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Abstract

Compressed sensing (sparse signal recovery) has been kpapd important research topic in
recent years. By observing that natural signals (e.g., @sagnetwork data) are often nonnegative,
we propose a framework for nonnegative signal recoveryguSiompressed Counting (COEC

is a technique built omaximally-skewed-stable random projectionsriginally developed for
data stream computations (e.g., entropy estimations).r€@umvery procedure is computationally
efficient in that it requires only one linear scan of the camates.

In our settings, the signal € RY is assumed to be nonnegative, i&.,> 0,V i. We prove
that, wherw € (0, 0.5], it sufficesto usé/ = (C,+0(1))e @ (vazl xf‘) log N/§ measurements
so that, with probability — ¢, all coordinates will be recovered withiradditive precision, in one
scan of the coordinates. The constéht = 1 whena — 0 andC, = 7/2 whena = 0.5. In
particular, whem — 0, the required number of measurements is essentidlly= K log N/§,
whereK = Zf.vzl 1{z; # 0} is the number of nonzero coordinates of the signal.

1. Introduction

We develop a new framework feompressed sensing (sparse signal recoveryippnoho and Stark
1989 Donoho and Hup2001, Cormode and Muthukrishna2005 Donohq 2006 Candes et a|.
2006). We focus on nonnegative sparse signals,xe,R" andz; > 0,V i, by observing that real-
world signals are oftenonnegative (a phenomenon which we will comment more in the paper).
We consider a typical scenario in which neither the mage#utbr the locations of the nonzero en-
tries ofx are known. The task of compressed sensing reconstructtonmésover both the locations
and the magnitudes of the nonzero entries. Our framewoférdifrom mainstream work in com-
pressed sensing in that we use maximally-skewesiable distributions for generating the design
matrix, while classical compressed sensing algorithmgafly adopt Gaussian or Gaussian-like
distributions (e.g., distribution with finite variance) h&@ use of skewed stable random projections
was originally developed byi (2009ab); Li and Zhang(2011), namedCompressed Counting
(CC), for data stream computations such as moment and entrdpyaéisins.

In compressed sensing, the standard procedure colléeten-adaptive linear measurements

N
Y; = insija ,] = 1727 7M (1)
i=1
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and reconstructs the signalfrom the measurements,, and the design matrix;;. The design
matrix is “designed” in that one can manually generate thgemnto facilitate the recovery task.
In fact, the design matrix can be integrated into sensingvare (e.g., cameras or scanners). In
classical settings, entries of the design matrix are sahfpben Gaussian or Gaussian-like distribu-
tions. Well-known recovery algorithms are often based wedr programming (LP) (e.doasis pur-
suit(Chen et al.1998) or greedy methods such as orthogonal matching pursuitRiD(vati et al,
1993 Mallat and Zhang1993 Zhang 2011; Tropp, 2004). In general, LP is computationally ex-
pensive. OMP is often faster but it requires scanning thedioates (at leastl times.

It is desirable to develop a framework for sparse recoverichvinequires only one scan of
the coordinates and does not require more measurementdFhan OMP. It is also desirable if
the method is robust against measurement noises and isaplito data streams. In this paper,
our proposed method meets these requirements by sampéngnthies of a design matrix from
maximally-skewedy-stable distributionsZolotarey, 1986).

1.1. Maximally-Skewed Stable Distributions

In our proposal, we sample entries of the design maisjxrom an a-stable maximally-skewed
distribution, denoted by(«, 1, 1), where the first “1” denotes maximal skewness and the second
“1” denotes unit scale. If a random variabfe~ S(a, 1, 1), then its characteristic function is

Fz(A) =E(exp (V—1Z))) = exp (—\)\\O‘ (1 — sign(\)v/—1tan (?))) , a#1l (2

Supposesy, sy ~ S(a,1,1) i.i.d. For any constants; > 0,c; > 0, we havec;s; + casg ~
S(a, 1, cf + ¢§). More generally,zi]il x;8;~ S (a, 1, Ef\il :UZO‘) if s; ~S(c,1,1)i.i.d.

To sample fromS(«, 1, 1), we first generate an exponential random variable with mean~l
exp(1), and a uniform random variable~ unif (0, ), and then computeshambers et gl1976

11—«

}T ~S(,1,1) 3)

sin (o) i [Sin (u — au)

[sin u cos (am/2)] w

In practice, we can replace the stable distribution with avhidailed distribution in the domain of
attractions keller, 1971), for example Juni f (0, 1)]‘1/ % (at least foro not too close to 1).

1.2. Data Streamsand Linear Projections

The use of maximally-skewed stable random projections doinegative data stream computations
is known asCompressed Counting (CEl.i, 2009ab; Li and Zhang 2011). Prior to the advent
of CC, it was popular to ussymmetric stable random projectiofindyk, 2006 Li, 2008. In the
standardurnstile data stream modeMuthukrishnan 2005, at timet¢, an arriving stream element

(i¢, I;) updates one entry of the data vector in a linear fashiml(ifl): = azg_l) + I;. When the

data streams arrive at high-speed (e.g., network traffig), diynamic nature makes the task more

challenging for computing summary statistics (eEéyzl |z;|?) or for recovering nonzero entries.
Linear projections are naturally capable of handling daéteasns. To see this, suppose we

denote the linear measurements as

N
y](t) = sz('t)sija ,] = 1727 7M (4)
i=1
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When a new stream eleme(it, I;) arrives, we only need to update the measurement as
-1 .
y](t) :y](t ) +Itsit7j7 ] = 1727"'7M (5)

The entriess;, ; are re-generated as needed by using pseudo-random nuiitzens {990, i.e., no
need to materialize the entire design matrix. This is thedsied practice in stream computations.

Note that when the data are nonnegative, jug?, > 0 although the increment; can be either

negative or positive, computing the first moment is triviagcause) Y | \xﬁt)] =N, x§t> =

Zé’:o I;,1.e., merely one counter is needed. Based on this obsaenydti, 2009ab; Li and Zhang

2011 developed efficient estimators @:‘f\il |a:§t)|°‘ for o close to 1. As the Shannon entropy is

essentially the first derivative oF Y | \xl(t)\a asa — 1, this makes the known difficult problem of
entropy estimation a trivial task. In a recent pagérapnd Zhang 2011), merely 10 measurements
seem to be sufficient for nonnegative data stredmand Zhang(2012) also developedorrelated
symmetric stable random projectiof® entropy estimation when the data streams can be negative

For the rest of paper, we will drop the superscfigtin yj(-t) andz", while readers should keep
in mind that our results are naturally applicable to dateastrs.

1.3. Nonnegative Signals

Natural signals (such as images) are often nonnegativeexaonple, in database applications, a user
can delete an existing entry but can not delete an entry wdoels not exist. Compressed sensing
has been popular for estimating large entries in datab&geth(krishnan2005. Readers proba-
bly have noticed that the turnstile data stream model isbigithe histogram modél. In network
applications, monitoring traffic histograms is an impottarechanism for (e.g.,) anomaly detec-
tions (einstein et al.2003. Detecting (recovering) heavy components (e.g., so @¢aiéephant
detection” ghao et al. 2007)) using compressed sensing is an active research topictivories;
see (e.g.,)lin and Kung 2012 Wang et al.20123ab) for some recent work in networks using com-
pressed sensing. Of course, in machine learning applicafe.g.,vision and national language
processing), itis a standard practice to generate featammshistogram (e.g., bag-of-words model).

1.4. TheProposed Algorithm and Main Result

For recovering a nonnegative signgl > 0, i = 1 to N, we collect linear measuremenjs =
SN #isij, j = 110 M, wheres;; ~ S(a,1,1) i.i.d. In this paper, we focus on € (0,0.5]. At
the decoding stage, we estimate the signal coordinatewsisg the followingminimum estimator

Zi min = 1gi§HM Yj/Sij (6)

The number of measuremerits is chosen so th@f\il Pr (2; pmin, — x; > €) < 0 (e.9.,0 = 0.05).

Main Result: Whena € (0, 0.5, it suffices to useM = (Cy + o(1))e (zji , xg) log N/§
measurements so that, with probability- §, all coordinates will be recovered withinadditive
precision, in one scan of the coordinates. The constant= 1 whena — 0 andC, = w/2
whena = 0.5. In particular, whemy — 0, the required number of measurements is essentially
M = K log N/, whereK = S_N  1{z; # 0} is the number of nonzero coordinates of the signal.
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In the literature, it is known that the sample complexity ofmpressed sensing using Gaussian
design (i.e.a = 2) is essentially2K log N/ (Donoho and TanneR009. This means our work
already achieves smaller complexity with an explicit cangtby requiring only one linear scan of
the coordinates. Encouragingly, it is not surprising thatwork in this paper is merely a tip of the
iceberg and we expect many promising research directiombea@xplored along this line.

Organization. We first provide some relevant probability results on th®raf two stable random
variables in Sectio2. Then we analyze the proposed recovery algorithm in Se&imnd present
an experimental study in Sectighto confirm the theoretical results. Sectibris devoted to the
discussions and possible future research problems. ¥isattion6 concludes the paper.

2. Relevant Probability Results on the Ratio of Two Stable Random Variables

Our proposed algorithm utilizes only the ratio statistiggs;; for the recovery task, while the

observed data appear to contain more information, {sg.,s;;) fori = 1,2,..., N, andj =

1,2,..., M. Thus, we first provide an explanation why we restrict omesgko the ratio statistics.
For convenience, we define

N 1/a
- (Z“?> ;0= (0 —a)! (7)
i=1

and denote the probability density functionsgf ~ S(a, 1,1) by fs. By a conditional probability
argument, the joint density 6f;, s;;) can be shown to bg fs(si;) fs (3’3_9&) x 7 fs (yf_e&)
The MLE amounts to findingz;, 6;) to maximize the joint likelihood

L(xi, 0;) = H afs <%> (8)
j=1 ) 7

Interestingly, Lemma. shows thatl(x;, 6;) approaches infinity at the polgs — x;s;; = 0.

Lemmal The likelihood in §) approaches infinity, i.el(x;,0;) — +o0, if y; — x;s;; — 0, for
anyj,1<j <M.

Proof: See AppendiA. O

Lemmal suggests to use the ratio statistiggs;; to recoverz;. By property of stable distributions,

S Test S
wi+ T = 0,2 ©)
Sij Sij Sij S

N
Yi _ =1 TSty _

1/ .
whered; = (Zt# xf‘) “ands;, S, ~ S(a, 1,1) i.id. Recally "), x5y ~ S (a, LY, xf‘).
This result motivates us to study the probability distribatof two independent stable random
variables,S, /S, . For convenience, we also define

Fo(t) = Pr ((52 /87)*/ =) < t) L t>0 (10)
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Lemma2 Foranyt >0, 5,52 ~ S(,1,1),1.i.d.,

1 [ (7 1
F,(t) =P WW®<t:—/ /————dd 11
() =Pr ((S2/50)"" " <t) = 5 | [ g pdumdes (11)
where
; a/(1—a) = o
sin (qug) sinuy | T== sin (ug — qug)
Qo= |—7F—% . -— (12)
sin (quq) sin ug sin (u1 — auy)
In particular, closed-form expressions are available whenr> 0+ or o = 0.5:
, 1 2
QIEOHJF Fo(t) = TH it Fos(t) = —tan Vit (13)
Moreover, for anyt € [0, 1],0 < a1 < ay < 0.5, we have
1 2 1
< < <=
TS F,, (t) < F,,(t) < - tan~1 /1 (14)
Proof: See AppendiB. Figure 1 (left panel) plotsFy, (t) for selectedy values. O

Lemma2 proves that, when — 0+, F,,(t) is of ordert, and whem = 0.5, F,,(t) is of order
V/t. Lemma3 provides a general result tha, (t) = © (¢'7).

Lemma3 For0 <t < a®1-% and0 < a < 0.5,

tl_a
T Cato(1)
Proof: See Appendi. O

Fo(t) (15)

Remarksfor Lemma3:

e The result restricts < a®/(1=®), Herea®/(1=9) is monotonically decreasing inand0.5 <
a®/(1=2) < 1 for a € (0,0.5]. Later we will show that our method indeed uses small
e The constant’,, can be numerically evaluated as shown in Figugght panel).

e At a — 0+, we haveFy, (t) = %m =t—t>+13.... HenceCy, = 1.

e Ata = 0.5, we haveFy5(t) = Ztan™! vt = 2 (/2 —3/2/3 + ...). HenceCy 5 = 7/2.
To close this section, the next Lemma shows that the maxinketihood estimator using the
ratio statistics is actually theainimum estimator

Lemma4 Use the ratio statisticsy;/s;;, j = 1to M. Whenx € (0, 0.5], the maximum likelihood
estimator (MLE) ofx; is the sample minimum

N . Y
Limin = 1IN ¢ (16)
1<G<M 845

Proof: See Appendi®. d

Lemma4 largely explains our proposed algorithm. In the next sective analyze the error
probability ofz; ,,;;, and the sample complexity bound.
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Figure 1: Left panel: F,(t) fort € [0, 1], « = 0.01,0.1,0.2,0.3,0.4,0.5 (from bottom to top).
Right panel: The constan,, as in Lemm&. Numerically, it varies between 1 and2.

3. Analysisof the Proposed Algorithm: Error Probability and Sample Complexity

Our proposed algorithm uses th@nimum estimatot; ,,,;, = mini<;j<u Sy—f The following
<< >

Lemma concerns the tail probability 6f ,,.;,. Becauset; ,,;, always over-estimates;, we only

need to provide a one-sided error probability bound.

Lemma5b
Pr (&1 min — @i > €) = [1 —F, ((e/ei)a/“—a))] . (17)
1 M
=T (e/6:)* (l_a)] 4o

For0 < a <0.5ande¢/6; < a, we have
Pr (& min — 2; > €) = [1 — O (e*/00)]M (19)

In particular, whena = 0.5,

2 € M
Pr (Z; pmin —xi > €, =0.5) = [1 - = tan™? 9—} (20)

Proof: Recalls% =z + 9,-*;—3 and &; ymin = minj<j<p sy—J] We have

Pr (Z; min > x; +€) = Pr <ﬂ>wi+€7 1SJSM>
Sij

o@D b )

The rest of the proof follows from Lemr2aand Lemma3. Recall we have defined im)(that
1/a
0= (XN, ag) " ando; = (9 —ap) /e O
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Remark for Lemma 5. The probability bound ¥8) is convenient to use. However, it is conser-
vative in that it does not give the right order unlesss small (i.e., whern/(1 — a) ~ «). In
comparison, 19) provides the exact order, which will be useful for analggthe precise sample
complexity of our proposed algorithm. As shown in LemBa,(t) = ©(t!~%) holds for rela-
tively smallt < a®/(1=2) In our caset = (¢/6;)*1~), i.e., the result requires/d; < «, or
/0% = ea/(zl];i z) < a®. Whena — 0, this means we neetl X' < 1, which is virtually
always true. For larget, the relationeo‘/(zl];;i xf*) < a® should hold in reasonable settings.

Theorem 6 To ensurezzj.\i1 Pr (2; min — x; > €) < 0, it suffices to choosg/ by
log N/o

M > " og [1 T <(6/9)a/(1_a))} (21)
whereF,, is defined in Lemma. If ¢/6 < 1, then it suffices to use
M log N/§ 22)
log [1 + (6/9)0‘/(1_0‘)]
which is only sharp atv — 0. In general, fora € (0, 0.5] ande/6 < «, the sharp bound is
M > (Co +0(1)) <§>a log N/ (23)

where the constan®,, is the same in Lemnta Whena = 0.5 ande/6 < 1, the explicit bound is

M > g\ﬁ log N/§ (24)
€

Proof: The result 21) follows from Lemm&, (22) from Lemm&2, and @3) from Lemm&B.
We provide more details for the proof of the more precise dd@d). Whena = 0.5,

M log N/o

~ —log [1—2tan™! V5

which can be simplified to b&/ > g\/élog N/é, using the fact that-log (1 — 2 tan™'(2)) >
22,Vz € [0, 1]. To see this inequality, we can check

B, 2 2 2 2
— ([ =log(l — Ztan~1(2)) = 22 ) = a - —
82( &l 7T (2)) T > (1—2tan~12) (1+22)
It suffices to show
2
22— Ztan 'z — Z2%tan" 'z <0
Vs ™

which is true because the equality holds wher 0 or z = 1, and
02 2 2 2 2
Z (22 —Ztanlz—Z2tan 2z ) =22 2ztan_lz+—z >0
022 T T T 14 22

This completes the proof. O



LI ZHANG ZHANG

Remarksfor Theorem 6: The convenient boun®®) is only sharp forx — 0. For example, when
a = 0.5, o/(1 —a) = 1, but the true order should be in terms\@ instead ofe. The other bound
(23) provides the precise order, where the constantis the same as in Lemnta Note that, if
we leta — 0, then (g)a — K. In other words, the complexity for exaéf-sparse recovery is
essentiallyK log N/§ with constant 1. This is a very sharp bound.

It is interesting to compare our complexity boufige ™ Ef\i 1 25 log N/6 with the complexity
bound of Count-Min sketchQormode and Muthukrishna005 O (e_l Zﬁil x; log N/é). First
of all, the bound we prove has the explicit constént which is just 1 whermx — 0. Secondly, the
ordere~® is an improvement over the order'. However, the interesting part Ef\il x versus
SN @ If 2 > 1, thenz$ < a;, and vice versa. This means wheter" | z¢ is smaller than
Zf\il x; will depend on the signal (and whether there are small compisnin the signal).

4. Experiments

Our proposed algorithm for sparse recovery is simple andireg) merely one scan of the coordi-
nates. Our theoretical analysis provides the sharp sampilexity bound with the constant (i.e.,
C,) specified in Figurd (right panel). It is nevertheless still interesting to ¢ an experimental

study. All experiments presented were conducted in Matfab workstation with 256GB memory.

We did not make special effort to optimize our code for immgwefficiency.

We compare our proposed method with two popular packdgbdagic(Candes and Romberg
2005 andSPGL1(van den Berg and Friedland&008?. Although it is not our intension to com-
pare these two solvers, we will present the results of bothilé/t is known that SPGL1 can often
be faster than L1Magic, we observe that in some cases SPGild ©ot achieve the desired accu-
racy. On the other hand, SPGL1 better uses memory and cateHarggr problems than L1Magic.

In each simulation, we randomly selegtout of NV coordinates and set their values)(to be
1. The otherN — K coordinates are set to be 0. To simulate the design mairixe generate
two random matrices{u;; } and{w;;}, ¢ = 1to N, j = 1 to M, whereuw;; ~ unif(0,7) and
w;j ~ exp(l), ii.d. Then we apply the formule] to generate;; ~ («a, 1, 1), for o = 0.04 to 0.5,
spaced at 0.01. We also use the sam@nduw;; to generate standard Gaussi¥(0, 1) variables for
the design matrix used by L1Magic and SPGL1, based on the-fa¢® cos(us;)/wi; ~ N(0,1).

In this experimental setting, sindé = ZiZL x', the sample complexity of our algorithm is
essentiallyM = C,K/e*log N/§, whereCy, = 1 andCy 5 = 7/2 ~ 1.6. In our simulations, we
chooselM by two options: ()M = K log N/¢; (i) M = 1.6K log N/, whereo = 0.01.

1. We must specify some parameters in order to achieve gandames. For L1Magic, we use the following script:
| 1eq_pd(x0, Afun, Atfun, vy, le-3, 100, le-8, 1000);
For SPGL1, after consulting the author @&t den Berg and Friedland®008), we used the following script:

opts = spgSet Parms(’ verbosity’, 0);
opts. opt Tol = le-6; opts.decTol = le-6; spg_bp(A, y, opts);

However, it looks forV = 10, 000, 000 we probably should reduce the tolerance further.
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We compare our method with L1Magic and SPGLL1 in terms of tderroding times and
recovery errors. The (normalized) recovery error is defared

N .

> ; — estimatedr;)?

error = \/ = ;S lTa edr;) (25)
> im1 T

41. M = Klog N/§

Figure 2 presents the recovery errors (left panel) and ratios of doeding times (right panel), for
N = 1,000,000, K = 10, andM = K log N/§ (whereé = 0.01). The results confirm that our
proposed method is computationally efficient and producesrate recovery fow < 0.38.

‘ ‘ ; 600
1| N =1000000, K = 10 o SPGL1TEE
5 M=K log N =
o8l > 500¢
w - =
° L ° _ _
.&, 0.6 § 400 N =:1000000, K =10
Tés 0.4t a M=Klog N
f— “5
202 © 300 i iiiidiieaoiiliiooald
ol SPGLL . § L1Magic / CC
‘ ‘ ‘ L1Magic 200 ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
o} o}

Figure 2: Experiments for comparing our proposed algoritebeled “CC") with SPGL1and
L1Magic for N = 1,000,000, K = 10, andM = Klog N/§ (whereé = 0.01).
For eacho (from 0.04 to 0.5 spaced at 0.01), we conduct simulationstibd€s and re-
port the median results. In tHeft panel, our proposed method (solid curve) produces
very accurate recovery results far < 0.38. For largera values, however, the errors
become large. This is expected because when 0.5, the required number of samples
should be(/2) K log N/§ instead ofK log N/¢. In this case, L1Magic also produces
accuracy recovery results. Note that for all methods, werntdpe top# entries of the
recovered signal as the estimated nonzero entries. Inighe panel, we plot the ratios
of the decoding times. SPGL1 uses about 580 times more tiamedthr proposed method
(which requires only one scan), and L1Magic needs aboutig#stmore time than ours.

Figure3 presents the results for a larger problem, with= 10, 000,000 and K = 10. Because
we can not run L1Magic in this case, we only present the coisgas with SPGL1. Again, our
method is computationally very efficient and produces ateurecovery for about < 0.38.

For « close to 0.5, we need to increase the number of measurerasrgBpwn in the analysis.

42. M = 1.6Klog N/§

To study the behavior as approaches 0.5, we increase the number of measuremeis 1o
1.6K log N/é. Figure4 and Figure5 present the experimental results f5r = 1,000,000 and
N = 10,000,000, respectively. Our algorithm still produces accurate vecp results (with the
normalized errors around 0.007), although the results atlsnax values are even more accurate.
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Figure 3: Experiments for comparing CC with SPGL1, fér= 10,000,000, K = 10, M =
Klog N/ (whered = 0.01). See the caption of Figutefor more details. For this larger
problem, we can not run L1Magic as it simply halts without imgkprogress.

-3

10X 10 50
(O]
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ol K M=1.6K log N
i 0 i i i i
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Figure 4: Experiments for comparing CC with SPGL1 and L1Mafgir N = 1, 000, 000, K = 10,
M = 1.6K log N/§ (whereé = 0.01). In theleft panel, our proposed method (solid
curve) produces accurate recovery results, although tbesencrease with increasing
(the maximum error is around 0.007). In thight panel, we can see that our method is,
respectively, 27 times and 39 times faster than SPGL1 andagiiv

5. Discussions and Future Work

The preprint available arXiv:1310.1076includes more detailed proofs and additional technical
results: (i) the proposed algorithm is very robust againsasnrement noise; and (ii) the minimum
estimator can be further improved by reducing the estimdiias.

While our proposed algorithm based on compressed courgisgriple, fast, and accurate for
the task of exact sparse recovery, it is clear that the woptesented is merely a tip of the iceberg.
We expect many interesting research problems will arisegatbis line for future work.

10
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Figure 5: Experiments for comparing our proposed algoritt@€C) with SPGL1, forN =
10,000,000, K = 10, andM = K log N/é (whered = 0.01).

Choice of .  One important issue is the choice ®f In this paper, our analysis focuses on
a € (0, 0.5] and our theoretical results show that smallevalues lead to better performance.
However, there are numerical issues which prevent us frang @stoo smalk.

For the convenience of discussions, let us consider theogippate mechanism for generating
S(a, 1,1) from U, whereU ~ unif(0,1) (based on the theory of domain of attractioRsl(er,
1971). If o = 0.04, we need to comput& —25, which may potentially create numerical problems.
In our Matlab simulations in Sectio#, we usea € [0.04, 0.5] and we do not notice obvious
numerical issues even with= 0.04. However, if a device (e.g., camera, cell phone, or inexpens
sensor) has limited precision and memory, then we might kavese a larger.. Fortunately, as
shown in Sectior, the performance is not too sensitivecdtoFor example, in our experiments, the
recovery accuracies are good forc 0.38 even when we choos = K log N/4 based onx — 0.

What aboutr > 0.5? The same algorithm (i.e., the ratio statistic and the mimm@stimator)
can still be used but it will require more measurements. Levhivas proved that whem € (0, 0.5],
the minimum estimator is the MLE. We no longer has such a prd@fna > 0.5 and most likely
the estimator is not the MLE ik > 0.5. In this study, for simplicity, we focus on € (0, 0.5].

Dense versus sparse design matrix.  In this paper, we focus on dense design matrix. The
prior work on “very sparse stable random projectionkl’, 2007) showed that one can signifi-
cantly sparsify the design matrix without hurting the pariance in estimating summary statis-
tics. We have a separate tech reportsmarse recovery with very sparse compressed counting
(arXiv:1401.020) (Li et al., 2013, which connects this line of work with the well-known “spar
matrix” algorithm Gilbert and Indyk 2010. In (Li et al., 2013, we proved a general worst-case
boundeK log N /4§, which is an improvement over the result in this paper bezdius complexity
bound does not contain t@f\il x term (although the constant, i.e, might be larger).

Symmetric stableprojectionsfor symmetricsignals. Inaconcurrent workl(i and Zhang2013),

we developed an algorithm for usirgymmetrica-stable projectionsvith very smalla for exact
sparse recovery. The algorithm usethilmimumestimator for detection (of nonzero locations) and
agapestimator for estimation (of nonzero magnitudes), as wedlraiterative procedure for further
improving the estimates. For the task of exact sparse rega¥ymt method is extremely effective.
However, it has a serious disadvantage in that the perfaenarsensitive ta (unlike the proposed
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method in this paper). In fact, the performance would drdpstantially even if« is not too far
away froma = 0. More robust algorithms are needed to overcome this drakvbac

Coding for stable random projections. Due to the use of heavy-tailed design matrix, our mea-
surements are also heavy-tailed. This may raise concerssoi@ge and transmission, because it is
necessary to use a large number of bits to store each meantradonsequently, developing a good
coding scheme for the measurements might be an urgent taglasafrom the practical perspec-
tive. In the past years, we have worked on coding for randajeptions for the task of estimating
summary statistics and approximate near neighbor seaxampmes includeCoding for Random
Projections(ICML 2014) andSign Cauchy Projections and Chi-square Kern@®$PS 2013).

Correlated or dependent stable random projections.  So far we have only used independent
a-stable random projections for sparse recovery. It appedse an interesting idea to take advan-
tage of stable projections simultaneously at multiplealues. Recall an-stable random variable
can be generated from an uniform random variable and an erpi@hrandom variable. Thus, we
can generate multiple-stable random variables for differentvalues from the same uniform and
exponential variables. The hope is that sucboaelated (or more appropriatedependentsta-
ble projection scheme might bring in unexpected improvem)gust like our prior work on using
correlated stable random projections to solve entropynegidon problem (i and Zhang 2012).

6. Conclusion

We develop a new compressed sensing algorithm for nonmeggibssibly streaming) signals, us-
ing Compressed Counting (C@ich is based omaximally-skewed:-stable random projections
Our method produces accurate recovery of nonnegativesspansals and our procedure is compu-
tationally very efficient. The decoding cost is just onedinscan of the coordinates. Our theoretical
analysis provides the sharp complexity bound and our exygtal study confirms the theory.
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Appendix A. Proof of Lemma 1
ForS ~ S(a,1,1), the sampling approach i8)provides a method to compute its CDF

sin (o) [Sin (u— O‘”)} = < s>

w

Fs(s) =Pr ( -
° [sinu cos (am/2)]«

Py ({ [sin (aw)]*/ 1) [sin (u— au)} o /(1_a>>

sin u cos (oz7r/2)]ﬁ w

I e = 1

[sinu cos (am/2)]T==

1
™
1 s
- . —a/(1—a)
77/0 exp{ Ga(u)s }du

fs(s) = /07r exp {—qa(u)s‘a/(l‘a)} Ga(w)a/(1 — a)s™ /0=~y

Hence,
1 yj — l’iSZ’j
0 fs ( 0 >

af/(l — o & 0; a/(1-a) 0; /(1=a) 1
:7/( ) / Ga(u) exp ¢ —qo(u) <7> <7> ——du
™ 0 Yj — TiSij Yj — TiSij (yj - wisij)

Therefore, the likelihood.(z;, 6;) — +oo if y; — z;s;; — 0, providedd; /(y; — z;s;j) — const.
Note that here we can choog&eandz; to maximize the likelihood.

Appendix B. Proof of Lemma 2

SinceSy, Sy ~ S(a, 1,1), i.i.d., we know that

11—«

S — sin (auy) : [sin (ug — aul)} o 7
[sin ug cos (am/2)]« w1

S, — sin (qug) : {Sin (ug — ozu)] e
[sin ug cos (amr/2)]« W2

whereu, uy ~ uniform (0,7), wy,ws ~ exp(1), uy, ug, wi, wy are independent. Thus, we can
write

(52/51)0/(1—04) — Qaﬂ,
w2
1 Oj/(l—()é) 1 lfla 1 —_
Qu = sin (aug) sin ug sin (ug — ausg)
“ [sin (auy) sin ug sin (u1 — auy)
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Using properties of exponential distributions, for &ny 0,

Fo(t) =Pr ((52 /8p)/ (=) < t) — Pr (Qaw1 Jws < 1)

(o)~ [ et
1

Whena — 0+, Q, — 1 point-wise. By dominated convergendg,, (t) = Sy
Whena = 0.5, Q,, can be simplified to be

sin (us /2)] [sin ulr sin (u2/2) _ cos® (u/2)
sin (u1/2) | [sinug | sin(u1/2)  cos? (ug/2)

Qo5 = {

which can be used to obtain the closed-form expressioff@(t):

E
ol / J Q/

t0052 u2/2)
" —————duyd b L
7r2 / 14 beos? (uq) e, ~ tcos? (ug)

= 4 ﬂ/z ! tan™ <\/ 1+ bCOS u1> " du
V14b sinuy / | 2
/ d’LL2
1+ —se(:2 Ug
1/\/1+1/t 1
/ / dz
/1 + 1 — 22

—sm <1/\/ﬁ> —tan_lx/_

To showF,(t) > 1/(1+1/t) for anyt € [0, 1], we first note that the equality holds wheg- 0
andt = 1. To see the latter case, we wrifg, = ¢2/q1, whereq; andg, are i.i.d. Whert = 1,

Fult) = E(1/(1+ g2/a1)) = B (5% ) = § by symmetry.
It remains to showt, (¢) is monotonically increasing ia for fixed¢ € [0, 1]. For convenience,
we defineg, (u) andg, (u), where

—1

Qa = ¢a(u2)/ga(u1),  ga(u) = [sin (au)]*/ "~ [sinu]1=o sin (u — o)

1 1 1 —
(1) = 9logga(u) _ cosau oau N logsinou - e log sinu — uCOS(u au)
-«

Oa sinaul—a (1—a)
We can check that botl, (u) andg, (v) are monotonically increasing in€ [0, 7).

sin(u — au)
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09a(u)  —a au Lcosou o o cosau 1 cosu
ou  sinfoul—a sinoul—-—a (1-a)2sincu (1 —a)?sinu
cos(u — au) (1—-a)u

sin(u —au)  sin?(u — au)

_{ (1-a)u o _au }+{cosau a cos(u—au)}

sin?(u —au)  sinfoul—«

sinaul—a  sin(u — au)

o CoS QL 1 cosu
i { ( ) }

l1—a)sinau (1 —a)?sinu

We consider three terms (in curly brackets) separately hod ¢hey are alb> 0 whena € [0, 0.5].
For the first term,

(1—-a)u o' au

— >0
sin?(u — au) sinfaul—a =

1—« «

sin((1 — a)u) ~ sinau
<=(1 —a)sinau — asin((1 — a)u) >0

where the last inequality holds because the derivativet(w)ris (1—a)a cos au—(1—a)a cos((1—
a)u) > 0. For the second term, it suffices to show

u {acos ausin(u — au) — (1 — a) sin aucos(u — au)} >0
u

2

— — a’sinausin(u — au) + (1 — a)?

sin cusin(u — au) >0
For the third term, it suffices to show
asinu cos au — cos usin au > 0 <= asin(u — au) + (1 — «) cos usin au > 0

Thus, we have proved the monotonicity@f(x) in u € [0, x|, whena € [0, 0.5].
To prove the monotonicity af,, (u) in u, it suffices to check if its logarithm is monotonic, i.e.

_ 1 a2closau+(1_a)2c:<.)s(u—ozu) _oosu) Sy
11—« sin au sin(u —au)  sinu

for which it suffices to show

0
% lOg ané(’LL)

2

o? cos ausin(u — au) sinu + (1 — a)?

cos(u — o) sin au sin u — cos u sin cu sin(u — au) > 0
—a?sin®(u — au) + (1 — a)?sin® au — 2a(1 — @) cos usin ausin(u — au) > 0
= (asin(u — au) — (1 — a)sin au)? + 2a(1 — a)(1 — cos u) sin cu sin(u — au) > 0

At this point, we have proved that both (u) and g, (u) are monotonically increasing im €
[0, 7] at least forx € [0, 0.5].

1 ga(u2)qa(u2)ga (u1)—ga(u1)ga (u1)ga (u2)

OFu(t) _ ¢ 2 (1) 1 (ga(u1)ga(u2) (ga(u1) — ga(u2))
. (1+ ) = (e et )
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By symmetry

aFa(t) _ lE <qu(u1)qu(u2) (.ga(u2) - ga(”l)))
¢ (QQ(U2) +QO¢(UI)/t)2

Thus, to shovxﬁa)%(t) > 0, it suffices to show
o (U1)qa(u2) (galu1) ga u2) u1)qa(u2) (9o (u2) — galu1))
p (i el ) p (e e Rl ) 2o
g <qa(u1)qa(u2) (ga(u1) = galu2)) (g2 (u1) — ¢2(u2)) 2(1/752 - 1)) -
(QQ(UI) +QO¢(U2)/t) th(u2) +qa(u1)/t)

which holds becausg/t? — 1 > 0 and (g (u1) — ga(u2)) (ga(u1) — go(uz)) > 0 as bothg, (v)
andg, (u) are monotonically increasing functionswof [0, 7]. This completes the proof.

Appendix C. Proof of Lemma 3
The goal is to show thak,, (t) = © (¢'~*). By our definition,

1 1
=5 (i)~ (7

t ga(u1)

where
1

1 7=
] sin (u — o)

o () = [sin (qu)]*/ 1) [_

sin u

We can write the integral as

1

w/2 1 e d 1 /2 dusd
wz / 1+t 1 ga(u2) /qalur) " u2+7T2/0 /0 T+t 1gs( uz>/qa<u1> et
7r/2/ 1 dund /7T/2/ dund
+— urdu w1du
772 Tttt ga(u) /o) M2 T2 o Trial u2>/qa< .

where

1

1

sin(m — u)

— [sin (a(r — u))] /0= [L

sinu

o) = sin a(r — )/ | | sin (e~ uar - w)

l—a
} sin (u + a(m — u))
First, using the fact that sin u < sin(au) < au, we obtain

Go(u) > [avsin (w)]*/1=2) {L

1
—a
—a)si — /(=) (1 _
sinu] (1 —a)sin(u) =« (1-a)
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We have proved in the proof of Lemnfathat ¢, (u) is a monotonically increasing function of
u € [0, 7). Sinceqq(r/2) = [sin (ar/2)]/ =Y cos (arr/2), we have

1/4 < o079 (1 — a) < go(u) < [sin (ar/2)]* 0% cos (an/2) <1,  we 0, /2]
In other words, we can view, (u) as a constant (i.eg, (u) < 1) whenu € [0, 7/2].

On the other hand, note thef(u) — oo asu — 0. Moreover, when: € [0, 7/2], we have

au <1 —wuandu — au < u+ a(r — u). Thus,q,(u) dominatesy,(u). Therefore, the order of
F,(t) is determined by one term:

. w/2 /2 1 dund w/2 1 p
w(t) =< updus < ————du
() /0 /0 T g (u) g () 2 /0 Tt /g ()

Since

a/(1-a)
S max{u,a} —a/(1—a) . —1/(1—q)
¢, (u) = i = max {u ,au }

we have, forx € [0, 1/2],

@ 1 w/2 1
)= | ——— S —
Q /01+t—1/qg<u>d”+/a YA M

@ 1 w/2 1
= du + du
o 1+ (at)~1yt/(0-a) o 1+t lye/0-a)

Considert < a®/(1=®_ Because 'u®/(1=%) > (u/a)*/(1=%) > 1 for u > a, we have
w/2 w/2 /2
/ 1 du =< / o du=t l-a u(1-20)/(1=2) =t
R A Py Gty i ge/(-a) 1-2a
uniformly for . < 1/2. Whena = 1/2 (i.e.,t < 1/2), we also have

/2 1 p w/2 1 J | /2
= T -1 =1 t =t
/a 1+ ¢~ 1yo/(1-e) u /1/2 1+t 1y U og(u—i— )’1/2

«

For the other term with € [0, o], we have

/a 1 ! _/WQ 1 d +/a : d
o 1+ (Oét)_lul/(l—a) = 0 1+ (at)—lul/(l—a) u (at)l—a 1+ (Oét)_lul/(l_a) U

(at)l—a 1 a 1
:/ du—l—/ du
0 1+ (Oét)_lul/(l_a) (at)t-o 1+ (at)—lul/(l—a)

«

=(at)'7® — (at) ! ;a u(=e)/(1=a)

(at)t/ (A=)
—(at)' ™ — (1 — @)a =/ =) L 4(1 — o) (at) ™
=t — (1 — @)t~/ (=)

Combining the results, we obtain

Falt) =t (1= o)1) 1 q(=20)/0-)) g1 gm0

This completes the proof.
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Appendix D. Proof of Lemma 4

DefineFz(t) = Pr (g—JJ < t) and fz(t) = F/(t). To find the MLE ofz;, we need to maximize
[1}Z, f2(2;)- Using the result in Lemma, for Sy, S ~ S(a, 1,1), we have

t—l’i

0; >:E 1+( 3 )a/(l—a>Q

Fz(t) = Pr <y—3 < t> — Pr <SQ/S1 <

Sij

9?‘/(1—‘1)Qaa/(1 . a)(t o wi)—l/(l—a)

(1 + (tfiﬁci)a/(l_a) Qa>2

fz(t)=E

fz() =E

where(),, is defined in Lemma& and

2

-\ o/(1=a)
A :9?/(1—04)@&&/(1 —a)(=1/(1 —a))(t — xi)—l/(l—a)—l (1 N < 0; ) 1 Qa>

t—l’i
0; af(1-a) /la 9
+2<1+ <t_w,> Qo | (6774 Quar/(1 = a)(t — ) ~H/1=)
0; a/(1-a) /(1
:<1+<t_m> Qa | 67707 Qaar/ (1 = (¢ = ) MO

b N\ e/0-a) -~
(= (14 (7)) +2uae e

g, \ /0 .
o U G A L R e

t—(L’Z‘

x (-1 - <t _ini>a/(1_a> (1— 2a)>

A < 0if a < 0.5. This meansfz(t) — oo whent — x; and fz(t) is nondecreasing it > x; if
a < 0.5. Therefore, givenV/ observationsz; ; = y;/s;;, the MLE is the sample minimum. This
completes the proof.
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