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Abstract
Compressed sensing (sparse signal recovery) has been a popular and important research topic in
recent years. By observing that natural signals (e.g., images or network data) are often nonnegative,
we propose a framework for nonnegative signal recovery using Compressed Counting (CC). CC
is a technique built onmaximally-skewedα-stable random projectionsoriginally developed for
data stream computations (e.g., entropy estimations). Ourrecovery procedure is computationally
efficient in that it requires only one linear scan of the coordinates.

In our settings, the signalx ∈ R
N is assumed to be nonnegative, i.e.,xi ≥ 0, ∀ i. We prove

that, whenα ∈ (0, 0.5], it suffices to useM = (Cα+o(1))ǫ−α

(

∑N

i=1
xα

i

)

logN/δ measurements

so that, with probability1− δ, all coordinates will be recovered withinǫ additive precision, in one
scan of the coordinates. The constantCα = 1 whenα → 0 andCα = π/2 whenα = 0.5. In
particular, whenα → 0, the required number of measurements is essentiallyM = K logN/δ,
whereK =

∑

N

i=1
1{xi 6= 0} is the number of nonzero coordinates of the signal.

1. Introduction

We develop a new framework forcompressed sensing (sparse signal recovery) (Donoho and Stark,
1989; Donoho and Huo, 2001; Cormode and Muthukrishnan, 2005; Donoho, 2006; Candès et al.,
2006). We focus on nonnegative sparse signals, i.e.,x ∈ R

N andxi ≥ 0,∀ i, by observing that real-
world signals are oftennonnegative (a phenomenon which we will comment more in the paper).
We consider a typical scenario in which neither the magnitudes nor the locations of the nonzero en-
tries ofx are known. The task of compressed sensing reconstruction isto recover both the locations
and the magnitudes of the nonzero entries. Our framework differs from mainstream work in com-
pressed sensing in that we use maximally-skewedα-stable distributions for generating the design
matrix, while classical compressed sensing algorithms typically adopt Gaussian or Gaussian-like
distributions (e.g., distribution with finite variance). The use of skewed stable random projections
was originally developed byLi (2009a,b); Li and Zhang(2011), namedCompressed Counting
(CC), for data stream computations such as moment and entropy estimations.

In compressed sensing, the standard procedure collectsM non-adaptive linear measurements

yj =

N
∑

i=1

xisij, j = 1, 2, ...,M (1)
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and reconstructs the signalx from the measurements,yj, and the design matrix,sij. The design
matrix is “designed” in that one can manually generate the entries to facilitate the recovery task.
In fact, the design matrix can be integrated into sensing hardware (e.g., cameras or scanners). In
classical settings, entries of the design matrix are sampled from Gaussian or Gaussian-like distribu-
tions. Well-known recovery algorithms are often based on linear programming (LP) (e.g.,basis pur-
suit (Chen et al., 1998)) or greedy methods such as orthogonal matching pursuit (OMP) (Pati et al.,
1993; Mallat and Zhang, 1993; Zhang, 2011; Tropp, 2004). In general, LP is computationally ex-
pensive. OMP is often faster but it requires scanning the coordinates (at least)K times.

It is desirable to develop a framework for sparse recovery which requires only one scan of
the coordinates and does not require more measurements thanLP or OMP. It is also desirable if
the method is robust against measurement noises and is applicable to data streams. In this paper,
our proposed method meets these requirements by sampling the entries of a design matrix from
maximally-skewedα-stable distributions (Zolotarev, 1986).

1.1. Maximally-Skewed Stable Distributions

In our proposal, we sample entries of the design matrixsij from anα-stable maximally-skewed
distribution, denoted byS(α, 1, 1), where the first “1” denotes maximal skewness and the second
“1” denotes unit scale. If a random variableZ ∼ S(α, 1, 1), then its characteristic function is

FZ(λ) = E
(

exp
(√

−1Zλ
))

= exp
(

−|λ|α
(

1− sign(λ)
√
−1 tan

(πα

2

)))

, α 6= 1 (2)

Supposes1, s2 ∼ S(α, 1, 1) i.i.d. For any constantsc1 ≥ 0, c2 ≥ 0, we havec1s1 + c2s2 ∼
S(α, 1, cα1 + cα2 ). More generally,

∑N
i=1 xisi ∼ S

(

α, 1,
∑N

i=1 x
α
i

)

if si ∼ S(α, 1, 1) i.i.d.

To sample fromS(α, 1, 1), we first generate an exponential random variable with mean 1, w ∼
exp(1), and a uniform random variableu ∼ unif (0, π), and then compute (Chambers et al., 1976)

sin (αu)

[sinu cos (απ/2)]
1
α

[

sin (u− αu)

w

]
1−α
α

∼ S(α, 1, 1) (3)

In practice, we can replace the stable distribution with a heavy-tailed distribution in the domain of
attractions (Feller, 1971), for example,[unif(0, 1)]−1/α (at least forα not too close to 1).

1.2. Data Streams and Linear Projections

The use of maximally-skewed stable random projections for nonnegative data stream computations
is known asCompressed Counting (CC)(Li , 2009a,b; Li and Zhang, 2011). Prior to the advent
of CC, it was popular to usesymmetric stable random projections(Indyk, 2006; Li , 2008). In the
standardturnstile data stream model (Muthukrishnan, 2005), at timet, an arriving stream element
(it, It) updates one entry of the data vector in a linear fashion:x

(t)
it

= x
(t−1)
it

+ It. When the
data streams arrive at high-speed (e.g., network traffic), the dynamic nature makes the task more
challenging for computing summary statistics (e.g.,

∑N
i=1 |xi|2) or for recovering nonzero entries.

Linear projections are naturally capable of handling data streams. To see this, suppose we
denote the linear measurements as

y
(t)
j =

N
∑

i=1

x
(t)
i sij, j = 1, 2, ...,M (4)
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When a new stream element(it, It) arrives, we only need to update the measurement as

y
(t)
j = y

(t−1)
j + Itsit,j, j = 1, 2, ...,M (5)

The entriessit,j are re-generated as needed by using pseudo-random numbers (Nisan, 1990), i.e., no
need to materialize the entire design matrix. This is the standard practice in stream computations.

Note that when the data are nonnegative, i.e.,x
(t)
i ≥ 0 although the incrementIt can be either

negative or positive, computing the first moment is trivial,because
∑N

i=1 |x
(t)
i | =

∑N
i=1 x

(t)
i =

∑t
j=0 Ij, i.e., merely one counter is needed. Based on this observation, (Li , 2009a,b; Li and Zhang,

2011) developed efficient estimators of
∑N

i=1 |x
(t)
i |α for α close to 1. As the Shannon entropy is

essentially the first derivative of
∑N

i=1 |x
(t)
i |α asα → 1, this makes the known difficult problem of

entropy estimation a trivial task. In a recent paper (Li and Zhang, 2011), merely 10 measurements
seem to be sufficient for nonnegative data streams.Li and Zhang(2012) also developedcorrelated
symmetric stable random projectionsfor entropy estimation when the data streams can be negative.

For the rest of paper, we will drop the superscript(t) in y
(t)
j andx(t)i , while readers should keep

in mind that our results are naturally applicable to data streams.

1.3. Nonnegative Signals

Natural signals (such as images) are often nonnegative. Forexample, in database applications, a user
can delete an existing entry but can not delete an entry whichdoes not exist. Compressed sensing
has been popular for estimating large entries in databases (Muthukrishnan, 2005). Readers proba-
bly have noticed that the turnstile data stream model is basically thehistogram model. In network
applications, monitoring traffic histograms is an important mechanism for (e.g.,) anomaly detec-
tions (Feinstein et al., 2003). Detecting (recovering) heavy components (e.g., so called “elephant
detection” (Zhao et al., 2007)) using compressed sensing is an active research topic in networks;
see (e.g.,) (Lin and Kung, 2012; Wang et al., 2012a,b) for some recent work in networks using com-
pressed sensing. Of course, in machine learning applications (e.g.,vision and national language
processing), it is a standard practice to generate featuresfrom histogram (e.g., bag-of-words model).

1.4. The Proposed Algorithm and Main Result

For recovering a nonnegative signalxi ≥ 0, i = 1 to N , we collect linear measurementsyj =
∑N

i=1 xisij, j = 1 to M , wheresij ∼ S(α, 1, 1) i.i.d. In this paper, we focus onα ∈ (0, 0.5]. At
the decoding stage, we estimate the signal coordinate-wiseusing the followingminimum estimator:

x̂i,min = min
1≤j≤M

yj/sij (6)

The number of measurementsM is chosen so that
∑N

i=1 Pr (x̂i,min − xi ≥ ǫ) ≤ δ (e.g.,δ = 0.05).

Main Result: Whenα ∈ (0, 0.5], it suffices to useM = (Cα + o(1))ǫ−α
(

∑N
i=1 x

α
i

)

logN/δ

measurements so that, with probability1 − δ, all coordinates will be recovered withinǫ additive
precision, in one scan of the coordinates. The constantCα = 1 whenα → 0 andCα = π/2
whenα = 0.5. In particular, whenα → 0, the required number of measurements is essentially
M = K logN/δ, whereK =

∑N
i=1 1{xi 6= 0} is the number of nonzero coordinates of the signal.

3
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In the literature, it is known that the sample complexity of compressed sensing using Gaussian
design (i.e.,α = 2) is essentially2K logN/δ (Donoho and Tanner, 2009). This means our work
already achieves smaller complexity with an explicit constant, by requiring only one linear scan of
the coordinates. Encouragingly, it is not surprising that our work in this paper is merely a tip of the
iceberg and we expect many promising research directions can be explored along this line.

Organization. We first provide some relevant probability results on the ratio of two stable random
variables in Section2. Then we analyze the proposed recovery algorithm in Section3 and present
an experimental study in Section4 to confirm the theoretical results. Section5 is devoted to the
discussions and possible future research problems. Finally, Section6 concludes the paper.

2. Relevant Probability Results on the Ratio of Two Stable Random Variables

Our proposed algorithm utilizes only the ratio statisticsyj/sij for the recovery task, while the
observed data appear to contain more information, i.e.,(yj, sij) for i = 1, 2, ..., N , and j =
1, 2, ...,M . Thus, we first provide an explanation why we restrict ourselves to the ratio statistics.

For convenience, we define

θ =

(

N
∑

i=1

xαi

)1/α

, θi = (θα − xαi )
1/α (7)

and denote the probability density function ofsij ∼ S(α, 1, 1) by fS . By a conditional probability

argument, the joint density of(yj , sij) can be shown to be1θi fS(sij)fS
(

yj−xisij
θi

)

∝ 1
θi
fS

(

yj−xisij
θi

)

.

The MLE amounts to finding(xi, θi) to maximize the joint likelihood

L(xi, θi) =
M
∏

j=1

1

θi
fS

(

yj − xisij
θi

)

(8)

Interestingly, Lemma1 shows thatL(xi, θi) approaches infinity at the polesyj − xisij = 0.

Lemma 1 The likelihood in (8) approaches infinity, i.e.,L(xi, θi) → +∞, if yj − xisij → 0, for
anyj, 1 ≤ j ≤ M .

Proof: See AppendixA. �

Lemma1 suggests to use the ratio statisticsyj/sij to recoverxi. By property of stable distributions,

yj
sij

=

∑N
t=1 xtstj
sij

= xi +

∑N
t6=i xtstj

sij
= xi + θi

S2

S1
(9)

whereθi =
(

∑

t6=i x
α
t

)1/α
andS1, S2 ∼ S(α, 1, 1) i.i.d. Recall

∑N
t6=i xtstj ∼ S

(

α, 1,
∑N

t6=i x
α
t

)

.

This result motivates us to study the probability distribution of two independent stable random
variables,S2/S1. For convenience, we also define

Fα(t) = Pr

(

(S2/S1)
α/(1−α) ≤ t

)

, t ≥ 0 (10)
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Lemma 2 For anyt ≥ 0, S1, S2 ∼ S(α, 1, 1), i.i.d.,

Fα(t) = Pr

(

(S2/S1)
α/(1−α) ≤ t

)

=
1

π2

∫ π

0

∫ π

0

1

1 +Qα/t
du1du2 (11)

where

Qα =

[

sin (αu2)

sin (αu1)

]α/(1−α) [sinu1
sinu2

] 1
1−α sin (u2 − αu2)

sin (u1 − αu1)
(12)

In particular, closed-form expressions are available whenα → 0+ or α = 0.5:

lim
α→0+

Fα(t) =
1

1 + 1/t
, F0.5(t) =

2

π
tan−1

√
t (13)

Moreover, for anyt ∈ [0, 1], 0 < α1 ≤ α2 ≤ 0.5, we have

1

1 + 1/t
≤ Fα1(t) ≤ Fα2(t) ≤

2

π
tan−1

√
t (14)

Proof: See AppendixB. Figure1 (left panel) plotsFα(t) for selectedα values. �

Lemma2 proves that, whenα → 0+, Fα(t) is of ordert, and whenα = 0.5, Fα(t) is of order√
t. Lemma3 provides a general result thatFα(t) = Θ

(

t1−α
)

.

Lemma 3 For 0 ≤ t < αα/(1−α) and0 < α ≤ 0.5,

Fα(t) =
t1−α

Cα + o(1)
(15)

Proof: See AppendixC. �

Remarks for Lemma 3:

• The result restrictst < αα/(1−α). Hereαα/(1−α) is monotonically decreasing inα and0.5 ≤
αα/(1−α) ≤ 1 for α ∈ (0, 0.5]. Later we will show that our method indeed uses smallt.

• The constantCα can be numerically evaluated as shown in Figure1 (right panel).

• At α → 0+, we haveF0+(t) =
1

1+1/t = t− t2 + t3.... HenceC0+ = 1.

• At α = 0.5, we haveF0.5(t) =
2
π tan−1

√
t = 2

π

(

t1/2 − t3/2/3 + ...
)

. HenceC0.5 = π/2.

To close this section, the next Lemma shows that the maximum likelihood estimator using the
ratio statistics is actually theminimum estimator.

Lemma 4 Use the ratio statistics,yj/sij, j = 1 toM . Whenα ∈ (0, 0.5], the maximum likelihood
estimator (MLE) ofxi is the sample minimum

x̂i,min = min
1≤j≤M

yj
sij

(16)

Proof: See AppendixD. �

Lemma4 largely explains our proposed algorithm. In the next section, we analyze the error
probability ofx̂i,min and the sample complexity bound.

5
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Figure 1: Left panel: Fα(t) for t ∈ [0, 1], α = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 (from bottom to top).
Right panel: The constantCα as in Lemma3. Numerically, it varies between 1 andπ/2.

3. Analysis of the Proposed Algorithm: Error Probability and Sample Complexity

Our proposed algorithm uses theminimum estimator̂xi,min = min1≤j≤M
yj
sij

. The following
Lemma concerns the tail probability ofx̂i,min. Becausêxi,min always over-estimatesxi, we only
need to provide a one-sided error probability bound.

Lemma 5

Pr (x̂i,min − xi ≥ ǫ) =
[

1− Fα

(

(ǫ/θi)
α/(1−α)

)]M
(17)

≤
[

1

1 + (ǫ/θi)
α/(1−α)

]M

(18)

For 0 < α ≤ 0.5 andǫ/θi < α, we have

Pr (x̂i,min − xi ≥ ǫ) = [1−Θ(ǫα/θαi )]
M (19)

In particular, whenα = 0.5,

Pr (x̂i,min − xi ≥ ǫ, α = 0.5) =

[

1− 2

π
tan−1

√

ǫ

θi

]M

(20)

Proof: Recall yjsij = xi + θi
S2
S1

and x̂i,min = min1≤j≤M
yj
sij

. We have

Pr (x̂i,min > xi + ǫ) = Pr

(

yj
sij

> xi + ǫ, 1 ≤ j ≤ M

)

=

[

Pr

(

S2

S1
>

ǫ

θi

)]M

=
[

1− Fα

(

(ǫ/θi)
α/(1−α)

)]M

The rest of the proof follows from Lemma2 and Lemma3. Recall we have defined in (7) that

θ =
(

∑N
i=1 x

α
i

)1/α
andθi = (θα − xαi )

1/α. �
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Remark for Lemma 5: The probability bound (18) is convenient to use. However, it is conser-
vative in that it does not give the right order unlessα is small (i.e., whenα/(1 − α) ≈ α). In
comparison, (19) provides the exact order, which will be useful for analyzing the precise sample
complexity of our proposed algorithm. As shown in Lemma3, Fα(t) = Θ(t1−α) holds for rela-
tively small t < αα/(1−α). In our case,t = (ǫ/θi)

α/(1−α), i.e., the result requiresǫ/θi < α, or
ǫα/θαi = ǫα/(

∑N
l 6=i x

α
l ) < αα. Whenα → 0, this means we need1/K < 1, which is virtually

always true. For largerα, the relationǫα/(
∑N

l 6=i x
α
l ) < αα should hold in reasonable settings.

Theorem 6 To ensure
∑N

i=1 Pr (x̂i,min − xi ≥ ǫ) ≤ δ, it suffices to chooseM by

M ≥ logN/δ

− log
[

1− Fα

(

(ǫ/θ)α/(1−α)
)] (21)

whereFα is defined in Lemma2. If ǫ/θ < 1, then it suffices to use

M ≥ logN/δ

log
[

1 + (ǫ/θ)α/(1−α)
] (22)

which is only sharp atα → 0. In general, forα ∈ (0, 0.5] andǫ/θ < α, the sharp bound is

M ≥ (Cα + o(1))

(

θ

ǫ

)α

logN/δ (23)

where the constantCα is the same in Lemma3. Whenα = 0.5 andǫ/θ < 1, the explicit bound is

M ≥ π

2

√

θ

ǫ
logN/δ (24)

Proof: The result (21) follows from Lemma5, (22) from Lemma2, and (23) from Lemma3.
We provide more details for the proof of the more precise bound (24). Whenα = 0.5,

M ≥ logN/δ

− log
[

1− 2
π tan−1

√

ǫ
θ

]

which can be simplified to beM ≥ π
2

√

θ
ǫ logN/δ, using the fact that− log

(

1− 2
π tan−1(z)

)

≥
2
πz,∀z ∈ [0, 1]. To see this inequality, we can check

∂

∂z

(

− log(1− 2

π
tan−1(z)) − 2

π
z

)

=
2
π

(

1− 2
π tan−1 z

)

(1 + z2)
− 2

π

It suffices to show

z2 − 2

π
tan−1 z − 2

π
z2 tan−1 z ≤ 0

which is true because the equality holds whenz = 0 or z = 1, and

∂2

∂z2

(

z2 − 2

π
tan−1 z − 2

π
z2 tan−1 z

)

= 2− 2

π

(

2z tan−1 z +
2z

1 + z2

)

> 0

This completes the proof. �
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Remarks for Theorem 6: The convenient bound (22) is only sharp forα → 0. For example, when
α = 0.5, α/(1 − α) = 1, but the true order should be in terms of

√
ǫ instead ofǫ. The other bound

(23) provides the precise order, where the constantCα is the same as in Lemma3. Note that, if
we letα → 0, then

(

θ
ǫ

)α → K. In other words, the complexity for exactK-sparse recovery is
essentiallyK logN/δ with constant 1. This is a very sharp bound.

It is interesting to compare our complexity boundCαǫ
−α
∑N

i=1 x
α
i logN/δ with the complexity

bound of Count-Min sketch (Cormode and Muthukrishnan, 2005) O
(

ǫ−1
∑N

i=1 xi logN/δ
)

. First

of all, the bound we prove has the explicit constantCα, which is just 1 whenα → 0. Secondly, the
orderǫ−α is an improvement over the orderǫ−1. However, the interesting part is

∑N
i=1 x

α
i versus

∑N
i=1 xi. If xi > 1, thenxαi < xi, and vice versa. This means whether

∑N
i=1 x

α
i is smaller than

∑N
i=1 xi will depend on the signal (and whether there are small components in the signal).

4. Experiments

Our proposed algorithm for sparse recovery is simple and requires merely one scan of the coordi-
nates. Our theoretical analysis provides the sharp sample complexity bound with the constant (i.e.,
Cα) specified in Figure1 (right panel). It is nevertheless still interesting to include an experimental
study. All experiments presented were conducted in Matlab on a workstation with 256GB memory.
We did not make special effort to optimize our code for improving efficiency.

We compare our proposed method with two popular packages:L1Magic(Candès and Romberg,
2005) andSPGL1(van den Berg and Friedlander, 2008)1. Although it is not our intension to com-
pare these two solvers, we will present the results of both. While it is known that SPGL1 can often
be faster than L1Magic, we observe that in some cases SPGL1 could not achieve the desired accu-
racy. On the other hand, SPGL1 better uses memory and can handle larger problems than L1Magic.

In each simulation, we randomly selectK out ofN coordinates and set their values (xi) to be
1. The otherN − K coordinates are set to be 0. To simulate the design matrixS, we generate
two random matrices:{uij} and{wij}, i = 1 to N , j = 1 to M , whereuij ∼ unif(0, π) and
wij ∼ exp(1), i.i.d. Then we apply the formula (3) to generatesij ∼ (α, 1, 1), for α = 0.04 to 0.5,
spaced at 0.01. We also use the sameuij andwij to generate standard GaussianN(0, 1) variables for
the design matrix used by L1Magic and SPGL1, based on the fact: −

√
2 cos(uij)

√
wij ∼ N(0, 1).

In this experimental setting, sinceK =
∑N

i=1 x
α
i , the sample complexity of our algorithm is

essentiallyM = CαK/ǫα logN/δ, whereC0+ = 1 andC0.5 = π/2 ≈ 1.6. In our simulations, we
chooseM by two options: (i)M = K logN/δ; (ii) M = 1.6K logN/δ, whereδ = 0.01.

1. We must specify some parameters in order to achieve good accuracies. For L1Magic, we use the following script:

l1eq_pd(x0, Afun, Atfun, y,1e-3,100,1e-8,1000);

For SPGL1, after consulting the author of (van den Berg and Friedlander, 2008), we used the following script:

opts = spgSetParms(’verbosity’,0);
opts.optTol = 1e-6; opts.decTol = 1e-6; spg_bp(A, y, opts);

However, it looks forN = 10, 000, 000 we probably should reduce the tolerance further.

8
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We compare our method with L1Magic and SPGL1 in terms of theirdecoding times and
recovery errors. The (normalized) recovery error is definedas

error =

√

∑N
i=1(xi − estimatedxi)2

∑N
i=1 x

2
i

(25)

4.1. M = K logN/δ

Figure2 presents the recovery errors (left panel) and ratios of the decoding times (right panel), for
N = 1, 000, 000, K = 10, andM = K logN/δ (whereδ = 0.01). The results confirm that our
proposed method is computationally efficient and produces accurate recovery forα < 0.38.
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Figure 2: Experiments for comparing our proposed algorithm(labeled “CC”) with SPGL1and
L1Magic, for N = 1, 000, 000, K = 10, andM = K logN/δ (whereδ = 0.01).
For eachα (from 0.04 to 0.5 spaced at 0.01), we conduct simulations 100times and re-
port the median results. In theleft panel, our proposed method (solid curve) produces
very accurate recovery results forα < 0.38. For largerα values, however, the errors
become large. This is expected because whenα = 0.5, the required number of samples
should be(π/2)K logN/δ instead ofK logN/δ. In this case, L1Magic also produces
accuracy recovery results. Note that for all methods, we report the top-K entries of the
recovered signal as the estimated nonzero entries. In theright panel, we plot the ratios
of the decoding times. SPGL1 uses about 580 times more time than our proposed method
(which requires only one scan), and L1Magic needs about 290 times more time than ours.

Figure3 presents the results for a larger problem, withN = 10, 000, 000 andK = 10. Because
we can not run L1Magic in this case, we only present the comparisons with SPGL1. Again, our
method is computationally very efficient and produces accurate recovery for aboutα < 0.38.

Forα close to 0.5, we need to increase the number of measurements,as shown in the analysis.

4.2. M = 1.6K logN/δ

To study the behavior asα approaches 0.5, we increase the number of measurements toM =
1.6K logN/δ. Figure4 and Figure5 present the experimental results forN = 1, 000, 000 and
N = 10, 000, 000, respectively. Our algorithm still produces accurate recovery results (with the
normalized errors around 0.007), although the results at smallerα values are even more accurate.
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Figure 3: Experiments for comparing CC with SPGL1, forN = 10, 000, 000, K = 10, M =
K logN/δ (whereδ = 0.01). See the caption of Figure2 for more details. For this larger
problem, we can not run L1Magic as it simply halts without making progress.
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Figure 4: Experiments for comparing CC with SPGL1 and L1Magic, forN = 1, 000, 000, K = 10,
M = 1.6K logN/δ (whereδ = 0.01). In the left panel, our proposed method (solid
curve) produces accurate recovery results, although the errors increase with increasingα
(the maximum error is around 0.007). In theright panel, we can see that our method is,
respectively, 27 times and 39 times faster than SPGL1 and L1Magic.

5. Discussions and Future Work

The preprint available atarXiv:1310.1076includes more detailed proofs and additional technical
results: (i) the proposed algorithm is very robust against measurement noise; and (ii) the minimum
estimator can be further improved by reducing the estimation bias.

While our proposed algorithm based on compressed counting is simple, fast, and accurate for
the task of exact sparse recovery, it is clear that the work aspresented is merely a tip of the iceberg.
We expect many interesting research problems will arise along this line for future work.
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Figure 5: Experiments for comparing our proposed algorithm(CC) with SPGL1, forN =
10, 000, 000, K = 10, andM = K logN/δ (whereδ = 0.01).

Choice of α. One important issue is the choice ofα. In this paper, our analysis focuses on
α ∈ (0, 0.5] and our theoretical results show that smallerα values lead to better performance.
However, there are numerical issues which prevent us from using a too smallα.

For the convenience of discussions, let us consider the approximate mechanism for generating
S(α, 1, 1) fromU−1/α, whereU ∼ unif(0, 1) (based on the theory of domain of attractions (Feller,
1971)). If α = 0.04, we need to computeU−25, which may potentially create numerical problems.
In our Matlab simulations in Section4, we useα ∈ [0.04, 0.5] and we do not notice obvious
numerical issues even withα = 0.04. However, if a device (e.g., camera, cell phone, or inexpensive
sensor) has limited precision and memory, then we might haveto use a largerα. Fortunately, as
shown in Section4, the performance is not too sensitive toα. For example, in our experiments, the
recovery accuracies are good forα < 0.38 even when we chooseM = K logN/δ based onα → 0.

What aboutα > 0.5? The same algorithm (i.e., the ratio statistic and the minimum estimator)
can still be used but it will require more measurements. Lemma4 has proved that whenα ∈ (0, 0.5],
the minimum estimator is the MLE. We no longer has such a proofwhenα > 0.5 and most likely
the estimator is not the MLE ifα > 0.5. In this study, for simplicity, we focus onα ∈ (0, 0.5].

Dense versus sparse design matrix. In this paper, we focus on dense design matrix. The
prior work on “very sparse stable random projections” (Li , 2007) showed that one can signifi-
cantly sparsify the design matrix without hurting the performance in estimating summary statis-
tics. We have a separate tech report onsparse recovery with very sparse compressed counting
(arXiv:1401.0201) (Li et al., 2013), which connects this line of work with the well-known “sparse
matrix” algorithm (Gilbert and Indyk, 2010). In (Li et al., 2013), we proved a general worst-case
boundeK logN/δ, which is an improvement over the result in this paper because the complexity
bound does not contain the

∑N
i=1 x

α
i term (although the constant, i.e.,e, might be larger).

Symmetric stable projections for symmetric signals. In a concurrent work (Li and Zhang, 2013),
we developed an algorithm for usingsymmetricα-stable projectionswith very smallα for exact
sparse recovery. The algorithm used aminimumestimator for detection (of nonzero locations) and
agapestimator for estimation (of nonzero magnitudes), as well as an iterative procedure for further
improving the estimates. For the task of exact sparse recovery, that method is extremely effective.
However, it has a serious disadvantage in that the performance is sensitive toα (unlike the proposed
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method in this paper). In fact, the performance would drop substantially even ifα is not too far
away fromα = 0. More robust algorithms are needed to overcome this drawback.

Coding for stable random projections. Due to the use of heavy-tailed design matrix, our mea-
surements are also heavy-tailed. This may raise concerns for storage and transmission, because it is
necessary to use a large number of bits to store each measurement. Consequently, developing a good
coding scheme for the measurements might be an urgent task, at least from the practical perspec-
tive. In the past years, we have worked on coding for random projections for the task of estimating
summary statistics and approximate near neighbor search; examples includeCoding for Random
Projections(ICML 2014) andSign Cauchy Projections and Chi-square Kernels(NIPS 2013).

Correlated or dependent stable random projections. So far we have only used independent
α-stable random projections for sparse recovery. It appearsto be an interesting idea to take advan-
tage of stable projections simultaneously at multipleα values. Recall anα-stable random variable
can be generated from an uniform random variable and an exponential random variable. Thus, we
can generate multipleα-stable random variables for differentα values from the same uniform and
exponential variables. The hope is that such acorrelated (or more appropriate,dependent) sta-
ble projection scheme might bring in unexpected improvements, just like our prior work on using
correlated stable random projections to solve entropy estimation problem (Li and Zhang, 2012).

6. Conclusion

We develop a new compressed sensing algorithm for nonnegative (possibly streaming) signals, us-
ing Compressed Counting (CC)which is based onmaximally-skewedα-stable random projections.
Our method produces accurate recovery of nonnegative sparse signals and our procedure is compu-
tationally very efficient. The decoding cost is just one linear scan of the coordinates. Our theoretical
analysis provides the sharp complexity bound and our experimental study confirms the theory.
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Appendix A. Proof of Lemma 1

ForS ∼ S(α, 1, 1), the sampling approach in (3) provides a method to compute its CDF

FS(s) =Pr

(

sin (αu)

[sinu cos (απ/2)]
1
α

[

sin (u− αu)

w

]
1−α
α

≤ s

)

=Pr

(

[sin (αu)]α/(1−α)

[sinu cos (απ/2)]
1

1−α

[

sin (u− αu)

w

]

≤ sα/(1−α)

)

=
1

π

∫ π

0
exp

{

− [sin (αu)]α/(1−α)

[sinu cos (απ/2)]
1

1−α

[

sin (u− αu)

sα/(1−α)

]

}

du

=
1

π

∫ π

0
exp

{

−qα(u)s
−α/(1−α)

}

du

and the PDF

fS(s) =
1

π

∫ π

0
exp

{

−qα(u)s
−α/(1−α)

}

qα(u)α/(1 − α)s−α/(1−α)−1du

Hence,

1

θi
fS

(

yj − xisij
θi

)

=
α/(1 − α)

π

∫ π

0
qα(u) exp

{

−qα(u)

(

θi
yj − xisij

)α/(1−α)
}

(

θi
yj − xisij

)α/(1−α) 1

(yj − xisij)
du

Therefore, the likelihoodL(xi, θi) → +∞ if yj − xisij → 0, providedθi/(yj − xisij) → const.
Note that here we can chooseθi andxi to maximize the likelihood.

Appendix B. Proof of Lemma 2

SinceS1, S2 ∼ S(α, 1, 1), i.i.d., we know that

S1 =
sin (αu1)

[sinu1 cos (απ/2)]
1
α

[

sin (u1 − αu1)

w1

]
1−α
α

,

S2 =
sin (αu2)

[sinu2 cos (απ/2)]
1
α

[

sin (u2 − αu)

w2

]
1−α
α

whereu1, u2 ∼ uniform (0, π), w1, w2 ∼ exp(1), u1, u2, w1, w2 are independent. Thus, we can
write

(S2/S1)
α/(1−α) = Qα

w1

w2
,

Qα =

[

sin (αu2)

sin (αu1)

]α/(1−α) [sinu1
sinu2

]
1

1−α sin (u2 − αu2)

sin (u1 − αu1)
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Using properties of exponential distributions, for anyt ≥ 0,

Fα(t) =Pr

(

(S2/S1)
α/(1−α) ≤ t

)

= Pr (Qαw1/w2 ≤ t)

=E

(

1

1 +Qα/t

)

=
1

π2

∫ π

0

∫ π

0

1

1 +Qα/t
du1du2

Whenα → 0+, Qα → 1 point-wise. By dominated convergence,F0+(t) =
1

1+1/t .
Whenα = 0.5, Qα can be simplified to be

Q0.5 =

[

sin (u2/2)

sin (u1/2)

] [

sinu1
sinu2

]2 sin (u2/2)

sin (u1/2)
=

cos2 (u1/2)

cos2 (u2/2)

which can be used to obtain the closed-form expression forF0.5(t):

F0.5(t) =
1

π2

∫ π

0

∫ π

0

1

1 +Q0.5/t
du1du2

=
1

π2

∫ π

0

∫ π

0

1

1 + cos2(u1/2)
t cos2(u2/2)

du1du2

=
4

π2

∫ π/2

0

∫ π/2

0

1

1 + b cos2 (u1)
du1du2, b =

1

t cos2 (u2)

=
4

π2

∫ π/2

0

−1√
1 + b

tan−1

(√
1 + b

cos u1
sinu1

)∣

∣

∣

∣

π/2

0

du2

=
2

π

∫ π/2

0

1
√

1 + 1
t sec

2 u2

du2

=
2

π

∫ 1

0

1
√

1 + 1
t − z2

dz =
2

π

∫ 1/
√

1+1/t

0

1√
1− z2

dz

=
2

π
sin−1

(

1/
√

1 + 1/t
)

=
2

π
tan−1

√
t

To showFα(t) ≥ 1/(1+1/t) for anyt ∈ [0, 1], we first note that the equality holds whent = 0
andt = 1. To see the latter case, we writeQα = q2/q1, whereq1 andq2 are i.i.d. Whent = 1,

Fα(t) = E (1/(1 + q2/q1)) = E
(

q1
q1+q2

)

= 1
2 by symmetry.

It remains to showFα(t) is monotonically increasing inα for fixed t ∈ [0, 1]. For convenience,
we defineqα(u) andgα(u), where

Qα = qα(u2)/qα(u1), qα(u) = [sin (αu)]α/(1−α) [sinu]
−1
1−α sin (u− αu)

gα(u) =
∂ log qα(u)

∂α
=

cosαu

sinαu

αu

1− α
+

1

(1− α)2
log sinαu− 1

(1− α)2
log sinu− u

cos(u− αu)

sin(u− αu)

We can check that bothqα(u) andgα(u) are monotonically increasing inu ∈ [0, π].
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∂gα(u)

∂u
=

−α

sin2 αu

αu

1− α
+

cosαu

sinαu

α

1− α
+

α

(1− α)2
cosαu

sinαu
− 1

(1− α)2
cos u

sinu

− cos(u− αu)

sin(u− αu)
+

(1− α)u

sin2(u− αu)

=

{

(1− α)u

sin2(u− αu)
− α

sin2 αu

αu

1− α

}

+

{

cosαu

sinαu

α

1− α
− cos(u− αu)

sin(u− αu)

}

+

{

α

(1− α)2
cosαu

sinαu
− 1

(1− α)2
cos u

sinu

}

We consider three terms (in curly brackets) separately and show they are all≥ 0 whenα ∈ [0, 0.5].
For the first term,

(1− α)u

sin2(u− αu)
− α

sin2 αu

αu

1− α
≥ 0

⇐⇒ 1− α

sin((1− α)u)
≥ α

sinαu

⇐⇒(1− α) sinαu− α sin((1− α)u) ≥ 0

where the last inequality holds because the derivative (w.r.t. u) is (1−α)α cosαu−(1−α)α cos((1−
α)u) ≥ 0. For the second term, it suffices to show

∂

∂u
{α cosαu sin(u− αu)− (1− α) sinαu cos(u− αu)} ≥ 0

⇐⇒− α2 sinαu sin(u− αu) + (1− α)2 sinαu sin(u− αu) ≥ 0

For the third term, it suffices to show

α sinu cosαu− cosu sinαu ≥ 0 ⇐⇒ α sin(u− αu) + (1− α) cos u sinαu ≥ 0

Thus, we have proved the monotonicity ofgα(u) in u ∈ [0, π], whenα ∈ [0, 0.5].
To prove the monotonicity ofqα(u) in u, it suffices to check if its logarithm is monotonic, i.e.

∂

∂u
log qaα(u) =

1

1− α

(

α2 cosαu

sinαu
+ (1− α)2

cos(u− αu)

sin(u− αu)
− cos u

sinu

)

≥ 0

for which it suffices to show

α2 cosαu sin(u− αu) sin u+ (1− α)2 cos(u− αu) sinαu sinu− cos u sinαu sin(u− αu) ≥ 0

⇐⇒α2 sin2(u− αu) + (1− α)2 sin2 αu− 2α(1 − α) cos u sinαu sin(u− αu) ≥ 0

⇐⇒(α sin(u− αu)− (1− α) sinαu)2 + 2α(1 − α)(1 − cosu) sinαu sin(u− αu) ≥ 0

At this point, we have proved that bothqα(u) andgα(u) are monotonically increasing inu ∈
[0, π] at least forα ∈ [0, 0.5].

∂Fα(t)

∂α
= E







−1
t
gα(u2)qα(u2)qα(u1)−gα(u1)qα(u1)qα(u2)

q2α(u1)
(

1 + qα(u2)
tqα(u1)

)2






=

1

t
E

(

qα(u1)qα(u2) (gα(u1)− gα(u2))

(qα(u1) + qα(u2)/t)
2

)
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By symmetry

∂Fα(t)

∂α
=

1

t
E

(

qα(u1)qα(u2) (gα(u2)− gα(u1))

(qα(u2) + qα(u1)/t)
2

)

Thus, to show∂Fα(t)
∂α ≥ 0, it suffices to show

E

(

qα(u1)qα(u2) (gα(u1)− gα(u2))

(qα(u1) + qα(u2)/t)
2

)

+ E

(

qα(u1)qα(u2) (gα(u2)− gα(u1))

(qα(u2) + qα(u1)/t)
2

)

≥ 0
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(

qα(u1)qα(u2) (gα(u1)− gα(u2))
(

q2α(u1)− q2α(u2)
) (

1/t2 − 1
)

(qα(u1) + qα(u2)/t)
2 (qα(u2) + qα(u1)/t)

2

)

≥ 0

which holds because1/t2 − 1 ≥ 0 and(gα(u1)− gα(u2)) (qα(u1)− qα(u2)) ≥ 0 as bothgα(u)
andqα(u) are monotonically increasing functions ofu ∈ [0, π]. This completes the proof.

Appendix C. Proof of Lemma 3

The goal is to show thatFα(t) = Θ
(

t1−α
)

. By our definition,

Fα(t) = E

(
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1 +Qα/t

)

= E


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where

qα(u) = [sin (αu)]α/(1−α)
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We can write the integral as
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where

q′α(u) = [sin (α(π − u))]α/(1−α)

[

1

sin(π − u)

]
1

1−α

sin (π − u− α(π − u))

= [sin (α(π − u))]α/(1−α)

[

1

sinu

]
1

1−α

sin (u+ α(π − u))

First, using the fact thatα sinu ≤ sin(αu) ≤ αu, we obtain

qα(u) ≥ [α sin (u)]α/(1−α)

[

1

sinu

]
1

1−α

(1− α) sin (u) = αα/(1−α)(1− α)

18



COMPRESSEDCOUNTING MEETSCOMPRESSEDSENSING

We have proved in the proof of Lemma2 that qα(u) is a monotonically increasing function of
u ∈ [0, π]. Sinceqα(π/2) = [sin (απ/2)]α/(1−α) cos (απ/2), we have

1/4 ≤ αα/(1−α)(1− α) ≤ qα(u) ≤ [sin (απ/2)]α/(1−α) cos (απ/2) ≤ 1, u ∈ [0, π/2]

In other words, we can viewqα(u) as a constant (i.e.,qα(u) ≍ 1) whenu ∈ [0, π/2].
On the other hand, note thatq′α(u) → ∞ asu → 0. Moreover, whenu ∈ [0, π/2], we have

αu ≤ π − u andu − αu ≤ u + α(π − u). Thus,q′α(u) dominatesqα(u). Therefore, the order of
Fα(t) is determined by one term:

Fα(t) ≍
∫ π/2

0

∫ π/2

0

1

1 + t−1qα(u2)/q′α(u1)
du1du2 ≍

∫ π/2

0

1

1 + t−1/q′α(u)
du

Since

q′α(u) ≍
αα/(1−α) max{u, α}

u1/(1−α)
≍ max

{

u−α/(1−α), αu−1/(1−α)
}

we have, forα ∈ [0, 1/2],

Fα(t) ≍
∫ α

0

1

1 + t−1/q′α(u)
du+

∫ π/2

α

1

1 + t−1/q′α(u)
du

≍
∫ α

0

1

1 + (αt)−1u1/(1−α)
du+

∫ π/2

α

1

1 + t−1uα/(1−α)
du

Considert < αα/(1−α). Becauset−1uα/(1−α) > (u/α)α/(1−α) ≥ 1 for u ≥ α, we have
∫ π/2

α

1

1 + t−1uα/(1−α)
du ≍

∫ π/2

α

1

t−1uα/(1−α)
du = t

1− α

1− 2α
u(1−2α)/(1−α)

∣

∣

∣

∣

π/2

α

≍ t

uniformly for α < 1/2. Whenα = 1/2 (i.e.,t < 1/2), we also have
∫ π/2

α

1

1 + t−1uα/(1−α)
du =

∫ π/2

1/2

1

1 + t−1u
du = t log(u+ t)|π/21/2 ≍ t

For the other term withu ∈ [0, α], we have
∫ α

0

1

1 + (αt)−1u1/(1−α)
du =

∫ (αt)1−α

0

1

1 + (αt)−1u1/(1−α)
du+

∫ α

(αt)1−α

1

1 + (αt)−1u1/(1−α)
du

=

∫ (αt)1−α

0

1

1 + (αt)−1u1/(1−α)
du+

∫ α

(αt)1−α

1

1 + (αt)−1u1/(1−α)
du

≍(αt)1−α − (αt)
1− α

α
u(−α)/(1−α)

∣

∣

∣

α

(αt)1/(1−α)

=(αt)1−α − t(1− α)α(−α)/(1−α) + t(1− α)(αt)−α

=t1−αα−α − t(1− α)α(−α)/(1−α)

Combining the results, we obtain

Fα(t) ≍t
(

1− α(−α)/(1−α) + α(1−2α)/(1−α)
)

+ t1−αα−α ≍ t1−α

This completes the proof.
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Appendix D. Proof of Lemma 4

DefineFZ(t) = Pr

(

yj
sij

≤ t
)

andfZ(t) = F ′
Z(t). To find the MLE ofxi, we need to maximize

∏M
j=1 fZ(zi,j). Using the result in Lemma2, for S1, S2 ∼ S(α, 1, 1), we have

FZ(t) = Pr

(

yj
sij

≤ t

)

= Pr

(

S2/S1 ≤
t− xi
θi

)

= E







1

1 +
(

θi
t−xi

)α/(1−α)
Qα







fZ(t) = E











θ
α/(1−α)
i Qαα/(1 − α)(t− xi)

−1/(1−α)

(

1 +
(

θi
t−xi

)α/(1−α)
Qα

)2











f ′
Z(t) = E











A
(

1 +
(

θi
t−xi

)α/(1−α)
Qα

)4











whereQα is defined in Lemma2 and

A =θ
α/(1−α)
i Qαα/(1 − α)(−1/(1 − α))(t− xi)

−1/(1−α)−1

(

1 +

(

θi
t− xi

)α/(1−α)

Qα

)2

+ 2

(

1 +

(

θi
t− xi

)α/(1−α)

Qα

)

(

θ
α/(1−α)
i Qαα/(1 − α)(t− xi)

−1/(1−α)
)2

=

(

1 +

(

θi
t− xi

)α/(1−α)

Qα

)

θ
α/(1−α)
i Qαα/(1 − α)2(t− xi)

−1/(1−α)−1

×
(

−
(

1 +

(

θi
t− xi

)α/(1−α)

Qα

)

+ 2θ
α/(1−α)
i Qαα(t− xi)

−α/(1−α)

)

=

(

1 +

(

θi
t− xi

)α/(1−α)

Qα

)

θ
α/(1−α)
i Qαα/(1 − α)2(t− xi)

−1/(1−α)−1

×
(

−1−
(

θi
t− xi

)α/(1−α)

(1− 2α)

)

A ≤ 0 if α ≤ 0.5. This means,fZ(t) → ∞ whent → xi andfZ(t) is nondecreasing int ≥ xi if
α ≤ 0.5. Therefore, givenM observations,zi,j = yj/sij, the MLE is the sample minimum. This
completes the proof.
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