonstrate such a sample complexity
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gap. Furthermore, we show that in all cases where proper (and ERM) learners are sample complexity
suboptimal, access to unlabeled samples can fully overcome this gap. We propose a semi-supervised
version of ERM that becomes optimal once it has access to sufficiently many unlabeled examples.
Lastly, we briefly discuss non-parametric (Nearest Neighbor) learning of deterministic labels under
additional data assumptions.

We point out that, while all the lower bounds presented in this work involve an approximation
error that is close to 1/2, using standard techniques, these lower bounds can be converted to hold
for any arbitrary, but fixed, smaller approximation error. For this, one considers distributions, where
most of the weight is on one heavy point, and concentrates the lower bound construction on the rest.

2. Related work

The PAC framework for binary classification learning was first introduced by Valiant (1984). Blumer
et al. (1989) characterize learnability of a binary hypothesis class in terms of its VC dimension. Es-
sentially, this characterization goes back to Vapnik and Chervonenkis (1971). The agnostic PAC
model was introduced by Haussler (1992). In both cases, the sample complexity of any empirical
risk minimization (ERM) learner is equal to that of the best possible learning algorithm.

The gap between the error rates in the realizable and the agnostic case has attracted quite a lot
of attention. These can be viewed along two directions. An assumption of a small approximation
error by a class allows leveraging Bennett and Bernstein inequalities and yields bounds that imply
fast rates in the range of generalization error that is higher than the approximation error of the class.
This analysis goes back to Vapnik and Chervonenkis (1971). More recently, Mammen and Tsybakov
(1999) considered the setting in which the Bayes classifier belongs to the class H , and therefore the
stochasticity of the labeling (or its “noise”) is the only source of the approximation error. They
introduce the Tsybakov noise condition, a bound on the stochasticity (or noisiness) of the labels and
prove convergence rates under that condition (and the additional assumption that the Bayes optimal
classifier is a member of the hypothesis class). Tsybakov (2004) generalizes these results to the case
where the Bayes classifier is only assumed to be a member of some collection of known hypothesis
classes. Boucheron et al. (2005) provide an analysis (under the Tsybakov noise condition) that does
not impose restrictions on the Bayes classifier. However the obtained convergence rates depend on
the approximation error of the class (they become weaker as the approximation error grows). Our
results indicate that the relationship between noise and fast rates, as captures by these conditions, is
indeed restricted to the case where the Bayes classifier is in the class (or is very well approximated
by a member of the class).

The setup where the labeling rule is deterministic, but yet does not belong to the learned class
has been addressed to a lesser degree. Kääriäinen (2006) presents a lower bound of order 1/ε2

for agnostic learning of any class that contains the two constant functions when the labeling is
deterministic. However, these lower bounds do not grow with the complexity (e.g., VC-dimension)
of the learned class and their dependence on the domain size is not discussed there.

We are not aware of any previous work that shows lower bonds of order VCdim(H)/ε2 for
learning deterministic labellings, or the upper bounds of order VCdim(H)/ε that hold for arbi-
trary deterministic labellings, regardless of the approximation error of H . Sample complexity sub-
optimality of some ERM learners has recently been detected in context of multi-label classification
by Daniely et al. (2011). The existence of classes for which there are learners with low sample
complexity (of order VCdim(H)/ε for arbitrary deterministic-label distributions) while any ERM
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learner still requires sample sizes of order 1/ε2 does not seem to have been brought up by earlier
work.

3. Definitions

We let X denote a domain set and let {0, 1} be the label set. A hypothesis (or label predictor or
classifier), is a binary function h : X → {0, 1}, and a hypothesis class H is a set of hypotheses.
We model a learning task as some distribution P over X × {0, 1} that generates data. We denote
the marginal distribution of P over X by PX and let l : X → [0, 1] denote the induced conditional
label probability function, l(x) = P (y = 1|x). We call l the labeling function of the distribution P .
We say that the labeling function is deterministic, if l(x) ∈ {0, 1} for all x ∈ X . Otherwise, we call
the labeling function probabilistic.

For some function h : X → {0, 1} we define the error of h with respect to P as

ErrP (h) = Pr
(x,y)∼P

[y 6= h(x)].

For a class H of hypotheses on X , we let the smallest error of a hypothesis h ∈ H with respect to
P be denoted by

optP (H) := inf
h∈H

ErrP (h).

We call optP (H) the approximation error of the hypothesis class H with respect to P .
Let S = ((x1, y1), . . . , (xn, yn)) ∈ (X ×{0, 1})n be a finite sequence of labeled domain points.

We define the empirical error of a hypothesis with respect to S as

ErrS(h) =
1

|S|
∑

(x,y)∈S

|y − h(x)|.

A standard learner A is an algorithm that takes a sequence S = ((x1, y1), . . . , (xn, yn)) and
outputs a hypothesis h : X → {0, 1}. Formally, A :

⋃∞
m=1(X × {0, 1})m → {0, 1}X . A learner

is an empirical risk minimizer (ERM) for a class H if, for a sample S, it outputs a member of H of
minimal empirical error. We denote ERM algorithms for a class H by ERM(H). We call a learner
a proper learner for a class H , if it always outputs a function from H . Note that any ERM(H)
algorithm is a proper learner for H .

Definition 1 (Learnability) Let X denote some domain. We say that an algorithm A learns some
class of binary classifiers H ⊆ {0, 1}X with respect to a set of distributions Q over X × {0, 1}, if
there exists a function m : (0, 1) × (0, 1) → N such that, for all distributions P ∈ Q, and for all
ε > 0 and δ > 0, when given an i.i.d. sample of size at least m(ε, δ) from P , then, with probability
at least 1−δ over the sample,A outputs a classifier h : X → {0, 1} with error at most optP (H)+ε.
In this case, for given ε and δ, we also say that the algorithm (ε, δ)-learns H with respect toQ from
m(ε, δ) examples.

In this paper we consider classes of distributions that have a deterministic labeling function. For
a domain X , we let Qdet

X denote the set of all such distributions. In the following definition we use
the use the term “smallest function” to denote the pointwise smallest function.
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Definition 2 (Sample Complexity) We call the smallest function m : (0, 1) × (0, 1) → N that
satisfies the condition of Definition 1 the sample complexity of the algorithm A for learning H
with respect to Q. We denote this function by m[A,Q, H]. We call the smallest function m :
(0, 1)× (0, 1)→ N such that there exists a learnerA withm[A,Q, H] ≤ m the sample complexity
of learning H with respect to Q and denote this function by m[Q, H]. We omit Q in this notation,
when Q is the set of all distributions over X × {0, 1}, and call m[H] the sample complexity of
learning H . For the set Qdet

X of distributions with deterministic labeling functions, we use the
notation mdet[H].

4. Sample complexity gap between classes of the same VC dimension

4.1. Classes that are hard to learn in the agnostic-deterministic model

We start by proving that, for every VC-dimension d, there exists classes that require samples of
sizes Ω(d/ε2). This shows that restricting our attention to distributions with deterministic labeling
functions does not necessarily render learning easier (as might be expected from the results on
agnostic learning under the Tsybakov noise condition).

For any domain X , we let H1,0 be the hypothesis class that contains only the constant function
1 and the constant function 0. The following lemma establishes a lower bound on the sample
complexity of learning this class and also quantifies a sufficient domain size for this result. The
lemma was shown in Urner (2013), but has not been published before.

Lemma 3 Let 0 < ε < 1/4 and 0 < δ < 1/32, let X be a finite domain of size at least 1/ε3

and let Q be the set of distributions over X × {0, 1} whose marginal distribution PX is uniform
over X and whose labeling function deterministically labels a (1/2− ε)-fraction of the points 0 and
(1/2 + ε)-fraction of the points 1, or the other way around. Let H1,0 be the hypothesis class that
contains only the constant function 1 and the constant function 0. Then, (ε/2, δ)-learning H1,0 with
respect to Q requires a sample size of Ω(1/ε2).

Proof For every distribution P inQ we have optP (H) = 1/2− ε. Consider the majority algorithm
M that, given a sample S = ((x1, y1) . . . (xm, ym)), predicts with a function that agrees with the
labels of the sample points on S and outside the sample predicts with the majority label in S. We
will now first argue that, for every distribution P ∈ Q, this algorithm needs to see Ω(d/ε2) many
points to succeed at the task. Then we show that for any other learning algorithm A, there exits a
distribution in Q where A performs worse thanM. These two steps together imply the claim.

Step 1: Assume that the sample size is |S| ≤ 1
2ε2

. Note that this corresponds to at most an
ε/2-fraction of the sample points. Thus, if M predicts (outside of S) with a label that is not the
overall (true) majority label, then the error ofM(S) is at least 1/2 + ε − |S|/|X | ≥ 1/2 + ε/2 >
optP (H)+ε/2. This implies that, forM, (ε/2, δ)-learningH with respect toQ reduces to correctly
learning what the majority label is, that is, it reduces to correctly predicting the bias of a coin. The
lower bound of Lemma 5.1 by Anthony and Bartlett (1999) now implies thatM requires a sample
larger than 1

2ε2
for ε < 1/4 and δ < 1/32.

Step 2: Consider some algorithm A and assume that this algorithm (ε/2, δ)-learns H with
respect to Q with samples of size m. Fix a sequence of m domain points (x1, . . . , xm). We now
consider the expected performance of the learner A averaged over all distributions in Q, given that
the domain points in the sample are SX = (x1, . . . , xm). Recall that every distribution in Q has
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uniform marginal over X , thus the different distributions are distinguished solely by their labeling
functions. Slightly abusing the notation, we denote this set of labeling functions also by Q.

Consider a test point x that is not one of the (x1, . . . , xm). Note that, for a fixed labeling of the
points in SX , among the labeling functions of distributions in Q agreeing with that labeling on SX ,
there are more functions that label x with the majority label on SX than functions that label x with
the minority label on SX . For a labeling function l ∈ Q, we let Sl denote the points in SX labeled
with l. This implies that

Ex∼PX El∼Q[1A(Sl)(x)6=l(x) | x /∈ SX ] ≥ Ex∼PX El∼Q[1M(Sl)(x)6=l(x) | x /∈ SX ],

where l is chosen uniformly at random from the set Q. As the expectation is commutative, we get

El∼QEx∼PX [1A(Sl)(x)6=l(x) | x /∈ SX ] ≥ El∼QEx∼PX [1M(Sl)(x)6=l(x) | x /∈ SX ].

As this is independent of the choice of SX , we further obtain

ESX∼PmEl∼QEx∼PX [1A(Sl)(x)6=l(x) | x /∈ SX ] ≥ ESX∼PmEl∼QEx∼PX [1M(Sl)(x)6=l(x) | x /∈ SX ].

This yields

El∼QESX∼PmEx∼PX [1A(Sl)(x)6=l(x) | x /∈ SX ] ≥ El∼QESX∼PmEx∼PX [1M(Sl)(x)6=l(x) | x /∈ SX ].

This implies that there exists a function l ∈ Q such that

ESX∼PmEx∼PX [1A(Sl)(x)6=l(x) | x /∈ SX ] ≥ ESX∼PmEx∼PX [1M(Sl)(x) 6=l(x) | x /∈ SX ].

That is, for this distribution with labeling function l, the expected error of A is larger than the ex-
pected error ofM (outside the sample). This completes the proof of the lemma.

Note that enlarging the class H1,0, can only yield a smaller approximation error in the setup of
the above proof. Thus, the lower bound in Lemma 3 also holds for any class H with H1,0 ⊆ H . For
learning over an infinite domain Lemma 3 now immediately yields:

Theorem 4 Let X be an infinite domain. Then for every class H that contains the two constant
functions, for every δ < 1/32, learning the classH with respect to the class of all distributions with
deterministic labeling functions has sample complexity mdet[H](ε, δ) ≥ 1

ε2
.

Remark 5 In fact, it is easy to see that the sample complexity lower bound of Theorem 4 applies to
any class that contains two functions h, h′ such that {x ∈ X : h(x) 6= h′(x)} is infinite.

We now show how to strengthen the lower bound above to take into account the VC-dimension
of the class. We will show that, for every d, there are classes with VC-dimension d with sample
complexity Ω

(
d/ε2

)
. In fact, the family of such classes is rather rich and includes some of the

most popular classes used in learning, like linear classifiers, neural networks, decision trees and
more. However, as we show below, there are also classes of arbitrarily large VC-dimension that
have faster learning rates. To state our lower bound we need the following variation on the notion
of shattering.
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Definition 6 LetX be any domain set,H a class of {0, 1} valued functions overX and letA1, . . . Ad
be subsets of X . We say that H set-shatters A1, . . . Ad if for every binary vector σ = (σ1, . . . σd) ∈
{0, 1}d there exists some hσ ∈ H such that for all i ≤ d and x ∈ X , if x ∈ Ai then hσ(x) = σi.

Theorem 7 Let X be any domain set and H a class of binary-valued functions over X . If H set-
shattersA1, . . . Ad for some infinite subsetsA1, . . . Ad ofX , then, for all δ < 1/32, the deterministic
sample complexity of H satisfies mdet[H](ε, δ) ≥ d

ε2
.

For the proof, we use the following notation: For a hypothesis class H over some domain set X
and a sample size m, let εdetH (m) denote the “inverse of the sample complexity”, that is,

εdetH (m) = inf
A

sup
P∈Qdet

X

ES∼Pm [ErrP (A(S)) − optP (H)]

Recall thatQdet
X denotes the family of all probability distributions overX×{0, 1}with deterministic

labeling function. Note that for the class H1,0 in Lemma 3 we have εdetH0,1
(m) = 1/

√
m, which is a

convex function (that is, the restriction to N of a convex function over R).
Proof [of Theorem 7] For a distribution P overX we let Pi denote its restriction toAi. For a sample
S we let Si = S ∩ Ai and ni = |Si|. Further, we let NS denote the vector (n1, . . . , nd). For any
given m, we let Nm denote the set of all possible vectors NS for samples of size m.

Given any ε > 0, pick, for each i ≤ d a subset Bi ⊆ Ai of size 1/ε3, and let Qε be the family
of all probability distributions over X × {0, 1} whose marginal distribution PX is uniform over
∪di=1Ai and whose labeling function deterministically labels, for each i ≤ d a (1/2− ε)-fraction of
the points in Ai with 0 and (1/2 + ε)-fraction of the points in Ai with 1, or the other way around.

The argument now is similar to that in the proof of Lemma 3. LetMd be the learning algorithm
that, given a sample S = ((x1, y1) . . . (xm, ym)), predicts with a function that agrees with the labels
of the sample points on S and outside the sample chooses the function that agrees, for each sub-
domainAi, with the constant function onAi that has the majority label in Si. First we show that, for
every distribution P ∈ Qε, the algorithmMd needs to see Ω(1/ε2) many points to succeed at the
task. Then we argue that for any other learning algorithm A, there exits a distribution in Qε where
A performs worse thanMd. These two steps together imply the claim.

For the first step, let P be any distribution in Qε. Then

ES∼Pm [ErrP (Md(S))] =
∑

N∈Nm

(
Pr

S∼Pm
[NS = N ]

d∑
i=1

1

d
ErrPi(Md(S))

)

≥
∑

N∈Nm

(
Pr

S∼Pm
[NS = N ]

d∑
i=1

1

d
εdetH0,1

(ni)

)
≥

d∑
i=1

1

d
εdetH0,1

(m/d) = εdetH0,1
(m/d)

The last inequality follows from Jensen’s inequality, since ε(m) is convex by assumption and the
expected size of each of the ni is m/d. This implies that the sample complexity of Md on this task
is lower bounded by d/ε2. Repeating the argument of Step 2 in the proof of Lemma 3, one can show
that for any other learner A, there exists a distribution where the expected error (over all samples)
of A is larger than the expected error ofMd. This completes the proof.
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Next, we wish to argue that for most of the ”natural” learning classes,H , over Euclidean spaces,
like linear classifiers, neural network classifiers and decision trees over decision stumps, the assump-
tions of Theorem 7 hold for d = VCdim(H). It follows that, for all of these classes, learning with
respect to deterministic labels is (with respect to the sample complexity) as hard as learning them
in the fully agnostic setup, where labellings can be arbitrarily noisy.

Recall that for a subset A of a topological space, its interior, Int(A) is the maximal open set
contained in A, and its closure, A, is the minimal closed set that contains A. Let us call a set,
A, substantial if it is contained in the closure of its interior. Namely, A ⊆ Int(A). Intuitively
speaking, substantial sets have the full space dimension in every ball. Note that every open set is
substantial, since in such cases A = Int(A). It follows that for every continuous f : Rn → R, the
set pos(f) = {x ∈ Rn : f(x) > 0} is a substantial set, and if f is monotone in all variables, the
complement of pos(f) is also substantial. Furthermore, the union of any finite number of substantial
sets is substantial. Given these facts, it is not hard to see that every classifier in any of the common
classes mentioned above, partitions the input space into two substantial sets.

Lemma 8 Let H be a class of {0, 1}- valued functions over Rn for some n. Assume that h−1(1) is
a substantial set for every h ∈ H . Then if H shatters some finite set D ⊆ Rn then H set-shatters
some |D|-size collection of infinite sets.

Proof [Outline] First, a standard set-topological argument shows that that for every substantial set
A, every x ∈ A and every open ball B that contains x, there exists a non-empty open ball B′ ⊆ B
(possibly not containing x) such that B′ ⊆ A.

Given any finite shattered set D = {x1, . . . xd}, let H ′ = {h1, . . . h2d} be a subset of H that
shatters D. Now, find, for every i ≤ d an open ball Bi that contains xi and, for every j ≤ 2d such
that hj(xi) = 0, Bi is disjoint from h−1j (1). Finally, use the above property of substantial sets to
find non-empty open balls, B′i : i ≤ d, such that for very i ≤ d and every j ≤ 2d, if hj(xi) = 1
then B′i ⊆ h

−1
j (1) and if hj(xi) = 0 then B′i ∩h

−1
j (1) = ∅. Clearly, H set-shatters {B′i : i ≤ d}.

4.2. Classes with fast learning rates

We now show that there also exist classes of arbitrary VC-dimension that are easy to learn with
respect to distributions with deterministic labeling functions. For this, we consider the classes Hd

of all functions that label at most d domain points 1 and every other point 0. Note that the class Hd

has VC-dimension d.

Theorem 9 Let X be an infinite domain and d ∈ N. There exists a class of VC-dimension d,
namely Hd, with sample complexity satisfying mdet[Hd](ε, δ) ≤ d

ε

(
log
(
d
ε

)
+ log

(
1
δ

))
.

Proof We consider the algorithmA that on any input sample S = ((x1, y1), . . . , (xm, ym)) outputs
the classifier that labels every xi ∈ {x1, . . . xm} by the corresponding label yi from the sample S
(such a label is uniquely defined since we assume that the labeling function is deterministic), and
labels any point that is not in the domain of S by 0.

To analyze the sample complexity of this algorithm, we first show that (with high probability)
S hits every heavy domain point, that is points whose weight (with respect to the marginal distri-
bution) is at least ε

d . Since there are at most d/ε such domain points, a sample of size larger than

8



d
ε

(
log
(
d
ε

)
+ log

(
1
δ

))
guarantees that with probability greater than (1 − δ) the sample S will hit

every such domain point. Now, since the best hypothesis on the class labels at most d points with 1,
the error ofA(S) is at most optP (H) + d · εd = optP (H) + ε, whenever S hits all the heavy points.
This implies the claim.

Note that the algorithm A, described in the proof, is not an ERM algorithm – whenever the training
sample S contains more than d points labeled 1, A(S) is not a member of Hd.

4.3. Characterization of learning rates

We now provide a characterization of the family of all classes that have fast learning rates. Namely
the classes for which there exists a learning algorithm that learns the class from Õ (1/ε) sample
sizes. The characterization turns out to depend on the following simple combinatorial parameter.

Definition 10 We define the diameter of a class H as D(H) = suph,h′∈H |{x : h(x) 6= h′(x)}|.

Claim 11 (Relationship of diameter and VC-dimension) For every classH , VCdim(H) ≤ D(H).
Further, there exist classes with VCdim(H) = 1 and D(H) =∞.

Proof If H shatters a set A, then there exist functions, h0, h1 ∈ H such that for all x ∈ A,
h0(x) = 0 6= h1(x). It follows that D(H) ≥ |A|. For the second claim, consider the class of all
initial segments over the unit interval [0, 1]. Its VC-dimension is 1 and its diameter is infinite.

Theorem 12 (Characterizing the deterministic learning rates) The deterministic sample com-
plexity of a class is determined by its diameter. Namely, for any class H of binary valued functions:
1.) If D(H) is finite then the deterministic sample complexity of a class H is Õ(1/ε). Furthermore,
if D(H) = k <∞ then for all (ε, δ), we have mdet

H (ε, δ) ≤ k
ε

(
log
(
k
ε

)
+ log

(
1
δ

))
.

2.) If D(H) is infinite then the deterministic sample complexity of H is Ω
(
1/ε2

)
.

Proof In the first case, we can repeat the argument we had for the class of at-most-d-ones. For the
second case, if the diameter is infinite, then for every n, H contains a pair of functions that disagree
on at least n many points. Learning H is therefore at least as hard as learning the class H1,0 of the
two constant functions over an n-size domain. We have shown in Lemma 3 that for every ε there
exists some n such that such learning requires Ω

(
1/ε2

)
for deterministic labellings.

5. The sample complexity of ERM algorithms.

As mentioned above, one of the fundamental features of both the PAC model and the agnostic-PAC
model is that the sample complexity of learning by any ERM learner is, up to constant factors, as
good as that of any possible learner. Surprisingly, this feature is no longer true when one restricts
the data-generating distributions to those with deterministic labellings. As shown in Theorem 9, the
algorithmA there requires only d

ε log
(
d
ε

)
examples to reach accuracy ε over any label-deterministic

distribution. Our next result shows that any ERM algorithm for the same class Hd requires at least
d/ε2 examples to achieve accuracy ε with probability greater than 1−1/32 with respect to the same
family of all label-deterministic distributions. Namely, in the case of deterministic distributions,

9
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there exists a class for which any ERM learner is sub-optimal in terms of its sample complexity.
We first present an example of such a class, and then we provide a general characterization of the
classes for which ERM enjoys fast convergence rates. As a corollary, we also get a characterization
of the family of classes for which ERM is not optimal (from the sample complexity perspective). f
minimal empirical error from Hd) has sample complexity strictly worse than the the algorithm A
from the proof of Theorem 9. We denote an ERM algorithm of some class H by ERM(H).

Theorem 13 Let X be some infinite domain. Then, for any δ < 1/32, the sample complexity of
any proper learnerA forHd, in particular any ERM(Hd) algorithm, with respect to the class of all
distributions with deterministic labeling functions is lower bounded by mdet[A, Hd](ε, δ) ≥ d/ε2.

Proof [Idea] For d = 1 consider a domain of two points x1 and x2 and the two distributions that
label both of these points with 1 and give weight 1/2− ε to one of the points and weight 1/2 + ε to
the other. Then, learning H1 with respect to this set of distributions corresponds to estimating the
bias of a coin. Thus Lemma 5.1 of Anthony and Bartlett (1999) implies that the sample complexity
of such an estimation task is larger than 1/ε2.

For general d, we consider a domain D ⊆ X of 2d points. We divide them into pairs {(xi, x′i) |
i ≤ d}. Let QD be the family of all distributions that label all of these points 1 and for every pair
its marginal gives weight 1

d(1/2 + 2ε) to one of these points and weight 1
d(1/2 − 2ε) to the other.

This yields a lower bound of d/ε2. The full proof has been moved to the Appendix A.

5.1. Characterizing the sample complexity of ERM algorithms

The sample complexity of any ERM algorithm is lower bounded by that of learning H in the known
label, KLCL, model. In this model, the true labeling function is given to the learner, together with a
sample, and the task is to find the best hypothesis in a class H . Ben-David and Ben-David (2011),
establish a lower bound for the KLCL sample complexity. To employ that, we need the following:

Definition 14 Given a class H of binary-valued functions over some domain set X , let AH =
{x ∈ X : ∃h, h′ ∈ H such that h(x) 6= h′(x)}. We call AH the effective domain of the class H .

We classify classes of binary functions H over a domain set X into three mutually exclusive
types, based on their behavior on AH :

Definition 15 1.) We say that H is simple if H shatters AH . 2.) We say that H is pseudo-simple
if AH is infinite and H does not shatter AH , but shatters every finite subset of AH . 3.) We say that
H is non-simple if there exists some finite subset of AH that is not shattered by H .

It is straightforward to check that each class of functions H is of exactly one of the above three
types. In addition, if H has finite VC dimension, then H can not be pseudo-simple. We employ the
following characterization of the KLCL sample complexity of a given class:

Theorem 16 (The KLCL Theorem, Ben-David and Ben-David (2011)) For any class H:
1.) If H is simple then the KLCL sample complexity of H is zero.
2.) IfH is pseudo-simple andX is countable, then the KLCL sample complexity ofH is Θ

(
1
ε log 1

δ

)
.

3.) If H is non-simple, then the KLCL sample complexity of H is Ω
(
1
k

1
ε2

log 1
δ

)
, assuming ε < 1

k+1 ,
where k is the largest integer such that all subsets of AH of size k are shattered by H .

10



Corollary 17 (Characterization of the deterministic sample complexity of ERM) For everyH:
1.) If AH is finite and H shatters it, then ERM learns H with respect to deterministic labellings
from Õ(1/ε) samples. More precisely, there exists a constant, C, such that for all (ε, δ):

mdet
ERM(H)(ε, δ) ≤ C

|AH | log(|AH |/ε) + log(1/δ)

ε
.

2.)Otherwise, (if AH is infinite, or it is not shattered by H), then proper learning (hence ERM)
requires Ω(1/ε2) samples. More precisely, for some constant C ′ (that may depend on H):

mdet
ERM(H)(ε, δ) ≥ C

′
(

1

ε2
log

1

δ

)
.

Proof In the first case, ERM will have error at most ε as soon as the training sample hits every
member of AH that has weight at least ε/d. The sample size bound in part 1 of the corollary
guarantees that that will be the case with probability at least 1− δ.

For the second case of the corollary, note that either there is a finite subset of AH that H does
not shatter, in which case H is non-simple and part 3 of Theorem 16 holds, or H has infinite VC
dimension, in which case its diameter D(H) is also infinity, and part 2 of Theorem 12 applies.

Corollary 18 (Characterization of the optimality of ERM under deterministic labels) A class
H can be learned from Õ (1/ε) examples, while any ERM algorithm for that class requires Ω

(
1/ε2

)
size samples, if and only if either AH is finite but not shattered by H or AH is infinite while D(H)
is finite.

6. Using unlabeled data

In this section, we show that in all the cases, where learning with ERM is not optimal, unlabeled data
can make up for the gap between the sample complexity of learning and the sample complexity of
learning with ERM. We propose a weighted version of ERM, where sample points receive weights
according to their frequency in an unlabeled sample. We show that this weighted ERM achieves
labeled sample complexity as low as the sample complexity of general learning in these cases. Thus
proper learning with optimal labeled sample complexity is possible provided that the learner also
has access to a (slightly larger) unlabeled sample.

Definition 19 We say that a function A : (
⋃∞
m=0(X × {0, 1})m)

⋃
(
⋃∞
m=0Xm) → H is an SSL-

ERM learner for H if, for every labeled sample S and unlabeled sample U ,

A(S,U) ∈ argminh∈H
∑

(x,y)∈S

SU(x)|h(x)− y|,

where we let SU(x) denote the weight of x in the the union S∪U , that is, the number of occurrences
of x in S ∪ U divided by |S|+ |U |.

Recall that AH denotes the effective domain of the class H (Definition 14) and that D(H)
denotes its diameter (Definition 10). Note that, whenever the effective domain AH of some class
H is finite, the diameter D(H) is finite as well. Thus, the theorem below covers all cases, where
learning with ERM is not optimal from a sample complexity point of view (compare Corollary 18).
The proof has been moved to the Appendix B for space reasons.
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Theorem 20 Let H be such that D(H) is finite, and let A be any SSL-ERM learner for H . Then,
for some constant C, for any deterministic data generating distribution P over X × {0, 1}, if
n ≥ C

(
1+log(1/δ)

ε log
(
1
ε

))
and m ≥ C 1

ε2

(
ln
(
1
ε2

)
+ ln

(
1
δ

))
then with probability at least 1− δ

over a labeled sample S ∼ Pn and an unlabeled sample U ∼ PmX , we have ErrP (A(S,U) ≤
optP (H) + ε.

7. Discussion of sample complexity gaps under data niceness conditions

In this work, the sample complexity rates we have been considering were all distribution indepen-
dent - they refer to learning with respect to any data distribution (as long as its labeling rule is
deterministic). An interesting follow-up direction is to limit the set of possible data distributions,
or parameterize it according to some ”data tameness” parameter, and analyze how such restrictions
affect the learning rates.

Obviously, noise controlling conditions, like that of Mammen and Tsybakov (1999), are vacuous
in the case of deterministic labels that we focus on. However, one may consider different reasonable
data ”niceness” parameters. Probabilistic Lipschitzness (PL) is a measure of the coherence between
a data distribution’s marginal and its labeling rule. It quantifies the extent to which similar instances
tend to have similar labels. Such a coherence is implicit in many machine learning algorithmic
paradigms. Indeed, assuming PL the convergence rates of a Nearest Neighbor algorithms provably
improve (see Urner and Ben-David (2013) for an overview). It is shown there, that, under deter-

ministic labeling rules, 2
ε δ

(
21/n

√
d

ε1/n

)d
= O

((
1
ε

) d+n
n

)
samples suffice for 1-Nearest Neighbor to

have error at most ε, where n is a PL-parameter that quantifies the niceness of the distribution, and
d the euclidean dimension. These bounds also imply a distribution depended learning rates for un-
restricted (not necessarily proper) learning of hypothesis classes. For sufficiently large n (that is,
for sufficiently nice data), unrestricted learning of any class has sample complexity o(1/ε2).

However, it is easy to see that these optimistic rates, do not hold for proper learning of a hy-
pothesis class (a Nearest Neighbor predictor will not likely be a member of the class). The proofs
of Ω(1/ε2) lower bounds for proper learning, even under deterministic labels, consider distributions
supported on very few discrete points. Any labeling on those points satisfies a Lipschitz condi-
tion (and thereby the above PL condition for arbitrarily large n). Thus, this setting of distribution
depended learning, also exhibits a gap between the sample complexity (as a function of 1/ε) of unre-
stricted learning and that of proper learning (and in particular ERM). Interestingly, this gap between
the sample complexity of learning and the sample complexity of ERM learning under deterministic
labels and Probabilistic Lipschitzness, can also be overcome by unlabeled data. Urner et al. (2011)
present an SSL algorithm for proper learning in this exact setting that achieves optimal rates. On
the downside, while having favorable dependence on (1/ε) both the Nearest Neighbor non-proper
learner, and the SSL proper learning paradigm, exhibit a bad dependence on the dimension of the
space d. It would be interesting to investigate whether learning rates that are efficient both in terms
of the 1/ε and d are possible.
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Appendix A. Proof of Theorem 13

Proof For general d, we consider a domain D ⊆ X of 2d points. We divide them into pairs
{pi = (xi, x

′
i) | i ≤ d}. Let QD be the family of all distributions that label all of these points 1 and

for every pair its marginal gives weight 1
d(1/2 + 2ε) to one of these points and weight 1

d(1/2− 2ε)
to the other.

We now first define and analyze a slightly different task, that we call the learning d pairs prob-
lem. We then first present a Ω(d/ε2) lower bound for this problem and then proceed to to reducing
this problem to properly learning Hd. This reduction then implies the desired lower bound of
Ω(d/ε2) for properly learning Hd, and in particular for any ERM(Hd) algorithm.

Learning d pairs We define the problem of learning d pairs over the domain described above
as learning the smaller class Hp

d , where Hp
d contains all the functions that label exactly one point

of every pair with 1. That is, we consider learning Hd with the additional requirement that the
output hypothesis contains exactly one point from each pair pi = (xi, x

′
i) (here we identify a binary

function with the subset that the binary function labels with 1).
Note that optP (Hp

d ) = 1/2 − 2ε. Thus, in order to learn with accuracy ε, an algorithm has to
output a hypothesis of error smaller than 1/2 − ε. This implies that the output hypothesis needs to
choose the heavier point from at least 3d/4 of the pairs.

Note that detecting the heavier point from any pair pi corresponds to determining the bias of
a coin with bias 2ε. Thus, the lower bound of Lemma 5.1 in Anthony and Bartlett (1999) implies
that a learning algorithm needs to see at least 3d/4(2ε)2 = 3d/16ε2 random examples, in order to
estimate the bias (determining the heavier point) of at least 3d/4 of the pairs correctly.

Reduction to properly learning Hd Note that optP (Hd) = 1/2 − 2ε. A hypothesis in Hd can
choose both or neither or one point from a pair pi. For a distribution P and a hypothesis h ∈ Hd, we
let good(P, h) the number of good pairs where h chooses the lighter point, bad(P, h) the number
of bad pairs, where h chooses the heavier point, and even(P, h) the number of even pairs, where h
chooses either both or none of the points in the pair.

Claim 21 For a distribution P ∈ QD and an h ∈ Hd, we have Err(h) ≤ 1/2 − 3/2ε =
optP (Hd) + ε/2, if and only if

good(P, h)− bad(P, h) ≥ 3d/4.

It is easy to see that the reduction from properly ε-learning Hp
d to properly ε/2-learning Hd

follows from this claim. Given a successful proper learner for Hd, its output hd can be turned into a
hypothesis hpd from Hp

d by choosing a random point in any even pair of hd and otherwise agreeing
with hd. The claim implies that if Err(h) ≤ 1/2 − 3/2ε, then hpd will contain the lighter point
of at least 3d/4 of the pairs. Thus, independently of what hpd chooses on the other pairs, we have
ErrP (hpd) ≤ 1/2− ε.
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Proof [Proof of Claim 21] For a hypothesis h ∈ Hd, we let Errpi(h) denote the error of h on the
pair pi. This is, Errpi(h) = 1/2− ε if pi is a good pair for h, Errpi(h) = 1/2 + ε if pi is a bad pair
for h, and Errpi(h) = 0 or Errpi(h) = 1 if pi is an even pair for h.

Note that for every h ∈ Hd, there are equally many even pairs where h chooses both points as
there are even pairs where h chooses none of the points. Thus, we have Errpi(h) = 1/2 on average
over all even pairs. The total error of h can be decomposed as follows:

ErrP (h) =
1

d

d∑
i=1

Errpi(h)

=
1

d
[1/2even(P, h) + (1/2 + ε)bad(P, h) + (1/2− ε)good(P, h)]

=
1

2
+

2ε

d
bad(P, h)− 2ε

d
good(P, h)

It is easy to verify that this is larger than 1/2− 3/2ε if and only if good(P, h)−bad(P, h) ≥ 3d/4.
This completes the proof of the claim.

Appendix B. Proof of Theorem 20

Proof Let d = D(H) denote the diameter of the class H . We let SX denote the projection of S on
X . With the sample sizes indicated above, the sample SX is an ε/3d-net and the union of samples
S ∪ U an ε/3d-approximation for the set of singletons {{x} : x ∈ X} with respect to P with
probability at least 1− δ (see Haussler and Welzl (1986)). From here on, we assume that this is the
case. That is, for every x ∈ X with PX (x) ≥ ε/3d, we have (x, l(x)) ∈ S and for all x ∈ X we
have |SU(x)− PX (x)| ≤ ε/3d.

Let h∗ be a hypothesis of minimal error inH and let hSU = A(S,U). For two function h and h′

in H let h∆h′ = {x ∈ X : h(x) 6= h′(x)}. Note that |h∗∆hSU | ≤ d since hSU = A(S,U) ∈ H .
Now we have

ErrP (hSU )− ErrP (h∗)

= Pr
x∼PX

[x ∈ (h∗∆hSU ) ∧ hSU 6= l(x)] − Pr
x∼PX

[x ∈ (h∗∆hSU ) ∧ h∗ 6= l(x)]

= PX ((h∗∆hSU ) ∩ (hSU∆l)) − PX ((h∗∆hSU ) ∩ (h∗∆l))

= PX (SX ∩ (h∗∆hSU ) ∩ (hSU∆l)) − PX (SX ∩ (h∗∆hSU ) ∩ (h∗∆l))

+ PX ((X \ SX ) ∩ (h∗∆hSU ) ∩ (hSU∆l)) − PX ((X \ SX ) ∩ (h∗∆hSU ) ∩ (h∗∆l))

The contribution of the second part of the above sum can be bounded by ε/3 since the set h∗∆hSU
contains at most d points and each point in X \ SX has weight at most ε/3d. We now bound the fist
part of the sum. By definition of A, we have

SU((hSU∆l) ∩ SX ) ≤ SU((h∗∆l) ∩ SX )
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and this implies

SU((hSU∆l) ∩ SX ∩ (h∗∆hSU )) ≤ SU((h∗∆l) ∩ SX ∩ (h∗∆hSU ))

From this we get

SU((hSU∆l) ∩ SX ∩ (h∗∆hSU ))− SU((h∗∆l) ∩ SX ∩ (h∗∆hSU )) ≤ 0 (1)

Now, since |(h∗∆hSU ))| ≤ d and since we have SU(x) − PX (x) ≤ ε/3d for all x ∈ X , we
have

|SU((hSU∆l) ∩ SX ∩ (h∗∆hSU ))− PX ((hSU∆l) ∩ SX ∩ (h∗∆hSU ))| ≤ ε/3

and
|SU((h∗∆l) ∩ SX ∩ (h∗∆hSU ))− PX ((h∗∆l) ∩ SX ∩ (h∗∆hSU ))| ≤ ε/3.

This implies for the fist part of the sum that

PX (SX ∩ (h∗∆hSU ) ∩ (hSU∆l)) − PX (SX ∩ (h∗∆hSU ) ∩ (h∗∆l))

≤ SU(SX ∩ (h∗∆hSU ) ∩ (hSU∆l)) + ε/3 − SU(SX ∩ (h∗∆hSU ) ∩ (h∗∆l)) + ε/3

≤ 2ε/3,

where the last inequality follows from (1). This completes the proof.
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