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1. Introduction

In many learning problems, we attempt to infer global structure in the interest of making local pre-
dictions. For example, we might try to infer the skills of the competitors in a tournament in order
to predict who will win a match, or we might try to predict characteristics of users and films in
order to predict which users will like which films. In even relatively simple settings of this type,
it is typically NP-hard to find the latent data which best explain some observations. But do these
complexity-theoretic obstructions actually prevent us from making good predictions? Because each
prediction depends on only a small number of variables, it might be possible to make good predic-
tions without actually finding a good global assignment. This may seem to be a purely technical
distinction, but recent work has shown that several local prediction problems actually are easy even
though the corresponding global inference problem is hard. The question we pose is: how general
is this phenomenon?

2. Problem statement

Fix a universe of items I/ and a space of possible labels £. Let n = |U/| and k = |L|, and let r be
an arbitrary positive integer. Let U" be the collection of r-element subsets of U{. A local prediction
problem is an online learning problem where in each round ¢t = 0,1, . . .:

e Nature presents a set X! = {xﬁ, ceey xﬁ} eu.

e The learner chooses a labeling, a’ : Xt — L.

e Nature reveals a payoff function p' : (X* — L£) — [—1,1], and the learner receives the
payoff p (at).

As usual, we assume the choices of nature are adversarial, and allow the learner to submit a
probability distribution over labelings (the objective is then to maximize their expected payoff). For
any fixed global labeling ¢ : &/ — L we consider the “benchmark” strategy which always selects
a’ = /| ¢, i.e. the restriction of £ to X*. We aim to find an efficient strategy A which minimizes
the expected regret against this class of benchmarks:

T
B ¢ _ Lot
Regret (A) = max, ;p (€] xt) ;p (a")

where a' is the decision of A in round ¢. This goal may be achievable despite the fact that finding
the maximizing ¢ is generally NP-hard.
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It is relatively easy to see that for any r the best possible regret bound is O <\ /nlog(k:)T).
This regret is achieved by an intractable algorithm which performs multiplicative updates over the
space of all k" possible maps ¢ : &/ — L. Efficient strategies with regret O (\/ nT ) are known

in the case k = O (1) and r = 2 [Christiano (2014)], and near-optimal strategies are known in a
few other special cases such as the online gambling problem [Hazan et al. (2012)]. But for general
online local learning the best known efficient algorithms have regret that depends polynomially on
k rather than logarithmically.

An optimal algorithm for online local learning in the case » = 2 would yield an algorithm

with regret O < nlsl log (k) T) for general r. Obtaining substantially better regret would yield

improved algorithms for planted constraint satisfaction, which may be impossible or require over-
coming fundamental algorithmic obstructions [Feldman et al. (2013)].
This leads to our open problems:

o Is there an efficient algorithm that achieves optimal regret O ( n log(k:)T) for online local
learning with r = 2?

e Is there an efficient algorithm that achieves regret o (\/ n%T) for online local learning for
any r and k?

For each of these two questions, we offer a $500 cash reward for an affirmative answer.

3. Existing work and semidefinite programming

The online gambling problem' was proposed in Abernethy (2010) and Kleinberg et al. (2010) and
is a special case of the general online local learning problem. The first non-trivial guarantee for
this problem was obtained in Hazan et al. (2012), which achieved nearly optimal worst-case regret

@) ( nlog (n)3 T ) . The same algorithm can be applied to general online local learning with r = 2

and £k = O (1), to achieve regret O ( nlog(n)T ) Christiano (2014) proposed the online local
learning model, and used similar techniques to achieve optimal regret O (\/ nT ) for k = O(1).

All of these algorithms can be applied to the case of general r by assigning each tuple in U/ (5] a
label in £/5] , resulting in a regret of O <\/ nlzl T) fork = O (1).

These algorithms are all based on follow the regularized leader over the space of positive
semidefinite matrices. Semidefinite programming (SDP) relaxations have the desirable character-
istics that they are tight enough that there aren’t too many possible solutions, so that there is no
information-theoretic obstruction to learning, but at the same time they admit efficient optimization.
Similar characteristics make SDP relaxations suitable for approximation algorithms; as a result,
SDP’s play a central role in the best known algorithms for approximate constraint satisfaction. In
some sense recent algorithms for online local learning can be seen as “cutting out the middle man,”
and using SDP solutions directly to make predictions rather than first trying to obtain a global la-
beling and then using that labeling to make predictions.

1. Defined and discussed in the appendix.
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It is possible that the same SDP relaxations, together with standard approaches to online linear
optimization, could be used to achieve optimal regret bounds for » = 2 and general L. In the case of
r > 2, however, we show in the appendix that online learning over known SDP hierarchies cannot

achieve regret o (\/ n%T>. Moreover, in the appendix we also show that an algorithm with regret

@) <\/ cT) for online local learning is able to solve planted constraint satisfaction problems with ¢
clauses. Together with our current understanding of planted constraint satisfaction [Feldman et al.
(2013)], this suggests that there might be algorithmic obstructions to obtaining regret o (\/ n%T).
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4. Appendix
4.1. Online gambling

In the online gambling problem, in each round a learner is given a pair of teams x;, z; and asked
to predict which team will win in an upcoming match; after making their prediction, they learn the
result of the match. The goal of the learner is to predict as many matches correctly as possible.
The learner’s regret is measured against the space of strategies which choose a fixed ranking of the
teams and always predict that the higher-ranked team will win.
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This problem can be fit in the online local learning setting, by taking I/ to be the space of teams
and £ = {1,2,...,|U|}. The output of the online local learning algorithm can be used to make
predictions about which team will win in the obvious way: if the local predictor outputs ¢ with
¢ (z;) > €(x;), we predict that team z; will beat team ;. If team z; actually beats team x; in
round ¢, then the payoff p’ (¢) is defined to be 1 if £ (z;) > ¢ (x;) and 0 otherwise.

For any ranking R of the teams, we can construct an ¢ : i/ — L such that x; > x; if and only
if £ (x;) > £ (x;). This shows that a solution to the local online learning problem with k£ = n leads
to a solution to the online gambling problem with the same regret.

4.2. Lower bounds for the Lasserre hierarchy

We will show that the Lasserre hierarchy of relaxations is not sufficient for a successful attack on
the online local learning problem with r > 2. Because the Lasserre hierarchy is the strongest of
the usual SDP or linear programming hierarchies [Laurent (2003)], this provides evidence that this
problem is out of reach for existing techniques.

Fix an integer R corresponding to the number of rounds of the Lasserre hierarchy which we
will use. We take R = O (1) because the complexity of an R-round Lasserre relaxation is n.
Let Ag be the space of all “pseudodistributions” on &/ — L, i.e. all maps which associate each
Xt € U" with a distribution over the space of labelings X* — £, and which are consistent with the

constraints of R rounds of the Lasserre hierarchy.

Theorem 1 In the local prediction setting, no strategy can achieve a regret of O (\/ nz=¢T )
against Ag for any constants € > 0, R € N.

Proof
Let £ = {+1,—1},fix 0 < 6 < ¢, and fix » € N. Consider the following behavior for nature.
In each round, a random X' C U is chosen with ‘X t‘ = r, arandom sign b € {41, —1} is chosen,
and the payoff is defined as
P = b yexil (x).

Since b has expectation 0, it is easy to see that every prediction strategy has an expected payoff
of 0.
We will show that for T = n2 79, the Lasserre relaxation to the constraint satisfaction problem

Vi<T:1=0bxIl,cxtl(x)

is satisfiable with high probability. This implies that there is a strategy in .Ag which achieves a
payoff of 1 in every round, and consequently that the expected regret of any fixed prediction strategy
is at least V/n2 ~°T for this value of T'.

We appeal directly to Lemma 13 and Theorem 11 of Schoenebeck (2008). Theorem 11 implies
that for T = nz~? and for sufficiently large n, with overwhelming probability constant width
resolution cannot derive a contradiction from the given constraints. Lemma 13 then implies that a

constant number of rounds of the Lasserre hierarchy cannot derive a contradiction.
|
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In fact, an identical argument applies for R = n® rounds of the Lasserre hierarchy for an
appropriate o > 0 (which depends on ¢ but not on 7). It is interesting to observe that the % in the
exponent of our lower bound, nz, is due to a fact about resolution proofs unrelated to the positive
semidefiniteness condition. By contrast, the % in the exponent of our upper bound, nls] , is due to
characteristics of our algorithm unrelated to resolution.

4.3. Planted constraint satisfaction

In a (noisy) planted r-XOR-SAT instance, the learner is given a number of r-variable XOR clauses
over the variables x1, x2, . . ., z,. Their task is to distinguish two cases, for a fixed p > %:

1. The distribution of clauses is uniform.

2. There is a “planted” solution 1, x2, . . . , T, and each clause is satisfied by that solution with
probability p.

Such an instance can be translated into an online local learning problem in a straightforward
way (as in Section 4.2): for each clause, the learner is told the variables that participate in that
clause and guesses an assignment to them: the payoff for a satisfying assignment is 1 and the payoff
for an unsatisfying assignment is —1.

It is easy to see that in case (1), no algorithm can achieve a positive expected payoff. In case (2),
however, there is a fixed labeling (given by the planted solution) that achieves a payoff of (2p—1)T.

Now suppose that we have a learning algorithm with a regret of O <\/ cr ) Such an algorithm

has a per-round regret of O ( %) So for some T' = O (c¢), the per-round regret is less than
(2p—1). But this implies that in case (2), our learning algorithm receives a positive expected payoff
each round, and consequently can be used to distinguish case (1) from case (2).

The best known algorithms for planted constraint satisfaction require n2 clauses in order to dis-
tinguish cases (1) and (2). Moreover, Feldman et al. (2013) shows that a natural class of “statistical”

algorithms cannot distinguish these cases? after examining substantially fewer than n? clauses and
exhibits a statistical algorithm using O (n%> clauses. The algorithms produced by applying the
reduction in this section to typical online learning algorithms are not statistical in this sense, and
converting these algorithms into statistical algorithms may introduce a polynomial blowup in the
number of clauses required. Nevertheless, the apparent difficulty of finding better algorithms for
planted constraint satisfaction suggests that there may be fundamental algorithmic obstructions to

attaining regret o <\/ n%T).

2. In fact they show that a statistical algorithm cannot output a matrix that is substantially correlated with the real clause
distribution, but it is easy to see that a successful online learning algorithm must do just that.
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