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Abstract
Information spreads across social and technological networks, but often the network structures are
hidden and we only observe the traces left by the diffusion processes, called cascades. It is known
that, under a popular continuous-time diffusion model, as long as the model parameters satisfy
a natural incoherence condition, it is possible to recover the correct network structure with high
probability if we observe O(d3 logN) cascades, where d is the maximum number of parents of a
node and N is the total number of nodes. However, the incoherence condition depends, in a non-
trivial way, on the source (node) distribution of the cascades, which is typically unknown. Our open
problem is whether it is possible to design an active algorithm which samples the source locations
in a sequential manner and achieves the same or even better sample complexity, e.g., o(d3i logN),
than previous work.

1. Introduction

Diffusion of information can be naturally modeled as a stochastic process that occur over the edges
of an underlying network (Rogers, 1995). In this context, we often observe the temporal traces that
the diffusion generates, called cascades, but the edges of the network that gave rise to the diffusion
remain unobservable (Adar and Adamic, 2005). Given a set of cascades and a diffusion model, the
network inference problem consists of inferring the edges (and model parameters) of the unobserved
underlying network (Gomez-Rodriguez et al., 2010).

1.1. Diffusion Model

A sequence of recent work has argued that modeling information diffusion using continuous-time
diffusion networks can provide significantly more accurate models than discrete-time models (Go-
mez Rodriguez et al., 2011; Du et al., 2012, 2013b,a). For our open problem, we build on this
line of work, which models diffusion as follows: Given a directed contact network, G = (V, E),
with N nodes, each diffusion process begins with an infected source node, s, initially adopting
certain contagion at time zero, which we draw from a source distribution P(s). The contagion is
transmitted from the source along her out-going edges to her direct neighbors. Each transmission
through an edge entails a random transmission time, τ , drawn from an associated transmission
function f(τ ;αji), a density over R+. A concrete and common example of transmission function
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is f(τ ;αji) = αji exp(−αjiτ). Transmission times are sampled independently, possibly from
different distributions, across edges. Then, the infected neighbors transmit the contagion to their
respective neighbors, and the process continues. Here, an infected node remains infected for the
entire diffusion process. Thus, if a node i is infected by multiple neighbors, only the neighbor that
first infects node i will be the true parent.

Observations are recorded as a set Cn of cascades {t1, . . . , tn}. Each cascade tc is an N -
dimensional vector tc := (tc1, . . . , t

c
N ) recording when nodes are infected, tck ∈ [0, T c] ∪ {∞}.

Symbol∞ labels nodes that are not infected during the observation window [0, T c] – it does not im-
ply they are never infected. Under these settings, the likelihood of a cascade t is (Gomez Rodriguez
et al., 2011):

f(t;A) =
∏

tm>T

∏
ti≤T

S(T |ti;αim)︸ ︷︷ ︸
term I

×
∏

k:tk<ti

S(ti|tk;αki)
∑

j:tj<ti

H(ti|tj ;αji)︸ ︷︷ ︸
term II

, (1)

where A = {αji} denotes the collection of parameters, S(ti|tj ;αji) = 1 −
∫ ti−tj
0 f(τ ;αji) dτ is

the survival function and H(ti|tj ;αji) = f(ti − tj ;αji)/S(ti|tj ;αji) is the hazard function. Term
I accounts for the probability that uninfected nodes survive to all infected nodes in the cascade
up to T ; and term II accounts for the likelihood of the infected nodes. Then, assuming cascades
are sampled independently, the likelihood of a set of cascades is the product of the likelihoods of
individual cascades given by Eq. 1.

2. The Network Inference Problem

Consider an instance of the continuous-time diffusion model defined above with a contact network
G∗ = (V∗, E∗) and associated parameters A∗. Let Cn be a set of n cascades sampled from the
model, where the source s ∈ V∗ of each cascade is drawn from a source distribution P(s). Then,
the network inference problem consists of finding the directed edges and the associated parameters
using only the temporal information from the set of cascades Cn.

This problem has been cast as a `1-regularized maximum likelihood estimation problem (Danesh-
mand et al., 2014), which decouples into a set of independent smaller subproblems, one per node,
where we infer the incoming edges of each node and the parameters associated with these edges:

minimizeA `n(αi) + λn||αi||1
subject to αji ≥ 0, j = 1, . . . , N, i 6= j,

(2)

whereαi := {αji | j = 1, . . . , N, i 6= j} are the relevant variables, and `n(αi) = − 1
n

∑
c∈Cn gi(t

c;αi)
corresponds to the terms involving αi in the cascades log-likelihood log f(tc,A). Furthermore, di
denotes the number of true parents for node i.

Under some technical conditions, including an incoherence condition on the Hessian,Q∗, of the
population log-likelihood, E [`n(αi)] = E [log gi(t

c;αi)], which states that there exists ε ∈ (0, 1]
such that |||Q∗ScS (Q∗SS)

−1 |||∞ ≤ 1− ε, where |||A|||∞ = maxj
∑

k |Ajk| and S denote the subset
of indexes associated to node i’s true parents, the following result holds:

Theorem 1 (Daneshmand et al. (2014)) Consider an instance of the continuous-time diffusion
model with parameters α∗ji and associated edges E∗, and let Cn be a set of n cascades drawn
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from the model. Suppose that the regularization parameter λn is selected to satisfy

λn ≥ 8k3
2− ε
ε

√
logN

n
. (3)

Then, under some technical conditions, there exist positive constants L and K, independent of
(n,N, di), such that if

n > Ld3i logN, (4)

then the following properties hold with probability at least 1− 2 exp(−Kλ2nn):

1. For each node i ∈ V , the l1-regularized network inference problem defined in Eq. 2 has a
unique solution, and so uniquely specifies a set of incoming edges of node i.

2. For each node i ∈ V , the estimated set of incoming edges does not include any false edges
and include all true edges.

3. Active Source Sampling

The success of the network inference algorithm in equation (2) relies on the fulfillment of the above
mentioned incoherence condition on the Hessian,Q∗, of the population log-likelihood E[`n], where
the expectation here is taken over the distribution P(s) of the source nodes, and the random gene-
rative process of the diffusion model given a source node s. This condition captures the intuition
that, node i and any of its neighbors should get infected together in a cascade more often than node
i and any of its non-neighbors. Unfortunately, the incoherence condition depends, in a non-trivial
way, on the network structure, diffusion parameters, and the source distribution P(s) (Daneshmand
et al., 2014), which are all unknown during the network inference stage.

Previous work has typically assumed the network structure, diffusion parameters, observation
window and source distribution to be fixed, and source locations are sampled passively from the
latter. However, in practice, the source locations to sample from may be determined actively in a
sequential manner, potentially based on the information gathered from previous source locations.
Therefore, we propose the following open problem:

Open Problem: Suppose there exists an unknown P(s) where the incoherence conditions
hold for the diffusion model. Under what conditions, can we design an “active” algorithm
which samples the source location intelligently and achieves the sample complexity in Theo-
rem 1, or even better sample complexity, e.g., o(d3i logN)?
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