
JMLR: Workshop and Conference Proceedings vol 35:1–8, 2014

Open Problem: A (missing) boosting-type convergence result for
ADABOOST.MH with factorized multi-class classifiers

Balázs Kégl BALAZS.KEGL@GMAIL.COM

LAL/LRI, University of Paris-Sud, CNRS, 91898 Orsay, France

Abstract
In (Kégl, 2014), we recently showed empirically that ADABOOST.MH is one of the best multi-class
boosting algorithms when the classical one-against-all base classifiers, proposed in the seminal
paper of Schapire and Singer (1999), are replaced by factorized base classifiers containing a binary
classifier and a vote (or code) vector. In a slightly different setup, a similar factorization coupled
with an iterative optimization of the two factors also proved to be an excellent approach (Gao and
Koller, 2011). The main algorithmic advantage of our approach over the original setup of Schapire
and Singer (1999) is that trees can be built in a straightforward way by using the binary classifier
at inner nodes. In this open problem paper we take a step back to the basic setup of boosting
generic multi-class factorized (Hamming) classifiers (so no trees), and state the classical problem
of boosting-like convergence of the training error. Given a vote vector, training the classifier leads to
a standard weighted binary classification problem. The main difficulty of proving the convergence
is that, unlike in binary ADABOOST, the sum of the weights in this weighted binary classification
problem is less than one, which means that the lower bound on the edge, coming from the weak
learning condition, shrinks. To show the convergence, we need a (uniform) lower bound on the
sum of the weights in this derived binary classification problem.

Let the training data be D =
{

(x1,y1), . . . , (xn,yn)
}

, where xi ∈ Rd are observation vectors,
and yi ∈ {±1}K are label vectors. Sometimes we will use the notion of an n × d observation
matrix of X = (x1, . . . ,xn) and an n × K label matrix Y = (y1, . . . ,yn) instead of the set of
pairs D.1 In multi-class classification, the single label `(x) of the observation x comes from a finite
set. Without loss of generality, we will suppose that ` ∈ L = {1, . . . ,K}. The label vector y is
a one-hot representation of the correct class: the `(x)th element of y will be 1 and all the other
elements will be −1. To avoid confusion, from now on we will call y and ` the label and the label
index of x, respectively.

The goal of the ADABOOST.MH algorithm (Schapire and Singer 1999; Appendix B) is to return
a vector-valued discriminant function f (T) : Rd → RK with a small Hamming loss

R̂H(f ,W) =
1

n

n∑
i=1

K∑
`=1

wi,`I
{

sign
(
f`(xi)

)
6= yi,`

}
, (1)

where W =
[
wi,`
]

is an n×K weight matrix over data points and labels, usually defined as

w` =

{
1
2 if ` = `(x) (i.e., if y` = 1),

1
2(K−1) otherwise (i.e., if y` = −1).

(2)

1. We will use bold capitals X for matrices, bold small letters xi and x,.j for its row and column vectors, respectively,
and italic for its elements xi,j .

c© 2014 B. Kégl.

KÉGL

ADABOOST.MH directly minimizes a surrogate, the weighted multi-class exponential margin-
based error

R̂EXP

(
f (T),W

)
=

1

n

n∑
i=1

K∑
`=1

wi,` exp
(
−f (T)

` (xi)yi,`
)
. (3)

Since exp(−ρ) ≥ I {ρ < 0}, (3) upper bounds (1). ADABOOST.MH builds the final discriminant
function f (T)(x) =

∑T
t=1 h

(t)(x) as a sum of T base classifiers h(t) : Rd → RK returned by a
base learner algorithm BASE

(
X,Y,W(t)

)
in each iteration t.

Since

R̂EXP

(
f (T),W

)
=

T∏
t=1

Z
(
h(t),W(t)

)
,

where

Z
(
h,W(t)

)
=

n∑
i=1

K∑
`=1

w
(t)
i,` exp

(
−h`iyi,`

)
(4)

the goal of the base classifier is to maximize Z
(
h,W(t)

)
. Assuming factorized base classifiers

h(x) = αvϕ(x), (5)

where α ∈ R+ is a positive real valued base coefficient, v is an input-independent vote (or code)
vector of length K, and ϕ(x) is a label-independent binary (scalar) classifier, Kégl (2014) shows
that

Z(h,W) =
eα + e−α

2
− eα − e−α

2

K∑
`=1

v`
(
µ`+ − µ`−

)
, (6)

where

µ`− =

n∑
i=1

wi,`I {ϕ(xi) 6= yi,`} (7)

is the weighted per-class error rate and

µ`+ =
n∑
i=1

wi,`I {ϕ(xi) = yi,`} (8)

is the weighted per-class correct classification rate for each class ` = 1, . . . ,K. The quantity

γ` = v`
(
µ`+ − µ`−

)
=

n∑
i=1

wi,`v`ϕ(xi)yi,` (9)

is the classwise edge of h(x). The full multi-class edge of the classifier is then

γ = γ(v, ϕ,W) =

K∑
`=1

γ` =

K∑
`=1

v`
(
µ`+ − µ`−

)
=

n∑
i=1

ϕ(xi)

K∑
`=1

wi,`v`yi,`. (10)

With this notation, the classical (Freund and Schapire, 1997) binary coefficient α is recovered: it is
easy to see that (6) is minimized when

α =
1

2
log

1 + γ

1− γ
. (11)

2

CONVERGENCE OF ADABOOST.MH WITH FACTORIZED MULTI-CLASS CLASSIFIERS

With this optimal coefficient, similarly to the binary case, (6) becomes Z(h,W) =
√

1− γ2, so
Z(h,W) is minimized when γ is maximized. From (10) it then follows that Z(h,W) is minimized
if v` agrees with the sign of

(
µ`+ − µ`−

)
, that is,

v` =

{
1 if µ`+ > µ`−

−1 otherwise
(12)

for all classes ` = 1, . . . ,K.
As in the binary case, it can be shown that if γ > δ, the training error becomes zero exponentially

fast, more precisely, after

T ∗ =

⌈
2 log

(
2n(K − 1)

)
δ2

⌉
+ 1 (13)

iterations.2 The problem, and the subject of this open problem paper, is that γ > δ is not implied by
the weak learning condition on our single binary classifier ϕ. To show this, let us rewrite the edge
(10) as

γ =
n∑
i=1

ϕ(xi)(w
+
i − w

−
i) =

n∑
i=1

ϕ(xi)sign(w+
i − w

−
i)|w+

i − w
−
i |,

where
w+
i =

K∑
`=1

wi,`I {v`yi,` = +1},

and
w−i =

K∑
`=1

wi,`I {v`yi,` = −1}.

By assigning pseudo-labels y′i = sign(w+
i − w

−
i) and pseudo-weights w′i = |w+

i − w
−
i | to each

point (xi, yi), we can rewrite the multi-class edge (10) as a classical binary classification edge
γ =

∑n
i=1w

′
iϕ(xi)y

′
i. The trouble is that

w′Σ ,
n∑
i=1

w′i ≤ 1. (14)

The classical weak learning condition requires that there exists a constant δ′ > 0 for which, with
any weighting w summing to one

∑n
i=1wi = 1, there exists a ϕ with edge

γ ,
n∑
i=1

wiϕ(xi)yi ≥ δ′. (15)

Since w′Σ ≤ 1, this only implies δ = δ′w′Σ ≤ δ′ in (13). If w′Σ can be arbitrarily small, then the
convergence to zero training error can be arbitrarily slow. The open problem is to find a lower bound
on w′Σ which may depend on the number of classes K but is independent of the number of training
points n.

Acknowledgments

This work was supported by the ANR-2010-COSI-002 grant of the French National Research
Agency.

2. This bound can be tightened to
⌈

2 log
(
n
√
K−1

)
δ2

⌉
+ 1 (Schapire and Singer, 1999).

3

KÉGL

Appendix A. Remarks

Remark 1 The reason why the proof works out in the binary case K = 2 is that we have strict
equality in (14). Indeed, transforming the binary setup into multi-class with two label columns, we
always have yi,1 = −yi,2 and v1 = −v2, which means that either w+

i = 0 (when v = −yi) or
w−i = 0 (when v = yi) so we end up with w′i = wi,1 + wi,2 for all i = 1, . . . , n, and

∑n
i=1w

′
i =∑n

i=1(wi,1 + wi,2) = 1 in each iteration (by classical boosting-type induction argument).

Remark 2 The reason why we do not face this problem in Schapire and Singer (1999)’s original
ADABOOST.MH setup is that h(x) is not factorized (5) there, rather, it is assumed that K indepen-
dent one-against-all classifiers ϕ`(x), ` = 1, . . . ,K are trained separately on the binary problems
defined by the columns of Y and W. The classwise edges

γ` =

n∑
i=1

wi,`ϕ`(xi)yi,`

are not coupled by the label-independent single classifier ϕ(x) as in (9). From the weak learning
assumption (15) it follows that for each classwise edge we have γ` ≥ δ′

∑n
i=1wi,`, and so

γ =

K∑
`=1

γ` ≥ δ′
n∑
i=1

n∑
i=`

wi,` = δ′.

Remark 3 If it is assumed that v is fixed, than it seems plausible that we can construct a toy
example with w′Σ = 0. What makes the problem non-trivial is that the base learner optimizes the
edge γ(v, ϕ,W) (10) in ϕ and v simultaneously. In the case of decision stumps (Appendix C), a
global optimum can be found in Θ(ndK) time. If ϕ is learned by a generic binary classification
algorithm, a greedy but practically very efficient iterative optimization usually leads to an excellent
solution (Gao and Koller, 2011). So the question is whether there exists a setup (X, W, Y, and
function class) in which all of the 2K different vote vectors v = {±1}K lead to arbitrarily small (or
zero) w′Σ, or we can find a constant (independent of n) lower bound ω such that with at least one
vote vector v and classifier ϕ, w′Σ ≥ ω holds. This would then imply δ = δ′ω in (13).

Remark 4 It is easy to see that the edge γ(v, ϕ,W) can never be negative, since if it were, flipping
the sign of either v or ϕ would make it strictly positive. This means that in practice, the algorithm
does not get stuck: given even a random classifier ϕ, unless the edge is exactly zero for all vote
vectors v, we can find a vote vector for which the edge is strictly positive. The only question we
raise here is whether this edge can become arbitrarily small (even if the weak learning condition
(15) holds).

Appendix B. The pseudocode of the ADABOOST.MH algorithm with factorized base
classifiers

The following is the pseudocode of the ADABOOST.MH algorithm with factorized base classifiers
(5). X is the n× d observation matrix, Y is the n×K label matrix, W is the user-defined weight
matrix used in the definition of the weighted Hamming error (1) and the weighted exponential
margin-based error (3), BASE(·, ·, ·) is the base learner algorithm, and T is the number of iterations.

4

CONVERGENCE OF ADABOOST.MH WITH FACTORIZED MULTI-CLASS CLASSIFIERS

α(t) is the base coefficient, v(t) is the vote vector, ϕ(t)(·) is the scalar base (weak) classifier, h(t)(·)
is the vector-valued base classifier, and f (T)(·) is the final (strong) discriminant function.

ADABOOST.MH(X,Y,W,BASE(·, ·, ·), T)

1 W(1) ← 1
nW

2 for t← 1 to T

3
(
α(t),v(t), ϕ(t)(·)

)
← BASE

(
X,Y,W(t)

)
4 h(t)(·)← α(t)v(t)ϕ(t)(·)
5 for i← 1 to n for `← 1 to K

6 w
(t+1)
i,` ← w

(t)
i,`

e−h
(t)
` (xi)yi,`

n∑
i′=1

K∑
`′=1

w
(t)
i′,`′e

−h(t)
`′ (xi′)yi′,`′

︸ ︷︷ ︸
Z
(
h(t),W(t)

)
7 return f (T)(·) =

∑T
t=1 h

(t)(·)

5

KÉGL

Appendix C. Multi-class decision stumps

The simplest scalar base learner used in practice on numerical features is the decision stump, a
one-decision two-leaf decision tree of the form

ϕj,b(x) =

{
1 if x(j) ≥ b,
−1 otherwise,

where j is the index of the selected feature and b is the decision threshold. If the feature values(
x

(j)
1 , . . . , x

(j)
n

)
are pre-ordered before the first boosting iteration, a decision stump maximizing the

edge (10) (or minimizing the energy (5)3) can be found very efficiently in Θ(ndK) time.
The pseudocode of the algorithm is given in Figure 2. STUMPBASE first calculates the edge

vector γ(0) of the constant classifier h(0)(x) ≡ 1 which will serve as the initial edge vector for each
featurewise edge-maximizer. Then it loops over the features, calls BESTSTUMP to return the best
featurewise stump, and then selects the best of the best by minimizing the energy (5). BESTSTUMP

loops over all (sorted) feature values s1, . . . , sn−1. It considers all thresholds b halfway between
two non-identical feature values si 6= si+1. The main trick (and, at the same time, the bottleneck
of the algorithm) is the update of the classwise edges in lines 4-5: when the threshold moves from
b = si−1+si

2 to b = si+si+1

2 , the classwise edge γ` of 1ϕ(x) (that is, vϕ(x) with v = 1) can only
change by ±wi,`, depending on the sign yi,` (Figure 1). The total edge of vϕ(x) with optimal votes
(12) is then the sum of the absolute values of the classwise edges of 1ϕ(x) (line 7).

si-1 si si+1
si-1+si

2
si+si+1

2

xH jL

-1

1

j j,×HxH jLL

Figure 1: Updating the edge γ` in line 5 of BESTSTUMP. If yi,` = 1, then γ` decreases by 2wi,`,
and if yi = −1, then γ` increases by 2wi,`.

3. Note the distinction: for full binary v the two are equivalent, but for ternary or real valued v and/or real valued φ(x)
they are not. In Figure 2 we are maximizing the edge within each feature (line 7 in BESTSTUMP) but across features
we are minimizing the energy (line 7 in STUMPBASE). Updating the energy inside the inner loop (line 4) could not
be done in Θ(K) time.

6

CONVERGENCE OF ADABOOST.MH WITH FACTORIZED MULTI-CLASS CLASSIFIERS

STUMPBASE(X,Y,W)

1 for `← 1 to K . for all classes

2 γ
(0)
` ←

n∑
i=1

wi,`yi,` . classwise edges (9) of constant classifier

h(0)(x) ≡ 1

3 for j ← 1 to d . all (numerical) features

4 s← SORT
(
x

(j)
1 , . . . , x

(j)
n

)
. sort the jth column of X

5 (vj , bj , γj)← BESTSTUMP(s,Y,W, γ(0)) . best stump per feature

6 αj ←
1

2
log

1 + γj
1− γj

. base coefficient (11)

7 j∗ ← arg min
j

Z
(
αjvjϕj,bj ,W

)
. best stump across features

8 return
(
αj∗ ,vj∗ , ϕj∗,bj∗ (·)

)
BESTSTUMP(s,Y,W, γ(0))

1 γ∗ ← γ(0) . best edge vector

2 γ ← γ(0) . initial edge vector

3 for i← 1 to n− 1 . for all points in order s1 ≤ . . . ≤ sn−1

4 for `← 1 to K . for all classes

5 γ` ← γ`−2wi,`yi,` . update classwise edges of stump with v = 1

6 if si 6= si+1 then . no threshold if identical coordinates si = si+1

7 if
∑K

`=1 |γ`| >
∑K

`=1 |γ∗` | then . found better stump

8 γ∗ ← γ . update best edge vector

9 b∗ ← si+si+1

2 . update best threshold

10 for `← 1 to K . for all classes

11 v∗` ← sign(γ`) . set vote vector according to (12)

12 if γ∗ = γ(0) . did not beat the constant classifier

13 return (v∗,−∞, ‖γ∗‖1) . constant classifier with optimal votes

14 else

15 return (v∗, b∗, ‖γ∗‖1) . best stump

Figure 2: Exhaustive search for the best decision stump. BESTSTUMP receives a sorted column
(feature) s of the observation matrix X. The sorting in line 4 can be done once for all
features outside of the boosting loop. BESTSTUMP examines all thresholds b halfway
between two non-identical coordinates si 6= si+1 and returns the threshold b∗ and vote
vector v∗ that maximizes the edge γ(v, ϕj,b,W). STUMPBASE then sets the coefficient
αj according to (11) and chooses the stump across features that minimizes the energy (4).

7

KÉGL

References

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

T. Gao and D. Koller. Multiclass boosting with hinge loss based on output coding. In International
Conference on Machine Learning, 2011.

B. Kégl. The return of AdaBoost.MH: multi-class Hamming trees. In International Conference on
Learning Representations, 2014. URL http://arxiv.org/abs/1312.6086.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3):297–336, 1999.

8

http://arxiv.org/abs/1312.6086

	Remarks
	The pseudocode of the AdaBoost.MH algorithm with factorized base classifiers
	Multi-class decision stumps

