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Abstract
We establish optimal rates for online regression for arbitrary classes of regression functions in terms
of the sequential entropy introduced in (Rakhlin et al., 2010). The optimal rates are shown to exhibit
a phase transition analogous to the i.i.d./statistical learning case, studied in (Rakhlin et al., 2014b).
In the frequently encountered situation when sequential entropy and i.i.d. empirical entropy match,
our results point to the interesting phenomenon that the rates for statistical learning with squared
loss and online nonparametric regression are the same.

In addition to a non-algorithmic study of minimax regret, we exhibit a generic forecaster that
enjoys the established optimal rates. We also provide a recipe for designing online regression
algorithms that can be computationally efficient. We illustrate the techniques by deriving existing
and new forecasters for the case of finite experts and for online linear regression.

1. Introduction

Within the online regression framework, data (x1, y1), . . . , (xn, yn), . . . arrive in a stream, and we
are tasked with sequentially predicting each next response yt given the current xt and the data
{(xi, yi)}t−1

i=1 observed thus far. Let ŷt denote our prediction, and let the quality of this forecast
be evaluated via square loss (ŷt − yt)2. Within the field of time series analysis, it is assumed that
data are generated according to some model. The parameters of the model can then be estimated
from data, leveraging the laws of probability. Alternatively, in the competitive approach, studied
within the field of online learning, the aim is to develop a prediction method that does not assume a
generative process of the data (Cesa-Bianchi and Lugosi, 2006). The problem is then formulated as
that of minimizing regret

n∑
t=1

(ŷt − yt)2 − inf
f∈F

n∑
t=1

(f(xt)− yt)2 (1)

with respect to some benchmark class of functions F . This class encodes our prior belief about the
family of regression functions that we expect to perform well on the sequence. Notably, an upper
bound on regret is required to hold for all sequences.

In the past twenty years, progress in online regression for arbitrary sequences, starting with the
paper of Foster (1991), has been almost exclusively on finite-dimensional linear regression (an in-
complete list includes (Vovk, 1998; Kivinen and Warmuth, 1997; Vovk, 2001; Cesa-Bianchi, 1999;
Auer et al., 2002; Azoury and Warmuth, 2001; Hazan and Megiddo, 2007; Gerchinovitz, 2013)).
This is to be contrasted with Statistics, where regression has been studied for rich (nonparametric)
classes of functions. Important exceptions to this limitation in the online regression framework –
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and works that partly motivated the present findings – are the papers of Vovk (2007, 2006a,b). Vovk
considers regression with large classes, such as subsets of a Besov or Sobolev space, and remarks
that there appears to be two distinct approaches to obtaining the upper bounds in online competitive
regression. The first approach, which Vovk terms Defensive Forecasting, exploits uniform convex-
ity of the space, while the second – an aggregating technique (such as the Exponential Weights
Algorithm) – is based on the metric entropy of the space. Interestingly, the two seemingly different
approaches yield distinct upper bounds, based on the respective properties of the space. In partic-
ular, Vovk asks whether there is a unified view of these techniques. The present paper addresses
these questions and establishes optimal performance for online regression.

Since most work in online learning is algorithmic, the boundaries of what can be proved are de-
fined by the regret minimization algorithms one can find. One of the main algorithmic workhorses
is the aggregating procedure mentioned above. However, the difficulty in using an aggregating pro-
cedure beyond simple parametric classes (e.g. subsets of Rd) lies in the need for a “pointwise” cover
of the set of functions – that is, a cover in the supremum norm on the underlying space of covari-
ates (see Remark 11). The same difficulty arises when one uses PAC-Bayesian bounds (Audibert,
2009) that, at the end of the day, require a volumetric argument. Notably, this difficulty has been
overcome in statistical learning, where it has long been recognized (since the work of Vapnik and
Chervonenkis) that it is sufficient to consider an empirical cover of the class – a potentially much
smaller quantity. Such an empirical entropy is necessarily finite, and its growth with n is one of the
key complexity measures for i.i.d. learning. In particular, the recent work of Rakhlin et al. (2014b)
shows that the behavior of empirical entropy characterizes the optimal rates for i.i.d. learning with
square loss. To mimic this development, it appears that we need to understand empirical covering
numbers in the sequential prediction framework.

Sequential analogues of covering numbers, combinatorial parameters, and the Rademacher
complexity have been recently introduced in (Rakhlin et al., 2014a). These complexity measures
were shown to both upper and lower bound minimax regret of online learning with absolute loss for
arbitrary classes of functions. These rates, however, are not correct for the square loss case. Con-
sider, for instance, finite-dimensional regression, where the behavior of minimax regret is known
to be logarithmic in n; the Rademacher rate, however, cannot yield rates faster than

√
n. A hint as

to how to modify the analysis for “curved” losses appears in the paper of Cesa-Bianchi and Lugosi
(1999) where the authors derived rates for log-loss via a two-level procedure: the set of densities
is first partitioned into small balls of a critical radius γ; a minimax algorithm is employed on each
of these small balls; and an overarching aggregating procedure combines these algorithms. Regret
within each small ball is upper bounded by classical Dudley entropy integral (with respect to a
pointwise metric) defined up to the γ radius. The main technical difficulty in this paper is to prove
a similar statement using “empirical” sequential covering numbers.1

Interestingly, our results imply the same phase transition as the one exhibited in (Rakhlin et al.,
2014a) for i.i.d. learning with square loss. More precisely, under the assumption of the O(β−p)

behavior of sequential entropy, the minimax regret normalized by time horizon n decays as n−
2

2+p

if p ∈ (0, 2], and as n−1/p for p ≥ 2. We prove lower bounds that match up to a logarithmic factor,
establishing that the phase transition is real. Even more surprisingly, it follows that, under a mild
assumption that sequential Rademacher complexity of F behaves similarly to its i.i.d. cousin, the

1. While we develop our results for square loss, similar statements hold for much more general losses, as will be shown
in the full version of this paper.

2



ONLINE NONPARAMETRIC REGRESSION

rates of minimax regret in online regression with arbitrary sequences match, up to a logarithmic
factor, those in the i.i.d. setting of Statistical Learning. This phenomenon has been noticed for
some parametric classes by various authors (e.g. (Cesa-Bianchi et al., 1997)). The phenomenon is
even more striking given the simple fact that one may convert the regret statement, that holds for
all sequences, into an i.i.d. guarantee. Thus, in particular, we recover the result of (Rakhlin et al.,
2014b) through completely different techniques. Since in many situations, one obtains optimal
rates for i.i.d. learning from a regret statement, the relaxation framework of (Rakhlin et al., 2012)
provides a toolkit for developing improper learning algorithms in the i.i.d. scenario.

After characterizing minimax rates for online regression, we turn to the question of developing
algorithms. We first show that an algorithm based on the Rademacher relaxation is admissible (see
(Rakhlin et al., 2012)) and yields the rates derived in a non-constructive manner in the first part of
the paper. This algorithm is not generally computationally feasible, but, in particular, does achieve
optimal rates, improving on those exhibited by Vovk (2006a) for Besov spaces. We show that further
relaxations in finite dimensional space lead to the famous Vovk-Azoury-Warmuth forecaster. We
also derive a prediction method for finite class F .

2. Background

Let X be some set of covariates, and let F be a class of functions X → [−1, 1] = Y . We study the
online regression scenario where on round t ∈ {1, . . . , n}, xt ∈ X is revealed to the learner who
subsequently makes a prediction ŷt ∈ R; Nature then reveals2 yt ∈ [−B,B]. Instead of (1), we
consider a slightly modified notion of regret

(1− α)
n∑
t=1

(ŷt − yt)2 − inf
f∈F

n∑
t=1

(f(xt)− yt)2 (2)

for some α ∈ [0, 1). It is well-known that an upper bound on such a regret notion leads to the so-
called optimistic rates which scale favorably with the cumulative loss L∗ = inff∈F

∑n
t=1(f(xt)−

yt)
2 (Auer et al., 2002; Srebro et al., 2010). More precisely, suppose we show an upper bound of

U1/α+ U2 on regret in (2). Then regret in (1) is upper bounded by

4
√
L∗U1 + 12U1 + 4U2 (3)

by considering the case L∗ ≥ 4U1 and its converse.
Unlike most previous approaches to the study of online regression, we do not start from an al-

gorithm, but instead directly work with minimax regret. We will be able to extract a (not necessarily
efficient) algorithm after getting a handle on the minimax value. Let us introduce the notation that
makes the minimax regret definition more concise. We use ⟪· · · ⟫nt=1 to denote an interleaved ap-
plication of the operators inside repeated over t = 1 . . . n rounds. With this notation, the minimax
regret of the online regression problem described earlier can be written as

V α
n = ⟪sup

xt
inf
ŷt

sup
yt
⟫
n

t=1

{
(1− α)

n∑
t=1

(ŷt − yt)2 − inf
f∈F

n∑
t=1

(f(xt)− yt)2

}
(4)

2. The assumption of bounded responses can be removed by standard truncation arguments (see e.g. (Gerchinovitz and
Yu, 2013)).
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where each xt ranges over X and ŷt, yt range over [−B,B]. The usual minimax regret notion is
simply given when α = 0 as V 0

n .
As mentioned above, in the i.i.d. scenario it is possible to employ a notion of a cover based on a

sample, thanks to the symmetrization technique. In the online prediction scenario, symmetrization is
more subtle, and involves the notion of a binary tree, the smallest entity that captures the sequential
nature of the problem. To this end, let us state a few definitions. A Z-valued tree z of depth n
is a complete rooted binary tree with nodes labeled by elements of Z . Equivalently, we think of
z as n labeling functions, where z1 is a constant label for the root, z2(−1), z2(+1) ∈ Z are the
labels for the left and right children of the root, and so forth. Hence, for ε = (ε1, . . . , εn) ∈ {±1}n,
zt(ε) = zt(ε1, . . . , εt−1) ∈ Z is the label of the node on the t-th level of the tree obtained by
following the path ε. For a function g : Z → R, g(z) is an R-valued tree with labeling functions
g ◦ zt for level t (or, in plain words, evaluation of g on z).

Next, let us define sequential covering numbers – one of the key complexity measures of F .

Definition 1 (Rakhlin et al. (2014a)) A set V of R-valued trees of depth n forms a β-cover (with
respect to the `q norm) of a function class F ⊆ RX on a given X -valued tree x of depth n if

∀f ∈ F , ∀ε ∈ {±1}n, ∃v ∈ V s.t.
1

n

n∑
t=1

|f(xt(ε))− vt(ε)|q ≤ βq.

A β-cover in the `∞ sense requires that |f(xt(ε)) − vt(ε)| ≤ β for all t ∈ [n]. The size of the
smallest β-cover is denoted by Nq(β,F ,x), and Nq(β,F , n) = supxNq(β,F ,x).

We will refer to supx logNq(β,F ,x) as sequential entropy of F . In particular, we will study
the behavior of V α

n (F) when sequential entropy grows polynomially3 as the scale β decreases:

logN2(β,F , n) ∼ β−p, p > 0. (5)

We also consider the parametric “p = 0” case when sequential covering itself behaves as

N2(β,F , n) ∼ β−d (6)

(e.g. linear regression in a bounded set in Rd). We remark that the `∞ cover is necessarily n-
dependent, so the form we assume there is

N∞(β,F , n) ∼ (n/β)d . (7)

3. Main Results

We now state the main results of this paper. They follow from the more general technical statements
of Lemmas 7, 8, 9 and 10. We normalize V α

n by n in order to make the rates comparable to those in
statistical learning. Further, throughout the paper C, c refer to constants that may depend on B, p.
Their values can be found in the proofs.

Theorem 2 For a class F with sequential entropy growth logN2(β,F , n) ≤ β−p,

3. It is straightforward to allow constants in this definition, and we leave these details out for the sake of simplicity.
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• For p > 2, the minimax regret4 is bounded as 1
nV

0
n ≤ Cn−1/p

• For p ∈ (0, 2), the minimax regret is bounded as 1
nV

0
n ≤ Cn−2/(2+p)

• For the parametric case (6), 1
nV

0
n ≤ Cdn−1 log(n)

• For finite set F , 1
nV

0
n ≤ Cn−1 log |F|

Theorem 3 The upper bounds of Theorem 2 are tight5:

• For p ≥ 2, for any class F of uniformly bounded functions with a lower bound of β−p on
sequential entropy growth, 1

nV
0
n ≥ Ω̃(n−1/p)

• For p ∈ (0, 2], for any class F of uniformly bounded functions, there exists a slightly modified
class F ′ with the same sequential entropy growth such that 1

nV
0
n ≥ Ω̃(n−2/(2+p))

• There exists a class F with the covering number as in (6), such that 1
nV

0
n ≥ Ω(dn−1 log(n))

For the following theorem, we assume that L∗ is known a priori. Adaptivity to L∗ can be
obtained through a doubling-type argument (Shalev-Shwartz, 2007).

Theorem 4 Additionally, the following optimistic rates hold for regret (1):

• For p > 2, regret is upper bounded by C
√
L∗n1−1/(p−1) log(n) + Cn1−1/(p−1) log(n)

• For p ∈ (0, 2), regret is upper bounded by C
√
L∗ log(n) + C log(n). The bound gains an

extra log(n) factor for p = 2

• For the parametric case (7), regret is upper bounded by C
√
L∗d log(n) + Cd log(n)

where L∗ = inff∈F
∑n

t=1(f(xt)− yt)2.

Remark 5 The optimistic rate for p > 2 appears to be slower than the hypothesized
√
L∗n1−2/p +

n1−2/p rate, and we leave the question of obtaining this rate as future work.

Remark 6 If we assume that yt’s are drawn from distributions with bounded mean and subgaussian
tails, the same upper bounds can be shown to hold w.h.p. at the cost of an extra log(n) factor.

Next, we prove the three theorems stated above. The proofs are of the “plug-and-play style”: the
overarching idea is that the optimal rates can be derived simply by assuming an appropriate control
of sequential entropy, be it a parametric or a nonparametric class.
Proof [Proof of Theorem 2] We appeal to Eq. (12) in Lemma 7 below. Fix x,µ and let z denote
the X ×R-valued tree (x,µ). Define the class G = {gf : gf (z) = f(x)−µ, f ∈ F}. Observe that
the values of gf outside of range of z are immaterial. Also note that the covering number of G on
z coincides with the covering number of F on x. Now, Lemma 8 applied to this class G, together
with η ≡ B, yields

V 0
n ≤ 32B2 logN2(γ,F , n) +B inf

ρ∈(0,γ)

{
4ρn+ 12

√
n

∫ γ

ρ

√
logN2(δ,F , n)dδ

}
(8)

4. For p = 2, 1
n
V 0
n ≤ C log(n)n−1/2.

5. The Ω̃(·) notation suppresses logarithmic factors
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We now evaluate the above upper bound for the β−p growth of sequential entropy at scale β. In
particular, for the case p > 2, we may choose γ = 1 (maximum of the function) and ρ = n−1/p.
Then N2(B,F , n) = 1 and the first term disappears. We are left with

B−1V 0
n ≤ 4n1−p + 12

√
n

[(
2

2− p

)
δ(2−p)/2

]B
n−1/p

≤
(

4 +
24

p− 2

)
n1−1/p

For the case p ∈ (0, 2), Eq. (8) gives an upper bound

32B2γ−p +B inf
ρ∈(0,γ)

{
4ρn+ 12

√
n

∫ γ

ρ
δ−p/2dδ

}
(9)

We choose γ = n−1/(p+2) and ρ = n−1:

32B2n
p
p+2 + 4B + 12

√
n

[(
2

2− p

)
δ

2−p
2

]n− 1
p+2

n−1

≤ 4B +

(
32B2 + 12B

(
2

2− p

))
n

p
p+2

For the case p = 2, we gain an extra factor of log(n) since the integral of δ−1 is the logarithm. For
the parametric case (6), we choose γ = n−1/2 and ρ = n−1. Then Eq. (8) yields (for n > 8),

V 0
n ≤ 16B2d log n+ 4B + 12

√
n

∫ n−1/2

n−1

√
d log(1/δ)dδ ≤ 16B2d log n+ 4B + 12

√
d log(n) .

In the finite case, logN2(γ,F , n) ≤ log |F| for any γ. We then have take γ = 0 (one can see that
this value is allowed for the particular case of a finite class; or, use a small enough value). Then,

V 0
n ≤ 32B2 log |F| .

Normalizing by n yields the desired rates in the statement of the theorem.

Proof [Proof of Theorem 3] The first two lower bounds are proved in Lemma 14 and 15. The lower
bound for the parametric case follows from the i.i.d. lower bound in (Rakhlin et al., 2014b).

3.1. Offset Rademacher Complexity and the Chaining Technique

Let us recall the definition of sequential Rademacher complexity of a class F

sup
x

E sup
f∈F

[
n∑
t=1

εtf(xt(ε))

]
(10)

introduced in (Rakhlin et al., 2010), where the expectation is over a sequence of independent
Rademacher random variables ε = (ε1, . . . , εn) and the supremum is over all X -valued trees of
depth n. While this complexity both upper- and lower-bounds minimax regret for absolute loss, it
fails to capture the possibly faster rates one can obtain for regression. We show below that mod-
ified, or offset, versions of this complexity do in fact give optimal rates. These complexities have
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an extra quadratic term being subtracted off. Intuitively, this variance term “extinguishes” the
√
n-

type fluctuations above a certain scale. Below this scale, complexity is given by the Dudley-type
integral. The optimal balance of the scale gives the correct rates. As can be seen from the proof of
Theorem 2, the critical scale γ is trivial (zero) for a finite case, then n−1/2 for a parametric class,
n−1/(p+2) for p ∈ (0, 2], and then becomes irrelevant (e.g. constant) at p > 2. Indeed, for p > 2, the
rate is given purely by sequential Rademacher complexity, as curvature of the loss does not help.
In particular, can achieve these rates for p > 2 by simply linearizing the square loss. The same
phenomenon occurs in statistical learning with i.i.d. data (Rakhlin et al., 2014b).

We remark that Mendelson (2014) studies bounds for estimation with squared loss for the empir-
ical risk minimization procedure and observes that it is enough to only consider one-sided estimates
rather than concentration statements. The offset sequential Rademacher complexities are of this
one-sided nature.

In Lemma 7 below, we provide a bound on minimax regret via offset sequential Rademacher
complexities.

Lemma 7 The minimax value V α
n of online regression with responses yt in a bounded interval

[−B,B] is upper bounded by

V α
n ≤ sup

x,µ,η
Eε sup

f∈F

[
n∑
t=1

4εtηt(ε)(f(xt(ε))− µt(ε))− (f(xt(ε))− µt(ε))
2 − αηt(ε)2

]
(11)

and

V 0
n ≤ sup

x,µ
Eε sup

f∈F

[
n∑
t=1

4Bεt(f(xt(ε))− µt(ε))− (f(xt(ε))− µt(ε))
2

]
(12)

where x ranges over all X -valued trees, µ and η over all [−B,B]-valued trees of depth n and
ε = (ε1, . . . , εn) where each εi is a Rademacher random variable. Furthermore,

V 0
n ≥ sup

x,µ
Eε sup

f∈F

[
n∑
t=1

Bεt(f(xt(ε))− µt(ε))− (f(xt(ε))− µt(ε))
2

]
(13)

where µ ranges over [−B/2, B/2]-valued trees.

We now show that offset Rademacher complexities can be upper bounded by sequential en-
tropies via the chaining technique. Lemma 8 below is an analogue of the Dudley-type integral
bound

sup
x

E sup
g∈G

[
n∑
t=1

εtg(xt(ε))

]
≤ inf

ρ∈(0,1]

{
4ρn+ 12

√
n

∫ 1

ρ

√
logN2(δ,G, z)dδ

}
(14)

for sequential Rademacher proved in (Rakhlin et al., 2014a). Crucially, the upper bound of Lemma 8
allows us to choose a critical scale γ.

Lemma 8 Let η be a [−B,B]-valued tree of depth n. For any Z-valued tree z and a class G of
functions Z → [−A,A] and any γ ∈ (0, A],

E sup
g∈G

[
n∑
t=1

4εtηt(ε)g(zt(ε))− g(zt(ε))
2

]
≤ 32B2 logN2(γ,G, z)

+B inf
ρ∈(0,γ)

{
4ρn+ 12

√
n

∫ γ

ρ

√
logN2(δ,G, z)dδ

}
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For optimistic rates, we can take advantage of an additional offset. This offset arises from the
quadratic term due to the α multiple of the loss of the algorithm.

Lemma 9 Let η be a [−B,B]-valued tree of depth n. For any Z-valued tree z and a class G of
functions Z → [−A,A], for any γ ∈ (0, A],

E sup
g∈G

[
n∑
t=1

4εtηt(ε)g(zt(ε))− g(zt(ε))
2 − αηt(ε)2

]
≤ α−116A2 logN∞(γ,G, z) (15)

+ α−1 inf
ρ∈(0,γ)

{
4ρn+ 16 log(γ/ρ)

∫ γ

ρ
δ logN∞(δ,G, z)dδ

}
The chaining arguments of Lemmas 8 and 9 are based on the following key finite-class lemma:

Lemma 10 Let η be a [−B,B]-valued tree of depth n. For a finite set W of [−A,A]-valued trees
of depth n, it holds that

E max
w∈W

[
n∑
t=1

εtηt(ε)wt(ε)− Cwt(ε)
2 − αηt(ε)2

]
≤ min

{
B2(2C)−1, A2(2α)−1

}
log |W | (16)

for any C ≥ 0, α ≥ 0. It also holds that

E max
w∈W

[
n∑
t=1

εtηt(ε)wt(ε)

]
≤ B

√√√√2 log |W | · max
w∈W,ε1:n

n∑
t=1

wn(ε)2 . (17)

Remark 11 Let us compare the upper bound of Lemma 8 to the bound we may obtain via a metric
entropy approach, as in the work of Vovk (2006a). Assume that F is a compact subset of C(X )
equipped with supremum norm. The metric entropy, denoted by H(ε,F), is the logarithm of the
smallest ε-net with respect to the sup norm on X . An aggregating procedure over the elements of
the net gives an upper bound (omitting constants and logarithmic factors)

nε+H(ε,F) (18)

on regret (1). Here, nε is the amount we lose from restricting the attention to the ε-net, and the
second term appears from aggregation over a finite set. While the balance (18) can yield correct
rates for small classes, it fails to capture the optimal behavior for large nonparametric sets of
functions. Indeed, for an O(ε−p) behavior of metric entropy, Vovk concludes the rate of O

(
n

p
p+1

)
.

For p ≤ 2, this is slower than the O
(
n

p
p+2

)
rate one obtains from Lemma 8 by trivially upper

bounding the sequential entropy by metric entropy. The gain is due to the chaining technique, a
phenomenon well-known in statistical learning theory. Our contribution is to introduce the same
concepts to the domain of online learning. Let us also mention that sequential covering number of
F is an “empirical” quantity and is finite even if we cannot upper bound metric entropy.
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4. Further Examples

For the sake of illustration we show bounds on minimax rates for a couple of examples.

Example 1 (Sparse linear predictors) Let G = {g1, . . . , gM} be a set of M functions such that
each gi : X 7→ [−1, 1]. DefineF to be the convex combination of at most s out of theseM functions.
That is

F =


s∑
j=1

αjgσj : σ1:s ⊂ [M ],∀j, αj ≥ 0,
s∑
j=1

αj = 1


For this example note that the sequential covering number can be easily upper bounded: we can
choose s out of M functions in

(
M
s

)
ways and further the `∞ metric entropy for convex combination

of s bounded functions at scale β is bounded as β−s. We conclude that

N2(β,F , n) ≤
(
eM

s

)s
β−s

From the main theorem, the upper bound is 1
nV

0
n ≤ O

(
s log(M/s)

n

)
.

Example 2 (Besov Spaces) Let X be a compact subset of Rd. Let F be a ball in Besov space
Bs
p,q(X ). When s > d/p, pointwise metric entropy bounds at scale β scale as Ω(β−d/s) (Vovk,

2006a, p. 20). On the other hand, when s < d/p, and p > 2, one can show that the space is a
p-uniformly convex Banach space. From (Rakhlin et al., 2014a), it can be shown that sequential
Rademacher can be upper bounded by O(n1−1/p), yielding a bound on minimax rate. These two
controls together give the bound on the minimax rate. The generic forecaster with Rademacher
complexity as relaxation (see Section 6), enjoys the best of both of these rates. More specifically, we
may identify the following regimes:

• If s ≥ d/2, the minimax rate is O
(
n1− 2s

2s+d

)
.

• If s < d/2, the minimax rate depends on the interaction of p and d, s:

– if p > d
s , the minimax rate is O

(
n1− s

d

)
, otherwise, the rate is O

(
n

1− 1
p

)
5. Lower Bounds

The lower bounds will involve a notion of a “dimension” of F called the sequential fat-shattering
dimension. Let us introduce this notion.

Definition 12 An X -valued tree of depth d is said to be β-shattered byF if there exists an R-valued
tree s of depth d such that

∀ε ∈ {±1}d, ∃f ε ∈ F s.t. εt(f
ε(xt(ε))− st(ε)) ≥ β/2

for all t ∈ {1, . . . , d}. The tree s is called a witness. The largest d for which there exists a β-
shattered X -valued tree is called the (sequential) fat-shattering dimension, denoted by fatβ(F).

The sequential fat-shattering dimension is related to sequential covering numbers as follows:

9
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Theorem 13 (Rakhlin et al. (2014a)) Let F be a class of functions X → [−1, 1]. For any β > 0,

N2(β,F , n) ≤ N∞(β,F , n) ≤
(

2en

β

)fatβ(F)

.

Therefore, if logN2(β,F , n) ≥ (c/β)p, then fatβ(F) ≥ (c/β)p/(log(2en/β)) .

The lower bounds will now be obtained assuming fatβ(F) ≥ C/βp behavior of the fat-shattering
dimension, and the resulting statement of Theorem 3 in terms of the sequential entropy growth will
involve extra logarithmic factors, hidden in the Ω̃(·) notation.

Lemma 14 Consider the problem of online regression with responses bounded by B = 4. For any
class F of functions X → [−1, 1] and any β > 0 and n = fatβ(F),

1

n
V 0
n ≥ β

In particular, if fatβ(F) ≥ C/βp for p > 0, we have 1
nV

0
n ≥ Cn−1/p .

Lemma 15 For any class F ′ and β > 0, there exists a modified class F such that fatβ(F) ≤
2fatβ(F ′) + 4 and for n > fatβ(F),

1

n
V 0
n ≥ C

(
2
√

2β

√
fatβ(F)

n
− β2

)
.

In particular, when p ∈ (0, 2] and fatβ(F) ≥ C/βp, 1
nV

0
n ≥ Cn

− 2
p+2 .

6. Relaxations and Algorithms

To design generic forecasters for the problem of online non-parametric regression we follow the
recipe provided in (Rakhlin et al., 2012). It was shown in that paper that if one can find a relaxation
Reln (a sequence of mappings from observed data to reals) that satisfies initial and admissibil-
ity conditions then one can build estimators based on such relaxations. Specifically, we look for
relaxations that satisfy the following initial condition

Reln (x1:n, y1:n) ≥ − inf
f∈F

n∑
t=1

(f(xt)− yt)2

and the recursive admissibility condition that for any t ∈ [n] and any xt ∈ X

inf
ŷt∈[−B,B]

sup
yt∈[−B,B]

{
(ŷt − yt)2 + Reln (x1:t, y1:t)

}
≤ Reln (x1:t−1, y1:t−1) (19)

If a relaxation Reln satisfies these two conditions then one can define an algorithm via

ŷt = argmin
ŷ∈[−B,B]

sup
yt∈[−B,B]

{
(ŷ − yt)2 + Reln (x1:t, y1:t)

}

10
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and for this forecast the associated bound on regret is (see (Rakhlin et al., 2012) for details) :

Regn :=
n∑
t=1

(ŷt − yt)2 − inf
f∈F

n∑
t=1

(f(xt)− yt)2 ≤ Reln (·)

Now further note that if (ŷ − yt)
2 + Reln (x1:t, (y1:t−1, yt)) is a convex function of yt then the

prediction takes a very simple form, as the supremum over yt is attained either at B or −B. The
prediction can be written as

ŷt = argmin
ŷ∈[−B,B]

max
{

(ŷ −B)2 + Reln (x1:t, (y1:t−1, B)) , (ŷ +B)2 + Reln (x1:t, (y1:t−1,−B))
}

Observe that the first term decreases as ŷ increases toB and likewise the second term monotonically
decreases as ŷ decreases to−B. Hence the solution to the above is given when both terms are equal
(if this doesn’t happen within the range [−B,B] then we clip). In other words,

ŷt = Clip

(
Reln (x1:t, (y1:t−1, B))−Reln (x1:t, (y1:t−1,−B))

4B

)
Hence, for any admissible relaxation such that (ŷ − yt)

2 + Reln (x1:t, (y1:t−1, yt)) is a convex
function of yt, the above prediction based on the relaxation enjoys the bound on regret 1

nReln.
We now claim that the following conditional version of Equation (12) gives an admissible re-

laxation and leads to a method that enjoys the regret bounds shown in the first part of the paper.

Lemma 16 The following relaxation is admissible :

Rn(x1:t, y1:t) = sup
x,µ

Eε sup
f∈F

 n∑
j=t+1

4Bεj(f(xj(ε))− µj(ε))− (f(xj(ε))− µj(ε))
2 −

t∑
j=1

(f(xj)− yj)2


The forecast corresponding to this relaxation is given by :

ŷt = (4B)−1 (Rn(x1:t, (y1:t−1, B))−Rn(x1:t, (y1:t−1,−B)))

The above algorithm enjoys the regret bound of an offset Rademacher complexity:

Regn ≤ sup
x,µ

Eε sup
f∈F

[
n∑
t=1

4Bεt(f(xt(ε))− µt(ε))− (f(xt(ε))− µt(ε))
2

]

Since the regret bound for the above forecaster is exactly the one given in Equation (12), the upper
bounds provided for V 0

n in Theorem 2 hold for the above algorithm.

6.1. Recipe for designing online regression algorithms

We now provide a schema for deriving forecasters for general online non-parametric regression :

1. Find relaxation Reln s.t. Rn (x1:t, y1:t) ≤ Reln (x1:t, y1:t), and (ŷ−yt)2+Rn (x1:t, (y1:t−1, yt))
is convex in yt

11



RAKHLIN SRIDHARAN

2. Check the condition

sup
xt∈X ,pt∈∆([−B,B])

{
Eyt∼pt

[(
Eyt∼pt [yt]− yt

)2]
+ Eyt∼pt [Reln (x1:t, y1:t)]

}
≤ Reln (x1:t−1, y1:t−1)

3. Given xt, the prediction ŷt is given by ŷt = Clip
(
Reln(x1:t,(y1:t−1,B))−Reln(x1:t,(y1:t−1,−B))

4B

)
Proposition 17 For algorithm derived from the above schema, Regn ≤ Reln (·)

Example : Finite class of experts
As an example of estimator derived from the schema we first consider the simple case |F| <∞.

Corollary 18 The following is an admissible relaxation :

Reln (x1:t, y1:t) = B2 log

∑
f∈F

exp

−B−2
t∑

j=1

(f(xj)− yj)2


It leads to the following algorithm

ŷt = Clip

(
B

4
log

(∑
f∈F exp(−B−2

∑t−1
j=1(f(xj)−yj)2−B−2(f(xt)−B)2)∑

f∈F exp(−B−2
∑t−1
j=1(f(xj)−yj)2−B−2(f(xt)+B)2)

))
and enjoys a regret bound Regn ≤ B2 log |F| .

Example : Linear regression
Next, consider the problem of online linear regression in Rd. Here F is the class of linear functions.
For this problem we consider a slightly modified notion of regret :

n∑
t=1

(ŷt − yt)2 − inf
f∈F

{
n∑
t=1

(f>xt − yt)2 + λ ‖f‖22

}
This regret can be seen alternatively as regret if we assume that on rounds −d+ 1 to 0 Nature plays
(λe1, 0),. . . , (λed, 0), where {ei} are the standard basis vectors, and that on these rounds the learner
(knowing this) predicts 0, thus incurring zero loss over these initial rounds. Hence we can readily
apply the schema for designing an algorithm for this problem.

Corollary 19 For any λ > 0, the following is an admissible relaxation

Reln (x1:t, y1:t) =

∥∥∥∥∥∥
t∑

j=1

yjzj

∥∥∥∥∥∥
2

(
∑t
j=1 zjz

>
j +λI)

−1

+ 4B2 log

 (
n
d

)d
∆
(∑t

j=1 zjz
>
j + λI

)
− t∑

j=1

y2
j .

It leads to the Vovk-Azoury-Warmuth forecaster (Vovk, 1998; Azoury and Warmuth, 2001):

ŷt = Clip

x>t
 t∑
j=1

xjx
>
j + λI

−1 t−1∑
j=1

yjxj


and enjoys the regret bound :

1

n

n∑
t=1

(ŷt − yt)2 ≤ 1

n

n∑
t=1

(f>xt − yt)2 +
λ

2n
‖f‖22 +

4dB2 log
(
n
λd

)
n

12
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Appendix A. Proofs

Proof [Proof of Lemma 7] Let us now study the value (4). We will do so “from inside out” by
considering the last step t = n, then working our way back to t = 1. Given a value xn, by the
minimax theorem,

inf
qn

sup
pn

Eŷn∼qn,yn∼pn

{
(1− α)(ŷn − yn)2 + sup

f∈F

n∑
t=1

−(f(xt)− yt)2

}
(20)

= sup
pn

{
(1− α) inf

ŷn
Eyn(ŷn − yn)2 + Eyn sup

f∈F

n∑
t=1

−(f(xt)− yt)2

}

= sup
pn

Eyn

{
(1− α)(µn − yn)2 + sup

f∈F

n∑
t=1

−(f(xt)− yt)2

}
(21)

where µn = E[yn] under the distribution pn with support on [−B,B]. Observe that

(µn − yn)2 − (f(xn)− yn)2 = 2(yn − µn)(f(xn)− µn)− (f(xn)− µn)2 (22)

and hence the expression in (20) can be written as

sup
pn

Eyn sup
f∈F

[
n−1∑
t=1

−(f(xt)− yt)2 +
{

2(yn − µn)(f(xn)− µn)− (f(xn)− µn)2 − α(µn − yn)2
}]

Continuing in this fashion back to t = 1, the minimax value is equal to

V α
n = ⟪sup

xt
sup
pt

Eyt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

2(yt − µt)(f(xt)− µt)− (f(xt)− µt)2 − α(µt − yt)2

]}
.

(23)

The supremum over pt can now be upper bounded by the supremum over the mean µt ∈ [−B,B]
and a zero-mean distribution p′t with support on [−B,B]. Denoting by ηt a random variable with
this distribution p′t, the variable µt + ηt is then in [−2B, 2B]. We upper bound (23) by

V α
n ≤ ⟪sup

xt
sup
p′t,µt

Eηt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

2ηt(f(xt)− µt)− (f(xt)− µt)2 − αη2
t

]}
. (24)

Since the −αη2 term does not depend on f , we use linearity of expectation to write

V α
n = ⟪sup

xt
sup
p′t,µt

Eηt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

2ηt(f(xt)− µt)− (f(xt)− µt)2 −D(p′1, . . . , p
′
n)

]}
(25)

where

D(p′1, . . . , p
′
n) =

1

n

n∑
t=1

αEη2
t .

15



RAKHLIN SRIDHARAN

We now symmetrize the linear term. Let (η′t) be a sequence tangent to (ηt) (that is, ηt and η′t are
i.i.d. conditionally on η1:t−1). We write µt = E[η′t] and use convexity of the supremum to arrive at
an upper bound

V α
n ≤ ⟪sup

xt
sup
p′t,µt

Eηt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

2(ηt − η′t)(f(xt)− µt)− (f(xt)− µt)2 −D(p′1, . . . , p
′
n)

]}
(26)

= ⟪sup
xt

sup
p′t,µt

Eηt,η′t Eεt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

2εt(ηt − η′t)(f(xt)− µt)− (f(xt)− µt)2 −D(p′1, . . . , p
′
n)

]}
(27)

where in the second equality holds because η′t and ηt are i.i.d. from p′t, conditionally on the past
observations. We now split the above supremum over f into two parts, thus passing to the upper
bound

⟪sup
xt

sup
pt,µt

Eηt,η′t Eεt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

2εtηt(f(xt)− µt)−
1

2
(f(xt)− µt)2 − 1

2
D(p′1, . . . , p

′
n)

]}

+ ⟪sup
xt

sup
pt,µt

Eηt,η′t Eεt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

−2εtη
′
t(f(xt)− µt)−

1

2
(f(xt)− µt)2 − 1

2
D(p′1, . . . , p

′
n)

]}

= ⟪sup
xt

sup
p′t,µt

Eηt∼pt Eεt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

4εtηt(f(xt)− µt)− (f(xt)− µt)2 −D(p′1, . . . , p
′
n)

]}

= ⟪sup
xt

sup
p′t,µt

Eηt∼pt Eεt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

4εtηt(f(xt)− µt)− (f(xt)− µt)2 − αη2
t

]}

≤ ⟪sup
xt

sup
µt,ηt

Eεt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

4εtηt(f(xt)− µt)− (f(xt)− µt)2 − αη2
t

]}

= sup
x,µ,η

Eε sup
f∈F

[
n∑
t=1

4εtηt(ε)(f(xt(ε))− µt(ε))− (f(xt(ε))− µt(ε))
2 − αηt(ε)2

]

This proves the first statement. For the case α = 0, we have

V 0
n ≤ sup

x,µ,η
Eε sup

f∈F

[
n∑
t=1

4εtηt(ε)(f(xt(ε))− µt(ε))− (f(xt(ε))− µt(ε))
2

]

= ⟪ sup
xt,µt,ηt

Eεt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

4εtηt(f(xt)− µt)− (f(xt)− µt(ε))2

]}
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Since each ηt range over [−B,B], we can represent it as B times the expectation of a random
variable ut ∈ {−1, 1}. Denoting this distribution by qt, by Jensen’s inequality

V 0
n ≤ ⟪ sup

xt,µt,qt
Eεt⟫

n

t=1

{
sup
f∈F

[
n∑
t=1

4εtE(ut)B(f(xt)− µt)− (f(xt)− µt(ε))2

]}

≤ ⟪ sup
xt,µt,qt

Eut Eεt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

4εtutB(f(xt)− µt)− (f(xt)− µt(ε))2

]}

= ⟪ sup
xt,µt,ut

Eεt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

4εtutB(f(xt)− µt)− (f(xt)− µt(ε))2

]}

= ⟪sup
xt,µt

Eεt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

4εtB(f(xt)− µt)− (f(xt)− µt(ε))2

]}
which is the same as the desired upper bound in (12), in the tree notation.

As for the lower bound, Recall from Eq. (23) that the value with α = 0 is equal to

V 0
n = ⟪sup

xt
sup
pt

Eyt⟫
n

t=1

{
sup
f∈F

[
n∑
t=1

2(yt − µt)(f(xt)− µt)− (f(xt)− µt)2

]}
. (28)

For the purposes of a lower bound, let us pick particular distributions pt as follows. Let ε1, . . . , εn be
independent Rademacher random variables. Fix a [−B/2, B/2]-valued tree µ. Let yt = µt(ε1:t−1)+
(B/2)εt. Hence, yt ∈ [−B,B] as required. We can then lower bound the above expression as

V 0
n ≥ sup

µ
⟪sup

xt
Eεt⟫

n

t=1

{
sup
f∈F

[
n∑
t=1

2εt(f(xt)− µt(ε))− (f(xt)− µt(ε))
2

]}

= sup
x,µ

E sup
f∈F

[
n∑
t=1

Bεt(f(xt(ε))− µt(ε))− (f(xt(ε))− µt(ε))
2

]

Proof [Proof of Lemma 10] For any λ > 0,

E max
w∈W

[
n∑
t=1

εtηt(ε)wt(ε)− Cwt(ε)
2 − αηt(ε)2

]
≤ 1

λ
logE

∑
w∈W

exp

{
n∑
t=1

λεtηt(ε)wt(ε)− λCwt(ε)
2 − λαηt(ε)2

}

Conditioning on ε1:n−1, we analyze

E

[ ∑
w∈W

exp

{
n∑
t=1

λεtηt(ε)wt(ε)− λCwt(ε)
2 − λαηt(ε)2

} ∣∣∣∣∣ ε1:n−1

]

=
∑
w∈W

exp

{
n−1∑
t=1

λεtηt(ε)wt(ε))−
n∑
t=1

λCwt(ε)
2 −

n∑
t=1

λαηt(ε)
2

}
E [exp {λεnηn(ε)wn(ε)} | ε1:n−1]

≤
∑
w∈W

exp

{
n−1∑
t=1

λεtηtwt(ε)−
n−1∑
t=1

λCwt(ε)
2 −

n−1∑
t=1

λαηt(ε)
2

}
exp

{
λ2ηn(ε)2wn(ε)2/2− λCwn(ε)2 − λαηn(ε)2

}
(29)
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The choice λ = 2C/B2 ensures

λ2ηn(ε)2wn(ε)2/2− λCwn(ε)2 ≤ 0

Alternatively, the choice λ = 2α/A2 ensures

λ2ηn(ε)2wn(ε)2/2− λαηn(ε)2 ≤ 0

In both cases, the exponential factor peeled off in (29) is no greater than 1. We proceed all the way
to t = 1 to arrive at an upper bound of

1

λ
log

∑
w∈W

exp{0} = min
{
B2(2C)−1, A2(2α)−1

}
log |W | .

The second statement (which already appears in Rakhlin et al. (2010)) is proved similarly, except
the tuning value λ is chosen at the end, and we need to account for the worst-case `2 norm along
any paths. For any tree w ∈W ,

E

[
exp

{
n∑
t=1

λεtηt(ε)wt(ε)

} ∣∣∣∣∣ ε1:n−1

]
≤ exp

{
n−1∑
t=1

λεtηt(ε)wt(ε)

}
exp

{
B2λ2wn(ε)2/2

}
≤ exp

{
n−1∑
t=1

λεtηt(ε)wt(ε)

}
max
εn

exp
{
B2λ2wn(ε)2/2

}
Continuing in this fashion backwards to t = 1, for any w ∈W

E

[
exp

{
n∑
t=1

λεtηt(ε)wt(ε)

}]
≤ max

ε1,...,εn
exp

{
B2(λ2/2)

n∑
t=1

wn(ε)2

}
and thus

E

[∑
w∈W

exp

{
n∑
t=1

λεtηt(ε)wt(ε)

}]
≤ |W | max

ε1,...,εn
max
w∈W

exp

{
B2(λ2/2)

n∑
t=1

wn(ε)2

}
.

Choosing

λ =

√
2 log |W |

B2 maxε1:n,w∈W
∑n

t=1 wn(ε)2

we obtain

E max
w∈W

[
n∑
t=1

εtηt(ε)wt(ε)

]
≤ 1

λ
logE

[ ∑
w∈W

exp

{
n∑
t=1

λεtηt(ε)wt(ε)

}]
≤ B

√√√√2 log |W | · max
w∈W,ε1:n

n∑
t=1

wn(ε)2

Proof [Proof of Lemma 8] Let V ′ be a sequential γ-cover of G on z in the `2 sense, i.e.

∀ε, ∀g ∈ G, ∃v ∈ V ′ s.t.
1

n

n∑
t=1

(g(zt(ε))− vt(ε))
2 ≤ γ2
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Let us augment V ′ to include the all-zero tree, and denote the resulting set by V = V ′∪{0}. Denote
by v[ε, g] a γ-close tree promised above, but we leave the choice for later. Then for any c ∈ [0, 1]

E sup
g∈G

[
n∑
t=1

4εtηt(ε)g(zt(ε))− g(zt(ε))
2

]
(30)

= E sup
g∈G

[
n∑
t=1

4εtηt(ε)
(
g(zt(ε))− v[ε, g]t(ε)

)
−
(
g(zt(ε))

2 − c2v[ε, g]t(ε)
2
)

(31)

+
(

4εtηt(ε)v[ε, g]t(ε)− c2v[ε, g]t(ε)
2
)]

(32)

≤ E sup
g∈G

[
n∑
t=1

4εtηt(ε)
(
g(zt(ε))− v[ε, g]t(ε)

)
−

n∑
t=1

(
g(zt(ε))

2 − c2v[ε, g]t(ε)
2
)]

(33)

+ Emax
v∈V ′

[
n∑
t=1

4εtηt(ε)vt(ε)− c2vt(ε)
2

]
(34)

We now claim that for any ε, g there exists an element v[ε, g] ∈ V such that

n∑
t=1

g(zt(ε))
2 ≥ c2

n∑
t=1

v[ε, g]t(ε)
2 (35)

and so we can drop the corresponding negative term in the supremum over G. To prove this claim,
first consider the easy case 1

n

∑n
t=1 g(zt(ε))

2 ≤ C2γ2, where C = c
1−c . Then we may choose

0 ∈ V as a tree that provides a sequential Cγ-cover in the `2 sense. Clearly, (35) is then satisfied
with this choice of v[ε, g] = 0. Now, assume 1

n

∑n
t=1 g(zt(ε))

2 > C2γ2. Fix any tree v[ε, g] ∈ V
that is γ-close in the `2 sense to g on the path ε. Denote u = (v[ε, g]1(ε), . . . ,v[ε, g]n(ε)) and
h = (g(z1(ε)), . . . , g(zn(ε))). Thus, we have that ‖u − h‖ ≤ γ and ‖h‖ ≥ Cγ for the norm
‖h‖2 = 1

n

∑n
t=1 h

2
t . Then

‖u‖ ≤ ‖u− h‖+ ‖h‖ ≤ γ + ‖h‖ ≤ (C−1 + 1)‖h‖

and thus ‖h‖ ≥ c‖u‖ as desired. By choosing c = 1/2, we have C = 1 and thus the zero tree also
provides a γ-cover.

We conclude that

E sup
g∈G

[
n∑
t=1

4εtηt(ε)g(zt(ε))− g(zt(ε))
2

]
≤ 4E sup

g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]t(ε)

)]
(36)

+ Emax
v∈V ′

[
n∑
t=1

4εtηt(ε)vt(ε)− (1/4)vt(ε)
2

]
(37)

where v[ε, g] is defined to be the all-zero tree if 1
n

∑n
t=1 g(zt(ε))

2 ≤ γ2 and otherwise as an element
of the cover V ′ that is γ-close to g on the path ε.

By Lemma 10, the term (37) is upper bounded as

Eε max
v∈V ′

[
n∑
t=1

4εtηt(ε)vt(ε)− (1/4)vt(ε)
2

]
≤ 32B2 logN2(γ,G, z)
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We now turn to the analysis of the first term on the right-hand side of (36). Let v[ε, g] be denoted
by v[ε, g]0 and V be denoted by V 0. Let V j denote a sequential (2−jγ)-cover of G on the tree z,
for j = 1, . . . , N , N ≥ 1 to be specified later. We can now write

E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]0t (ε)

)]

= E sup
g∈G

 n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]Nt (ε)

)
+

n∑
t=1

N∑
j=1

εtηt(ε)
(
v[ε, g]jt (ε)− v[ε, g]j−1

t (ε)
)

≤ E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]Nt (ε)

)]
+

N∑
j=1

E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
v[ε, g]jt (ε)− v[ε, g]j−1

t (ε)
)]

From here, the analysis is very similar to the one in Rakhlin et al. (2014a), except for the additional
random variables ηt(ε) multiplying the differences, and also for the minor fact that v[ε, g]0 is de-
fined as 0 for some (g, ε) pairs. This latter fact, however, does not affect the proof since 0 does
provide a valid γ-cover when it is used.

First, by Cauchy-Schwartz inequality,

E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]Nt (ε)

)]
≤ nE sup

g∈G

[
n∑
t=1

(
εtηt(ε)√

n

)(
1√
n

(
g(zt(ε))− v[ε, g]Nt (ε)

))]

≤ nE

(
1

n

n∑
t=1

ηt(ε)
2

)−1/2

βN

≤ BβNn

where βj = 2−jγ. For the second term, fix a particular j and consider all pairs (vs,vr) with
vs ∈ V j and vr ∈ V j−1. For each such pair, define a tree w(s,r) by

w
(s,r)
t (ε) =

{
vst (ε)− vrt (ε) if there exists g ∈ G s.t. vs = v[g, ε]j ,vr = v[g, ε]j−1

0 otherwise.

for all t ∈ [n] and ε ∈ {±1}n. One can check that the tree is well-defined, and we set

Wj =
{
w(s,r) : 1 ≤ s ≤ |Vj |, 1 ≤ r ≤ |Vj−1|

}
.

Then for any j ∈ [N ] and ε,

sup
g∈G

[
n∑
t=1

εtηt(ε)
(
v[ε, g]jt (ε)− v[ε, g]j−1

t (ε)
)]
≤ max

w∈W

[
n∑
t=1

εtηt(ε)wt(ε)

]

By the argument outlined in (Rakhlin et al., 2014a), for any w ∈W j and any path ε,√√√√ n∑
t=1

wt(ε)2 ≤ 3
√
nβj .
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Putting everything together, and using Lemma 10,

Eε sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]0t (ε)

)]
≤ BβNn+B

√
n

N∑
j=1

3βj

√
2 log(|V j ||V j−1|)

and the last term is upper bounded by

6B
√
n

N∑
j=1

βj

√
log(|V j |) ≤ 12B

√
n

N∑
j=1

(βj − βj+1)
√

log(|V j |) ≤ 12B
√
n

∫ β0

βN+1

√
logN2(δG, z)dδ

Given any ρ ∈ (0, γ), we let N = max{j : βj > 2ρ}. Then βN < 4ρ and βN+1 > ρ, and thus

E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]0t (ε)

)]
≤ B inf

ρ∈(0,γ)

{
4ρn+ 12

√
n

∫ γ

ρ

√
logN2(δ,G, z)dδ

}
This concludes the proof.

Proof [Proof of Lemma 9] The proof closely follows that of Lemma 8, except for the way we use
Lemma 10 to take advantage of the subtracted quadratic term. We also employ an `∞ notion of
sequential cover, rather than `2. To this end, let V ′ be a sequential γ-cover of G on z in the `∞
sense, i.e.

∀ε, ∀g ∈ G, ∃v ∈ V ′ s.t. max
t∈[n]
|g(zt(ε))− vt(ε)| ≤ γ

As before, let V = V ′ ∪ {0} and denote by v[ε, g] a γ-close tree promised by the definition. As in
(30), for any c ∈ [0, 1],

E sup
g∈G

[
n∑
t=1

4εtηt(ε)g(zt(ε))− g(zt(ε))
2 − αηt(ε)2

]

≤ E sup
g∈G

[
n∑
t=1

{
4εtηt(ε)

(
g(zt(ε))− v[ε, g]t(ε)

)
− α

2
ηt(ε)

2
}
−

n∑
t=1

(
g(zt(ε))

2 − c2v[ε, g]t(ε)
2
)]

+ Emax
v∈V ′

[
n∑
t=1

4εtηt(ε)vt(ε)− c2vt(ε)
2 − α

2
ηt(ε)

2

]

Following the proof of Lemma 8, we claim that for any ε, g there exists an element v[ε, g] ∈ V such
that for any t ∈ [n],

|g(zt(ε))| ≥ c|v[ε, g]t(ε)| (38)

First consider the easy case ‖g(zt(ε))‖∞ ≤ Cγ, whereC = c
1−c . Then 0 ∈ V provides a sequential

Cγ-cover in the `∞ sense. If, on the other hand, ‖g(zt(ε))‖∞ > Cγ, we fix any tree v[ε, g] ∈ V that
is γ-close in the `∞ sense to g on the path ε. With the same argument as in the proof of Lemma 8,
we conclude (38).
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Hence,

E sup
g∈G

[
n∑
t=1

4εtηt(ε)g(zt(ε))− g(zt(ε))
2 − αηt(ε)2

]

≤ 4E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]t(ε)

)
− α

2
ηt(ε)

2

]
(39)

+ Emax
v∈V ′

[
n∑
t=1

4εtηt(ε)vt(ε)− (1/4)vt(ε)
2 − α

2
ηt(ε)

2

]
(40)

By Lemma 10, the term (40) is upper bounded as

Eε max
v∈V ′

[
n∑
t=1

4εtηt(ε)vt(ε)− (1/4)vt(ε)
2 − α

2
ηt(ε)

2

]
≤ α−116A2 logN∞(γ,G, z) (41)

As for the term in (39), we write

E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]0t (ε)

)
− α

2
ηt(ε)

2

]

= E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]Nt (ε)

)
− α

4
ηt(ε)

2

+
n∑
t=1

N∑
j=1

{
εtηt(ε)

(
v[ε, g]jt (ε)− v[ε, g]j−1

t (ε)
)
− α

4N
ηt(ε)

2
}

≤ E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]Nt (ε)

)
− α

4
ηt(ε)

2

]

+

N∑
j=1

E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
v[ε, g]jt (ε)− v[ε, g]j−1

t (ε)
)
− α

4N
ηt(ε)

2

]
Using Cauchy-Schwartz inequality along with ab ≤ (1/2)(a2 + b2),

1

n

n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]Nt (ε)

)
≤

n∑
t=1

(√
αεtηt(ε)√

2n

)(√
2

nα

(
g(zt(ε))− v[ε, g]Nt (ε)

))

≤ 1

4n

n∑
t=1

αηt(ε)
2 +

n∑
t=1

1

nα

(
g(zt(ε))− v[ε, g]Nt (ε)

)2

and thus

E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]Nt (ε)

)
− α

4
ηt(ε)

2

]
≤ α−1βNn

where βj = 2−jγ. For the j-th link in the chain, recall that we can define

w
(s,r)
t (ε) =

{
vst (ε)− vrt (ε) if there exists g ∈ G s.t. vs = v[g, ε]j ,vr = v[g, ε]j−1

0 otherwise.

22



ONLINE NONPARAMETRIC REGRESSION

for all t ∈ [n] and ε ∈ {±1}n. Then for any j ∈ [N ] and ε,

sup
g∈G

[
n∑
t=1

εtηt(ε)
(
v[ε, g]jt (ε)− v[ε, g]j−1

t (ε)
)
− α

4N
ηt(ε)

2

]
≤ max

w∈W

[
n∑
t=1

εtηt(ε)wt(ε)−
α

4N
ηt(ε)

2

]
and it must hold by the definition of the cover that

|wt(ε)| ≤ 2βj

for any w ∈W j and any path ε and any t. Putting everything together, and using Lemma 10,

Eε sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]0t (ε)

)
− α

2
ηt(ε)

2

]
≤ nβN

α
+

N∑
j=1

8Nβ2
j

α
log(|V j ||V j−1|)

Simplifying and using βj = βj−1 − βj , we obtain an upper bound of

nβN
α

+
16N

α

N∑
j=1

β2
j log(|V j |) =

nβN
α

+
16N

α

N∑
j=1

(βj−1 − βj)βj log(|V j |)

≤ nβN
α

+
16N

α

∫ β0

βN+1

δ logN∞(δ,G, z)dδ

Given any ρ ∈ (0, γ), we let N = max{j : βj > 2ρ}. Then βN < 4ρ and βN+1 > ρ. Further,
N ≤ log(γ/ρ). Thus

E sup
g∈G

[
n∑
t=1

εtηt(ε)
(
g(zt(ε))− v[ε, g]0t (ε)

)
− α

2
ηt(ε)

2

]

≤ α−1 inf
ρ∈(0,γ)

{
4ρn+ 16 log(γ/ρ)

∫ γ

ρ
δ logN∞(δ,G, z)dδ

}
Together with (41) this concludes the proof.

Proof [Proof of Theorem 4] For optimistic rates, we start with the upper bound in (11) and define
G as above. We then appeal to Lemma 9 and obtain

V α
n ≤ α−116 logN∞(γ,F , z) + α−1 inf

ρ∈(0,γ)

{
4ρn+ 16 log(γ/ρ)

∫ γ

ρ
δ logN∞(δ,F , z)dδ

}
.

(42)

For logN∞(β,F , n) ≤ β−p decay of entropy for p < 2, we take ρ = (nB)−1, γ = 1. The first
term in (42) can be taken to be zero, as we may take one function at scale γ = 1. The infimum in
(42) evaluates to

4 + 16 log(nB)

∫ 1

1/(nB)
δ1−pdδ ≤ 4 + 16 log(nB)

[
1

2− p
δ2−p

]1

1/(nB)

≤ 4 + 16 log(nB)
1

2− p
.

For p = 2, we gain an extra log(n) factor: 4 + 16(log(nB))2.
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For p > 2, we take ρ = n
− 1
p−1 and γ = 1. Then infimum in (42) evaluates to

4n · n−
1
p−1 + 16p−1 log(n)

[
1

2− p
δ2−p

]1

n
− 1
p−1

≤ 4n
p−2
p−1 + 16p−1 log(n)

1

2− p
n
p−2
p−1 .

For the parametric case (7), we take γ = 1 and ρ = (nB)−1. Then (42) is upper bounded by

4 + 16 log(nB)

∫ 1

1/(nB)
dδ log(1/δ)dδ ≤ 4 + 4d log(nB) .

The final optimistic rates are obtained by following the bound in (3).

Proof [Proof of Lemma 14] Fix a β > 0, and set n = fatβ(F). Suppose x is an X -valued tree of
depth n that is β-shattered by F :

∀ε,∃f ε ∈ F s.t. εt(f
ε(xt(ε))− µt(ε)) ≥ β/2

where µ is the witness to shattering. Since functions in F take values in [−1, 1], it is also the case
that µ is [−1, 1]-valued, and thus |f(xt(ε)) − µt(ε)| ≤ 2 for all f ∈ F . Then from (13) with the
particular choices of x and µ described above,

V 0
n ≥ E sup

f∈F

[
n∑
t=1

4εt(f(xt(ε))− µt(ε))− (f(xt(ε))− µt(ε))
2

]
(43)

≥ E sup
f∈F

[
n∑
t=1

4εt(f(xt(ε))− µt(ε))− 2|f(xt(ε))− µt(ε)|

]
(44)

≥ E

[
n∑
t=1

4εt(f
ε(xt(ε))− µt(ε))− 2|f ε(xt(ε))− µt(ε)|

]
(45)

Using the definition of shattering, we can further lower bound the above quantity by

E

[
n∑
t=1

4|f ε(xt(ε))− µt(ε)| − 2|f ε(xt(ε))− µt(ε)|

]
≥ E

[
n∑
t=1

β

]
= nβ

Now, suppose fatβ(F) = C/βp, p > 0. Then n = fatβ(F) implies β = Cn−1/p. The result
follows.

Proof [Proof of Lemma 15] Assume d = fatβ(F ′) ≤ n. Let z be an X -valued tree of depth d that
is β-shattered by F ′ with a witness tree s. Observe that the functions f ε that guarantee

∀t ∈ [n], εt(f
ε(zt(ε))− st(ε)) ≥ β/2 (46)

do not necessarily take on values close to the st(ε)±β/2 interval. We augment F ′ with 2d functions
gε that take on the same values as f ε, except (46) is satisfied with equality: εt(gε(zt(ε))− st(ε)) =
β/2. Let F be the resulting class of functions, and G = F \F ′. We now argue that fatβ(F) cannot
be more than 2d + 4, as we have only added at most 2d functions to F ′. Suppose for the sake of

24



ONLINE NONPARAMETRIC REGRESSION

contradiction that there exists a tree z of depth at least 2d + 5 shattered by F . There must exist
22d+5 functions that shatter z and only at most 2d of them can be from G. Let us label the leaves
of z with the functions that shatter the corresponding path from the root; these functions are clearly
distinct. Order the leaves of the tree in any way, and observe that there must exist a pair of functions
from G with indices differing by at least 2d+4. It is easy to see that such two leaves can only have
a common parent at d + 3 levels from the leaves, and this yields a complete binary subtree of size
d+ 1 that is shattered by functions in F ′, a contradiction.

We will now use the function class F to prove a lower bound. Recall that z is an X -valued tree
of depth fatβ that is β-shattered by G ⊆ F . Let s be the witness tree for the shattering. We will now
show a construction of particular trees of depth

n′ =

⌈
n

fatβ

⌉
fatβ (47)

using the pair z, s. Define k = d n
fatβ
e = n′

fatβ
≥ 1 and consider the X -valued tree x and the

R-valued tree µ of depth n′ constructed as follows. For any path ε ∈ {±1}n′ and any t ∈ [n′], set

xt(ε) = zd t
k
e (ε̃) , µt(ε) = sd t

k
e (ε̃)

where ε̃ ∈ {±1}fatβ is the sequence of signs specified as

ε̃ =

sign

 k∑
j=1

εj

 , sign

 2k∑
j=k+1

εj

 , . . . , sign

 k fatβ∑
j=k(fatβ−1)

εj


 .

We now lower bound (13) by choosing the particular x,µ defined above:

V 0
n′ ≥ E sup

f∈F

[
n′∑
t=1

2εt(f(xt(ε))− µt(ε))− (f(xt(ε))− µt(ε))
2

]

= E sup
f∈F

[
n′∑
t=1

2εt(f(zd t
k
e(ε̃))− sd t

k
e(ε̃))− (f(zd t

k
e(ε̃))− sd t

k
e(ε̃))

2

]
.

Splitting the sum over t into fatβ blocks, the above expression is equal to

E sup
f∈F

fatβ∑
i=1

i·k∑
j=(i−1)k+1

2εj(f(zi(ε̃))− si(ε̃))− (f(zi(ε̃))− si(ε̃))
2


= E sup

f∈F

fatβ∑
i=1

2(f(zi(ε̃))− si(ε̃))

 i·k∑
j=(i−1)k+1

εj

− k(f(zi(ε̃))− si(ε̃))
2


= E sup

f∈F

fatβ∑
i=1

2ε̃i(f(zi(ε̃))− si(ε̃))

∣∣∣∣∣∣
i·k∑

j=(i−1)k+1

εj

∣∣∣∣∣∣− k(f(zi(ε̃))− si(ε̃))
2
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where the last step follows by the definition of ε̃. Recall that z is shattered by the subset G and that
the functions in G stay close to the witness tree s. We obtain a lower bound

E sup
g∈G

fatβ∑
i=1

2ε̃i(f(zi(ε̃))− si(ε̃))

∣∣∣∣∣∣
i·k∑

j=(i−1)k+1

εj

∣∣∣∣∣∣− k(f(zi(ε̃))− si(ε̃))
2

 ≥ E
fatβ∑
i=1

β
∣∣∣∣∣∣

i·k∑
j=(i−1)k+1

εj

∣∣∣∣∣∣− kβ2

4


≥ fatβ(F)

(
β

√
k

2
− kβ2

4

)

where we used Khinchine’s inequality in the last step. By the definition of k,

fatβ(F)β

√
k

2
= fatβ(F)β

√
n′

2 fatβ(F)
=

1√
2
β
√
n′fatβ(F)

and

fatβ(F)
kβ2

4
=

1

4
n′β2

We conclude that

V 0
n′ ≥

1

4

(
2
√

2β
√
n′fatβ(F)− n′β2

)
(48)

Now suppose fatβ(F) = c/βp for some c > 0. First, we need to ensure that fatβ(F) = c/βp ≤
n′, as required by our construction. This means that β ≥ (cn′)−1/p. Plugging in the rate of fatβ(F)
into (48),

2
√

2β
√
n′fatβ(F)− n′β2 = 2

√
2c1/2β1−p/2√n′ − n′β2

Observe that the setting of β = (32c)1/(2+p)(n′)−1/(p+2) yields a lower bound of

cp · (n′)
p
p+2

where cp denotes a constant that may depend on p, and whose value may change from line to line.
Examining (28), we see that V 0

n is nondecreasing with n. To illustrate this, let n′ > n. For
t ∈ {n+ 1, . . . , n′}, we may choose pt in (28) as a delta distribution on f∗(xt), for any sequence of
xt, where f∗ is an optimal function over steps {1, . . . , n}. Clearly, V 0

n′ ≥ V 0
n . In view of (47) and

the above discussion, V 0
n′ ≤ V 0

2n−1, and thus

V 0
2n ≥ V 0

2n−1 ≥ V 0
n′ ≥ cpn

p
p+2 .

Proof [Proof of Lemma 16] First note that when t = n the initial condition is trivially satisfied as

Rn(x1:n, y1:n) = sup
f∈F

−
n∑
j=1

(f(xj)− yj)2

 = − inf
f∈F

n∑
j=1

(f(xj)− yj)2 .
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Let us denote

L̂t(f) =

t∑
j=1

(f(xj)− yj)2

and

At+1(f) =
n∑

j=t+1

Bεj(f(xj(ε))− µj(ε))− (f(xj(ε))− µj(ε))
2

To check admissibility note that we need to check the inequality in Equation (49). To do so note
that for any xt ∈ X , pt ∈ ∆([−B,B]),

Eyt∼pt
[(
Eyt∼pt [yt]− yt

)2]
+ Eyt∼pt [Rn (x1:t, y1:t)] = Eyt∼pt

[(
Eyt∼pt [yt]− yt

)2
+ sup

x,µ
Eε sup

f∈F

{
At+1(f)− L̂t(f)

}]

Expanding the square in the first term and then the loss of f at time t, we obtain

Eyt∼pt

[ (
Eyt∼pt [yt]

)2 − 2yt Eyt∼pt [yt] + y2
t + sup

x,µ
Eε sup

f∈F

{
At+1(f)− L̂t(f)

}]

= Eyt∼pt

[ (
Eyt∼pt [yt]

)2 − 2yt Eyt∼pt [yt] + sup
x,µ

Eε sup
f∈F

{
At+1(f)− f2(xt) + 2f(xt)yt − L̂t−1(f)

}]

Rearranging, the above is equal to

Eyt∼pt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f) + 2

(
Eyt∼pt [yt]

)2 − f2(xt)−
(
Eyt∼pt [yt]

)2
+ 2(f(xt)− Eyt∼pt [yt])yt

}]

= Eyt∼pt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f) + 2

(
Eyt∼pt [yt]

)2 − (f(xt)− Eyt∼pt [yt]
)2 − 2f(xt)Eyt∼pt [yt]

+ 2
(
f(xt)− Eyt∼pt [yt]

)
yt

}]

which is

Eyt∼pt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f)− 2

(
Eyt∼pt [yt]

)2
−
(
f(xt)− Eyt∼pt [yt]

)2 − 2
(
f(xt)− Eyt∼pt [yt]

)
Eyt∼pt [yt] + 2

(
f(xt)− Eyt∼pt [yt]

)
yt

}]

≤ Eyt∼pt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f)−

(
f(xt)− Eyt∼pt [yt]

)2
+ 2

(
f(xt)− Eyt∼pt [yt]

) (
yt − Eyt∼pt [yt]

)}]

By Jensen’s inequality, the above can be upper bounded by

Eyt,y′t∼pt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f)−

(
f(xt)− Eyt∼pt [yt]

)2
+ 2

(
f(xt)− Eyt∼pt [yt]

)
(yt − y′t)

}]

= Eyt,y′t∼pt,εt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f)−

(
f(xt)− Eyt∼pt [yt]

)2
+ 2εt

(
f(xt)− Eyt∼pt [yt]

)
(yt − y′t)

}]
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Since the inequalities above hold for any xt ∈ X , pt ∈ ∆([−B,B]), we have

sup
xt∈X ,pt∈∆([−B,B])

[
Eyt∼pt

[(
Eyt∼pt [yt]− yt

)2]
+ Eyt∼pt [Rn (x1:t, y1:t)]

]
≤ sup
xt∈X ,pt∈∆([−B,B])

Eyt,y′t∼pt,εt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f)−

(
f(xt)− Eyt∼pt [yt]

)2
+ 2εt

(
f(xt)− Eyt∼pt [yt]

)
(yt − y′t)

}]

≤ sup
xt∈X

yt,y
′
t,µt∈[−B,B]

Eεt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f)− (f(xt)− µt)2

+ 2εt (f(xt)− µt) (yt − y′t)
}]

≤ sup
xt∈X

yt,µt∈[−B,B]

Eεt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f)− (f(xt)− µt)2

+ 4εt (f(xt)− µt) yt
}]

Since the above is convex in yt, we can replace the supremum over [−B,B] to supremum over {−B,B}

sup
xt∈X ,µt∈[−B,B]
yt∈{−B,B}

Eεt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f)− (f(xt)− µt)2

+ 4εt (f(xt)− µt) yt
}]

= sup
xt∈X

µt∈[−B,B]

Eεt

[
sup
x,µ

Eε sup
f∈F

{
At+1(f)− L̂t−1(f)− (f(xt)− µt)2

+ 4Bεt (f(xt)− µt)
}]

= sup
x,µ

Eε

[
sup
f∈F

{ n∑
j=t

Bεj(f(xj(ε))− µj(ε))− (f(xj(ε))− µj(ε))
2 − L̂t−1(f)

]
= Rn (x1:t−1, y1:t−1)

Thus we have shown that Rn is an admissible relaxation. Further, (ŷ−yt)2 +Rn (x1:t, (y1:t−1, yt))
is a convex function of yt and so for the estimator one can use

ŷt =
Rn(x1:t, (y1:t−1, B))−Rn(x1:t, (y1:t−1,−B))

4B

(no clipping is needed above as ŷt is always between −B and B). For the above estimator one
enjoys the regret bound

Regn ≤ Rn(·)

Note that this is exactly the bound in Eq. (12).

Proof [Proof of Proposition 17] Notice that the above recipe closely follows the notion of relax-
ation provided in (Rakhlin et al., 2012). All we need to do is check that the relaxation derived satis-
fies admissibility and initial conditions. By Step 1 of the recipe, since the offset Rademacher relax-
ation is admissible to start with, the derived relaxation also satisfies initial condition. To show admis-
sibility condition notice that the set [−B,B] is compact and convex and (ŷt−yt)2+Reln (x1:t, y1:t)
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is a convex function of ŷt. Hence applying minimax theorem, we see that,

inf
ŷt∈[−B,B]

sup
yt∈[−B,B]

{
(ŷt − yt)2 + Reln (x1:t, y1:t)

}
= sup

pt∈∆([−B,B])
inf
ŷt

{
Eyt∼pt

[
(ŷt − yt)2 + Reln (x1:t, y1:t)

]}
= sup

pt∈∆([−B,B])

{
inf
ŷt

Eyt∼pt
[
(ŷt − yt)2

]
+ Eyt∼pt [Reln (x1:t, y1:t)]

}
= sup

pt∈∆([−B,B])

{
Eyt∼pt

[(
Eyt∼pt [yt]− yt

)2]
+ Eyt∼pt [Reln (x1:t, y1:t)]

}
Hence the admissibility condition can be rewritten as :

∀xt ∈ X , sup
pt∈∆([−B,B])

{
Eyt∼pt

[(
Eyt∼pt [yt]− yt

)2]
+ Eyt∼pt [Reln (x1:t, y1:t)]

}
≤ Reln (x1:t−1, y1:t−1)

(49)

Proof [Proof of Corollary 18] As done in (Rakhlin et al., 2012) for the case of finite class of experts,
in the Rademacher relaxation one can replace the maxf∈F with a limit of soft-max as follows:

Rn(x1:t, y1:t)

= sup
x,µ

Eε max
f∈F

 n∑
j=t+1

4Bεj(f(xj(ε))− µj(ε))− (f(xj(ε))− µj(ε))
2 −

t∑
j=1

(f(xj)− yj)2


= sup

x,µ
Eε inf

λ>0
λ−1 log

∑
f∈F

exp

λ n∑
j=t+1

4Bεj(f(xj(ε))− µj(ε))− (f(xj(ε))− µj(ε))
2 − λ

t∑
j=1

(f(xj)− yj)2


≤ inf
λ>0

{
λ−1 log

∑
f∈F

exp

−λ t∑
j=1

(f(xj)− yj)2


+ sup

x,µ
λ−1 log

Eε exp

λ n∑
j=t+1

4Bεj(f(xj(ε))− µj(ε))− (f(xj(ε))− µj(ε))
2

}

Not notice that if we set λ = B−2, the proof of Lemma 10 exactly shows that

sup
x,µ

λ−1 log

Eε exp

λ n∑
j=t+1

4Bεj(f(xj(ε))− µj(ε))− (f(xj(ε))− µj(ε))
2

 ≤ B2 log |F|

Hence we arrive at our relaxation

Reln (x1:t, y1:t) = B2 log

∑
f∈F

exp

−B−2
t∑

j=1

(f(xj)− yj)2
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Now to show admissibility, note that

sup
xt,pt

Eyt∼pt
[
(yt − E [yt])

2 + Reln (x1:t, y1:t)
]

= sup
xt,pt

Eyt∼pt

y2t − (E [yt])
2 +B2 log

∑
f∈F

exp

−B−2
t∑
j=1

(f(xj)− yj)2


= sup
xt,pt

Eyt∼pt

B2 log
(
exp

(
B−2y2t −B−2(E [yt])

2
))

+B2 log

∑
f∈F

exp

−B−2
t∑

j=1

(f(xj)− yj)2


= sup
xt,pt

Eyt∼pt

B2 log

∑
f∈F

exp

B−2y2t −B−2(E [yt])
2 −B−2

t∑
j=1

(f(xj)− yj)2


= sup
xt,pt

Eyt∼pt

B2 log

∑
f∈F

exp

−B−2(E [yt])
2 + 2B−2f(xt)yt −B−2f2(xt)−B−2

t−1∑
j=1

(f(xj)− yj)2


= sup
xt,pt

Eyt∼pt

B2 log

∑
f∈F

exp

−B−2(E [yt]− f(xt))
2 + 2B−2f(xt)(yt − E [yt])−B−2

t−1∑
j=1

(f(xj)− yj)2


Now by convexity (see Audibert (2009)) we can take the expectation w.r.t. yt inside and hence we
get,

sup
xt,pt

Eyt∼pt
[
(yt − E [yt])

2 + Reln (x1:t, y1:t)
]

≤ sup
xt,pt

B2 log

∑
f∈F

exp

−B−2(E [yt]− f(xt))
2 −B−2

t−1∑
j=1

(f(xj)− yj)2


≤ B2 log

∑
f∈F

exp

−B−2
t−1∑
j=1

(f(xj)− yj)2


= Reln (x1:t−1, y1:t−1)

Again as we used above (see Audibert (2009)) we have that the relaxation is such that (ŷ − yt)2 +
Reln (x1:t, (y1:t−1, yt)) is a convex function of yt and so the estimator is given by

ŷt = Clip

(
Reln (x1:t, (y1:t−1, B))−Reln (x1:t, (y1:t−1,−B))

4B

)

= Clip

B
4

log

∑f∈F exp
(
−B−2

∑t−1
j=1(f(xj)− yj)2 −B−2(f(xt)−B)2

)
∑

f∈F exp
(
−B−2

∑t−1
j=1(f(xj)− yj)2 −B−2(f(xt) +B)2

)


Now the final regret bound we obtain is given by Regn ≤ Reln (·) and so we conclude that

Regn ≤ B2 log |F|

Proof [Proof of Corollary 19] For simplicity, each input instance xt ∈ Rd we define vector in Rd+1

as zt = (0, xt), the vector obtained by concatenating 0 before xt. Further given trees x and µ, we
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write the z as the [−B,B]×X valued tree corresponding to x and µ obtained by concatenating µ’s
before x’s on every node. Also for every linear predictor f ∈ F define corresponding w = (−1, f).
The unnormalized regret over the rounds −d to n can be written as

n∑
t=1

(ŷt − yt)2 − inf
w

{
n∑
t=1

(〈w, zt〉 − yt)2 + λ ‖w‖22

}
Hence, we have,

Rn(x1:t, y1:t) = sup
z

Eε sup
f∈F

 n−1∑
j=t+1

4Bεj 〈w, zj(ε)〉 − (〈w, zj(ε)〉)2 −
t∑

j=1

(〈w, zj〉 − yj)2 − λ ‖w‖22


= 2 sup

z
Eε sup

w

〈w, n∑
j=t+1

2Bεjzj(ε) +

t∑
j=1

yjzj

〉
− 1

2
w>

 n∑
j=t+1

zj(ε)zj(ε)
> +

t∑
j=1

zjz
>
j + λI

w>

− t∑
j=1

y2
j

Let us denote At+1:n(z) =
∑n

j=t+1 zj(ε)zj(ε)
> and Bt =

∑t
j=1 zjz

>
j . Using Fenchel-Young

inequality for
1

2
w> (At+1:n(z) + Bt + λI)w>

and its conjugate we get,

Rn(x1:t, y1:t) ≤ sup
z

Eε

∥∥∥∥∥∥
n∑

j=t+1

2Bεjzj(ε) +

t∑
j=1

yjzj

∥∥∥∥∥∥
2

(At+1:n(z)+Bt+λI)
−1

−
t∑

j=1

y2
j

The idea now is to obtain a further upper bound by removing the dependence on the tree z. Opening the
square with only the n-th term, the above expression is equal to

sup
z

Eε

[∥∥∥∥∥∥
n−1∑
j=t+1

2Bεjzj(ε) +

t∑
j=1

yjzj

∥∥∥∥∥∥
2

(At+1:n(z)+Bt+λI)
−1

−
t∑

j=1

y2
j + 4B2zn(ε)> (At+1:n(z) + Bt + λI)

−1
zn(ε)

]

By the standard argument we may upper bound the quadratic terms by a ratio of determinants ∆:

zn(ε)> (At+1:n(z) + Bt + λI)
−1

zn(ε) ≤
(

1− ∆ (At+1:n−1(z) + Bt + λI)

∆ (At+1:n(z) + Bt + λI)

)
Using the inequality 1− x ≤ − log(x) for x > 0, we obtain an upper bound

sup
z

{
Eε


∥∥∥∥∥∥
n−1∑
j=t+1

2Bεjzj(ε) +

t∑
j=1

yjzj

∥∥∥∥∥∥
2

(At+1:n−1(z)+Bt+λI)
−1

− t∑
j=1

y2j + 4B2 Eε
[
log

(
∆ (At+1:n(z) + Bt + λI)

∆ (At+1:n−1(z) + Bt + λI)

)]}

Proceeding in similar fashion by peeling off terms from the norm, we arrive at,

Rn(x1:t, y1:t) ≤

∥∥∥∥∥∥
t∑

j=1

yjzj

∥∥∥∥∥∥
2

(Bt+λI)
−1

−
t∑

j=1

y2
j + 4B2 sup

z
Eε
[
log

(
∆ (At+1:n(z) + Bt + λI)

∆ (Bt + λI)

)]

≤

∥∥∥∥∥∥
t∑

j=1

yjzj

∥∥∥∥∥∥
2

(Bt+λI)
−1

+ 4B2 log

(
(n/d)

d

∆ (Bt + λI)

)
−

t∑
j=1

y2
j
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and we take this last expression as our relaxation Reln (x1:t, y1:t). Now notice that since zt’s are 0
on the first coordinate, the relaxation can be rewritten as

Reln (x1:t, y1:t) =

∥∥∥∥∥∥
t∑

j=1

yjxj

∥∥∥∥∥∥
2

(B̃t+λI)
−1

−
t∑

j=1

y2
j + 4B2 log

(
(n/d)d

∆ (Bt + λI)

)

where B̃t =
∑t

j=1 xjx
>
j . By conjugacy, the relaxation is equal to

sup
f∈F

2
t∑

j=1

yj 〈f, xj〉 − f>
(
B̃t + λI

)
f

−
t∑

j=1

y2
j + 4B2 log

(
(n/d)d

∆ (Bt + λI)

)

= − inf
f∈F


t∑

j=1

(f(xj)− yj)2 + λ ‖f‖22

+ 4B2 log

(
(n/d)d

∆ (Bt + λI)

)

We now prove admissibility of relaxation as follows:

sup
pt

Eyt∼pt
[
(yt − E [yt])

2 + Reln (x1:t, y1:t)
]

= sup
pt

Eyt∼pt

(yt − E [yt])
2 − inf

f∈F


t∑

j=1

(〈f, xj〉 − yj)2
+ λ ‖f‖2


+ 4B2 log

(
(n/d)

d

∆ (Bt + λI)

)

The first term, in view of (22), is equal to

sup
pt

Eyt∼pt

sup
f∈F

−
t−1∑
j=1

(〈f, xj〉 − yj)2 − (〈f, xt〉 − E [yt])
2 + 2(yt − E [yt]) (〈f, xt〉 − E [yt]) + λ ‖f‖2




≤ sup
µt

Eεt

sup
f∈F

−
t−1∑
j=1

(〈f, xj〉 − yj)2 − (〈f, xt〉 − µt)2 + 4Bεt (〈f, xt〉 − µt) + λ ‖f‖2



and the inequality arises from symmetrization exactly as in the proof of of Lemma 7. Once again, rewriting
the above using conjugacy and converting to the zt notation by appending a coordinate, the relaxation is upper
bounded by

sup
zt

Eεt


∥∥∥∥∥∥
t−1∑
j=1

yjzj + 2Bεtzt

∥∥∥∥∥∥
2

(Bt−1+ztz>t +λI)
−1

+ 4B2 log

(
(n/d)

d

∆ (Bt + λI)

)
−

t−1∑
j=1

y2
j

= sup
zt

∥∥∥∥∥∥
t−1∑
j=1

yjzj

∥∥∥∥∥∥
2

(Bt−1+ztz>t +λI)
−1

+ 4B2z>t
(
Bt−1 + ztz

>
t + λI

)−1
zt + 4B2 log

(
(n/d)

d

∆ (Bt + λI)

)
−

t−1∑
j=1

y2
j
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which is further upper bounded by

sup
zt

∥∥∥∥∥∥
t−1∑
j=1

yjzj

∥∥∥∥∥∥
2

(Bt−1+λI)−1

+ 4B2 log

(
∆ (Bt + λI)

∆ (Bt−1 + λI)

)
+ 4B2 log

(
(n/d)

d

∆ (Bt + λI)

)
−

t−1∑
j=1

y2
j

=

∥∥∥∥∥∥
t−1∑
j=1

yjzj

∥∥∥∥∥∥
2

(Bt−1+λI)−1

+ 4B2 log

(
(n/d)

d

∆ (Bt−1 + λI)

)
−

t−1∑
j=1

y2
j

= Reln (x1:t−1, y1:t−1)

Thus we have shown admissibility and further this relaxation is such that (ŷ−yt)2+Reln (x1:t, (y1:t−1, yt))
is a convex function of yt and so the forecast associated with this relaxation is simply

ŷt = Clip


∥∥∥∑t−1

j=1 yjxj +Bxt

∥∥∥2

(Bt+λI)
−1
−
∥∥∥∑t−1

j=1 yjxj −Bxt
∥∥∥2

(Bt+λI)
−1

4B


Expanding out the two norm square terms we conclude that

ŷt = Clip

x>t (Bt + λI)−1

 t−1∑
j=1

yjxj


Notice that this is exactly the clipped version of the Vovk-Azoury-Warmuth forecaster. The final
regret bound we obtain is given by Reg ≤ Reln (·) and so we conclude that for any f ∈ F , regret
against this linear predictor is bounded as :

1

n

n∑
t=1

(ŷt − yt)2 ≤ 1

n

n∑
t=1

(f>xt − yt)2 +
λ

2n
‖f‖22 +

4dB2 log
(
n
λd

)
n
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