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Abstract

Data labeling is an expensive and time-consuming task, hence carefully choosing which
labels to use for training a model is becoming increasingly important. In the active learning
setting, a classifier is trained by querying labels from a small representative fraction of data.
While many approaches exist for non-streaming scenarios, few works consider the challenges
of the data stream setting. We propose a new active learning method for evolving data
streams based on a combination of density and prediction uncertainty (DBALSTREAM).
Our approach decides to label an instance or not, considering whether it lies in an high
density partition of the data space. This allows focusing labelling efforts in the instance
space where more data is concentrated; hence, the benefits of learning a more accurate
classifier are expected to be higher. Instance density is approximated in an online manner
by a sliding window mechanism, a standard technique for data streams. We compare
our method with state-of-the-art active learning strategies over benchmark datasets. The
experimental analysis demonstrates good predictive performance of the new approach.
Keywords: Active learning, Data streams, Density-based clustering

1. Introduction

Today, more data are being generated continuously than ever before. Streaming data pose
serious challenges to data analysis researchers and practitioners. For learning predictive
models on streaming data one needs to have continuous access to the true values of the
target variable (the true class labels). This labeling phase is usually an expensive and
tedious task for human experts. Consider, for example, textual news arriving as a data
stream. The goal is to predict if a news item will interesting to given user at a given
time. The interests and preferences of the user may change over time. To obtain training
data, news items need to be labeled as interesting or not interesting. This requires human
labor, which is time consuming and costly. For instance, Amazon Mechanical Turk! offers
a marketplace for intelligent human labeling.

1. https://www.mturk.com
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Labeling can also be costly because it may require expensive, intrusive or destructive
laboratory tests. Consider a production process in a chemical plant where the goal is
to predict the quality of production output. The relationship between input and output
quality might change over time due to constant manual tuning, complementary ingredients
or replacement of physical sensors. In order to know the quality of the output (the true
label) a laboratory test needs to be performed, which is costly. Under such conditions it
may be unreasonable to require true labels for all incoming instances.

A way to alleviate this issue is to query labels for a small representative portion of data.
The main challenge is how to select a good subset of instances for learning a model. Such
a learning scenario is referred to as active learning (Settles, 2010; Fu et al., 2013).

Active learning studies how to label selectively instead of asking for all true labels. It has
been extensively studied in pool-based (Lewis and Gale, 1994) and online settings (Cohn
et al., 1994). In pool-based settings the decision concerning which instances to label is
made by ranking all historical instances (e.g. according to uncertainty) while in online
active learning each incoming instance is compared to an uncertainty threshold and the
system asks for the true label if the threshold is exceeded. The main difference between
online active learning and active learning in data streams is in expectations around changes.
In data streams the relationship between the input data and the label may change (concept
drift) and these changes can happen anywhere in the instance space while online learning
assumes a stationary relationship between examples and their labels. In order to capture
concept drifts, which can happen anywhere in the data, it is important to characterize and
understand how the examples are related to each other in the data space.

As a recent work in the pool-based settings suggests (Fu et al., 2013), considering the
density around instances can improve the results. In the more dense regions in the instance
space the benefits of updating the classifier with new data are expected to be larger, because
it is likely to improve future classification accuracy for more instances.

The concept of density around instance is usually exploited in unsupervised learning
(such as clustering (Rodriguez and Laio, 2014; Tomasev et al., 2014)) where local density of
a point can be used to initialize cluster centroids. Local density can be directly estimate as
the number of points closer to the considered instance (Rodriguez and Laio, 2014) or derived
indirectly (Tomasev et al., 2014) as the number of times the instance appears as a neighbor
of other example. These approaches widely demonstrate their efficacy for clustering tasks.

Unfortunately, very few works for active learning in data stream integrate the den-
sity (Ienco et al., 2013) in order to choose suitable queries instance. Motivated by this
fact we introduce a new density-focused uncertainty sampling method that uses an online
density approximation to guide the selection of labeling candidates in the data stream. Our
approach works in a fully incremental way: in order to estimate the density of the neigh-
borhood of an incoming instance, we use a sliding window mechanism to compare it to a
recent portion of the historical data.

The remainder of this paper is organized as follows. Section 2 overviews existing active
learning approaches for data streams and makes connections with semi-supervised learning
in data streams. The proposed methodology is presented in Section 3. In Section 4 we
present experimental results for a number of real world datasets and we also supply a
sensitivity analysis of the sliding window size. Finally, Section 5 concludes the study.
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2. Related Work

Online active learning has been the subject of a number of studies, where the data distri-
bution is assumed to be static (Helmbold and Panizza, 1997; Sculley, 2007; Cohn et al.,
1994; Attenberg and Provost, 2011). The goal is to learn an accurate model incrementally,
without assuming to have all training instances available at the beginning, with minimum
labeling effort. One example of such a scenario is malicious URL detection where training
data are arrive sequentially Zhao and Hoi (2013). In contrast, in the evolving data streams
setting, which is the subject of our study, the goal is to continuously update a model over
time so that accuracy is maintained as data distribution is changing. The problem of label
availability in evolving data streams has been the subject of several recent studies (Klinken-
berg, 2001; Widyantoro and Yen, 2005; Masud et al., 2011; Fan et al., 2004; Huang and
Dong, 2007; Zliobaite et al., 2014; Ienco et al., 2013) that fall into three main groups.

The first group of works uses semi-supervised learning approaches to label some of the
unlabeled data automatically (Klinkenberg, 2001; Widyantoro and Yen, 2005; Masud et al.,
2011), which can only work under the assumption that the class conditional distribution does
not change, or, in other words, they assume that their is no concept drift. Semi-supervised
learning approaches are conceptually different from the active learning approaches, that
are the subject of our study, since the former can only handle changes in the input data
distribution, changes in the relation between the input data and the target label cannot be
spotted without querying an external oracle as is done in active learning.

The second group of works process data in batches implicitly or explicitly assuming
that data is stationary within batches (Lindstrom et al., 2010; Masud et al., 2010; Fan
et al., 2004; Huang and Dong, 2007). Such approaches require an external mechanism to
handle concept drift. Lindstrom et al. (2010) use uncertainty sampling to label the most
representative instances within each new batch. They do not explicitly detect changes,
instead they use a sliding window approach, which discards the oldest instances. Masud
et al. Masud et al. (2010) use uncertainty sampling within a batch to request labels. In
addition, they use the unlabeled instances with their predicted labels for training, making
it also another semi-supervised learning approach. A few works integrate active learning
and change detection (Fan et al., 2004; Huang and Dong, 2007) in the sense that they first
detect change and only if change is detected do they ask for representative true labels using
offline active learning strategies designed for stationary data. In this scenario drift handling
and active learning can be considered as two mechanisms operating in parallel, but doing
so independently. This is the main difference between this scenario and the last one, which
combines the two mechanisms more closely together.

Finally, the third group of works use randomization to capture possible changes in
the class conditional distribution (Zhu et al., 2007; Zliobaite et al., 2014; Cesa-Bianchi
et al., 2006). Cesa-Bianchi et al. (2006) develop an online active learning method for a
perceptron based on selective sampling using a variable labeling threshold b/(b+ |p|), where
b is a parameter and p is the prediction of the perceptron. The threshold itself is based
on certainty expectations, while the labels are queried at random. This mechanism could
allow adaptation to changes, although they did not explicitly consider concept drift.

Differently from previous works, and in the same direction of our idea, Ienco et al. (2013)
proposes a clustering-based active learning method for data streams. In that work density is
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captured by means of clustering in a batch-incremental scenario. The clustering step allows
to perform stratified sampling considering dense areas to selecting examples for labelling.

3. Method

In this section we describe our new approach DBALSTREAM (Density Based Active
Learning for Data Streams). We work in a fully incremental scenario in which each instance
is processed as soon as it arrives. We can define a data stream as S := {z1,x2,...2p, ...}
where each z; is a new instance arriving at time ¢. This scenario is general enough to model
arbitrary real-world data streams. Given a data stream S and a budget b we want to learn
a classifier ¢l with only b of the instances in the stream. How to select the instances to
query is challenging for any active learning strategy.

The proposed strategy aims at modelling density around an instance, and is guided by
the following hypothesis: an instance is more important to label if it lies in a dense area.
For example, suppose we are classifying the sentiments towards news items, arriving online.
There are a lot of incoming news about the political situation in Ukraine, and very few
news items about research in Antarctica. Suppose, sentiments towards Antarctica news are
currently more uncertain. We can label the Antarctica news item and learn to classify in
this context very accurately, but if similar news items arrive very rarely in the future, we
have little gain. Perhaps, we would better label news related to Ukraine, which are frequent
(instance space of high density). This way, assuming that there is no sudden change in
density, we can expect improvement in future classification accuracy on more instances.

In order to implement this intuition, given a data point x; we model its density as the
number of times x; is the nearest neighbor of other instances. We use this value as an
estimate of the density around a particular instance and in particular, we use this measure
to understand if an instance x; lies in a dense area, or not.

In a batch scenario this operation can be performed over the whole dataset in order to
obtain a good picture of the global behavior.

In our setting, as we deal with data streams, it is infeasible to store all data and perform
such an operation on the whole data stream. Therefore, we only consider a window, or
buffer, of previously processed examples in order to estimate a local density factor for a
new incoming example. Given a window W of previous examples and a data structure
MinDist that stores the minimum measured distance for each of the instances in W, the
local density factor (Idf) of a new instance z; is defined as follows:

ldf(z;) = Y I{MinDist(x;) > dist(x;, x;)} (1)
z; €W

where I is an indicator function that returns 1 if the condition is true, and 0 otherwise. The
function dist(-,-) is a distance function defined over two examples z; and z; of the stream.
Procedurally speaking, the MinDist data structure is updated each time the indicator
function is verified. This means that if MinDist(z;) > dist(z;,z;) then MinDist(z;)
is updated with the value dist(x;,x;). The minimum distance computed between x; and
each element of W is used as initial value for MinDist(z;). Another important aspect to
underline is that both W and MinDist cannot exceed a predefined size and for this reason
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they work as a queue data structure (First In First Out): when the limit is reached the first
instance, the oldest one, in the queue is removed and the new one is pushed at the end.

The local density factor of an instance can supply information about its importance,
but it is not enough to understand if an example might be useful or not to label. As shown
in (Fu et al., 2013), an important factor to consider is the uncertainty related to an instance
that is usually employed in general active learning approaches for data streams (Zliobaite
et al., 2014).

In order to combine both these aspects, local density factor and uncertainty of an in-
stance, we build our new proposal extending one of the frameworks proposed in (Zliobaite
et al., 2014). We extend the framework used for the Uncertainty Strategy with Random-
ization. This method relies on a randomized dynamic threshold, trying to label the least
certain instances within a time interval. This threshold adapts, depending on the incoming
data, to align with the budget, and it is also adjusted by a normal random factor. If a
classifier becomes more certain, the threshold is increased, so that only the most uncertain
instances are captured for labelling, otherwise the threshold is decreased to extract more
information for improving the classifier.

The original framework employs the maximum a posteriori probability of the classifier
in order to quantify the uncertainty of an instance. This method prefers instances on which
the current classifier is less confidence (Fu et al., 2013) and can be formally defined as follow:

Con fidence(x;) = maxq Pr(yel|x;)

A different approach to model the uncertainty of the instance x; is to consider not only
the maximum a posteriori probability, but considering also the second most probable class
label. Thus this approach is Margin-based (Fu et al., 2013) and it is prone to select instances
with minimum margin between posterior probabilities of the two most likely class labels.
The margin is defined as:

Margin(z;) = Pr(ye, |2:) — Pr(Yel, | 74)

where the cl; and cls are respectively the class with the maximum a posteriori probability
and the second most probable class.

Our proposal is depicted in Algorithm 1. The algorithm takes as input the instance
to evaluate x;, the stream classifier L, the budget percentage b, the adjusting step s,
the threshold @, the window of previous collected instances W and the MinDist data
structure that stores the minimum distance for each element in W. The algorithm first
computes the number of times the instance z; is the nearest neighbor of an instance
in W. This operation is performed using Formula 1 and implemented by the function
compute#timesN N (xy, W, MinDist). This procedure returns an integer representing the
local density around example z; and, at the same time, it updates W and MinDist accord-
ing to their maximum size. Next, the procedure tests two conditions: the first one (u/t < b)
verifies the budget constraint, which disallow any new labelling when the budget is already
exceeded; the second condition (Ird(x;) # 0) takes into account the local density function.
In particular this test does not allow to ask for labels for instances that lie outside any local
dense areas of the data space. If either of the conditions fails, then the algorithm returns
false, otherwise the margin for the instance x; is computed.

137



IENCO PFAHRINGER ZLIOBAITE

Line 4 to 12 are inspired by the approach proposed in (Zliobaite et al., 2014) where the
randomized adaptive threshold method was firstly introduced. In Line 4 the threshold 6
is randomized employing a variable € sampled from a Normal distribution N(0,1). This
randomization step allows to occasionally label instances that are far from the decision
boundary. Line 5 checks the uncertainty of xz; w.r.t. the randomized threshold 6,q,. If
the test is positive, then the instance will be used to train the classifier and the active
learning strategy consumes some budget (Line 6). The threshold # is updated, considering
the adjusting step (Line 7) and the procedure terminates. If the test (Line 5) fails, the
Algorithm 1 returns false, no budget is spent and the threshold @ is relaxed in order to
increase the chance of labeling the next time.

The DBALSTREAM algorithm is employed in the general data stream classification
framework proposed in Section 3.1. In particular, it is used to decide if the true label y; for
the instance x; should be asked for, or not.

Regarding the computational complexity of our method, the most time consuming steps
are the computation of ldf(x;) and the updating of MinDist structure. Both operations
have linear complexity in the size of || and they can be done at the same time (we need
to scan once the window W for each incoming instance x;).

Algorithm 1 DBALStream(x;, L, b, s, u, 0, W, MinDist)

Require: z;:: the new instance in the data stream, L: learned classifier, b: budget, s: adjusting step, wu:
number of instances labeled till now, 6: the actual threshold value, W: set of previous instances used to
computed the local density function, MinDist: minimum distances for each instance in the window W

1: Udf (z¢) = computefttimes NN (zy, W, MinDist)
2: if (u/t < b and ldf(z:) # 0) then

3: margin(z:) = Pr(ye|zt) — Pr(yez|xt)
4: Oran = 0 X € where € € N(0,1)
5: if margin(xz:) < Oran then
6: u=u-+1

7 0=0x(1-ys)

8: return true

9: else

10: 0=0x(1+s)

11: return false

12: end if

13: end if

14: return false

3.1. General Active Learning Classification Framework

Algorithm 2 presents the general active learning classification framework. It requires as
input the data stream S and the budget percentage b. At the beginning (line 1 and 2) the
framework initializes the different parameters. In particular we set the 6 threshold equal to
1 and the step option s to 0.01. The step option s is used for increasing or decreasing the
threshold in the DBALSTREAM procedure.

We use DDDM change detection technique (Gama et al., 2004): the accuracy of the
classifier is monitored during the streaming process. If the accuracy starts to decrease
(change warning is signaled line 6-8) a new background classifier L,, is generated.
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At line 9-11 both classifiers are trained in parallel with the incoming instance z;. If a
change is detected, the classifier L is replaced by L,, (line 13-15).

Classifier performances are evaluated by means of the prequential schema. The eval-
uation through the prequential setting involves two steps: i) classify an instance, and ii)
use the same instance to train the learner. To implement this strategy, each new incoming
instance x; is first classified using L and only after this step the approach decides if a label
is waned for training, or not. The accuracy is computed over the classification results of L.
This process continues until the end of the data stream is reached.

Algorithm 2 Active Learning Classification Framework
Require: b: labeling budget

Require: S the data stream

1: 0=1,u=0,5s=0.01, W =0, MinDist =

2: L =classifier, L, =classifier

3: for z; € S do

4 if ( DBALSTREAM(zt, L, b, s, u, 0, W, MinDist) ) then
5 request the true label y; of instance z;
6: if change warning is signaled then

7: start a new classifier L,

8: end if

9: train classifier L with (x¢,y:)

10: if L, exists then

11: train classifier L,, with (z¢,y:)

12: end if

13: if change is detected then

14: replace classifier L with L,

15: end if

16: end if

17: end for

4. Experiments

In this section we evaluate the performance and the quality of the proposed method DBALSTREAM.
We compare our algorithm with state of the art methods that are explicitly designed for
active learning over data streams. We use the prequential evaluation procedure: each time
an instance arrives, we first test the algorithm on it, and then we decide on whether to
pay the cost for labeling it and subsequently use it as an input for updating the classifier.
In order to evaluate the performance of the different strategies we employ classification
accuracy. We use two methods proposed by (Zliobaite et al., 2014): Random and Rand
Unc. The first one is Random. It randomly chooses examples for labeling. The second
one (Rand Unc), proposed in (Zliobaite et al., 2014), uses a randomized variable uncer-
tainty strategy that combines the randomization with maximum a posteriori probability
and an adaptive method to avoid consuming too much of the budget when a consecutive
run of easy instances is encountered. The last competitor AC'LStream is a clustering-based
active learning approach proposed by Ienco et al. (2013). This approach works in a batch-
incremental scenario. It performs stratified sampling, where at first a clustering solution
over a batch of data is obtained, and then instances are chosen for labelling considering a
combination of their own uncertainty and the uncertainty of the cluster they belong to.
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For all methods a warm-up period is introduced. The first 500 instances of each dataset
are all labeled and used to train the initial model used by the specific approach. Evaluation
using active learning only starts after this warm-up step.

All the methods need an internal classification algorithm to perform the classification
and to produce the maximum a posteriori probability. For this reason for all the approaches
we use the classifier proposed in (Gama et al., 2004). This classifier is able to adapt itself
to drift situations: when the accuracy of the classifier begins to decrease, a new classifier is
built and trained with new incoming instances. Considering the batch size, for AC' LStream,
following the original paper, we use a window size of 100 instances and the number of clusters
is set to 5. As all the approaches are nondeterministic, each result, for each of the strategies,
is averaged over 30 runs.

All the experiments are performed using the MOA data stream software suite (Bifet
et al., 2010). MOA is an open source software framework implemented in Java designed
specifically for data stream mining.

4.1. Datasets

To evaluate all the algorithms we use four real world benchmark datasets: FElectricity,
CoverType, Airlines, KDD99. Flectricity data (Harries et al., 1998) is a popular benchmark
in evaluating streaming classifiers. The task is to predict the rise or fall of electricity prices
(demand) in New South Wales (Australia), given recent consumption and prices in the same
and neighboring regions. Cover Type data (Bache and Lichman, 2013) is also often used as a
benchmark for evaluating stream classifiers. The task is to predict forest cover types or types
of vegetation from cartographic variables. Inspired by (Ikonomovska et al., 2010) an Airlines
dataset was constructed using the raw data from US flight control. The task is to predict
whether a given flight will be delayed, given the information of the scheduled departure. The
last dataset, KDD99, is commonly used as a benchmark anomaly detection task but recently
it has also been employed as a dataset for testing data stream algorithms (Masud et al.,
2011). One of the big problems with this dataset is the big amount of redundancy among
instances. To solve this problem we use the cleaned version named NSL-KDD?. To build the
final dataset we join both training and test data. Table 1 presents summary characteristics
of the datasets. This collection includes both binary and multi-class classification problems,
datasets with different numbers of instances (varying between 42k to 829k) and different
numbers of features (from 7 to 54). Even though CoverType, KDD99 have no time order
variable, we assume that they are presented in time order.

In order to better characterize this collection of datasets, we show for each of them,
how the class variable evolves over time. For this purpose, we divided each dataset in
batches and for each batch we plot its class values distribution. As the different datasets
have different sizes, we choose an adapted batch size to allow for a clear trend visualization.
This information can be useful to understand which dataset has dramatic (resp. smooth)
changes considering the target variable. Logically, quick changes in the target variable
requires more flexible classifiers than stationary situations. The characterization of the
datasets is presented in Figure 1. The X axis represents the batch number while the Y
axis corresponds to the proportion (as ratio) of instances belonging to a class value. At

2. http://nsl.cs.unb.ca/NSL-KDD/
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Dataset n. of Instances | n. of Features | n. of Classes
Airlines 539 383 7 2
Electricity 45312 8 2
Cover Type 581012 54 7
KDD99 148 517 41 2

Table 1: Dataset characteristics

each moment the sum of the different class labels is equal to 1. We can observe different
behaviors as a function of the target variable. Some datasets show high fluctuation of
different classes over the stream (Cover Type and Electricity) while other ones show more
smooth (or stable) behavior (airlines and KDD99).

We think that this final set of four datasets is a good benchmark for evaluating the
performance of our approach, DBALSTREAM, w.r.t. state of the art methods.
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Figure 1: Distribution of classes during the stream process: a) Airlines b) Cover Type c)
Electricity €) KDD99
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4.2. Analysis of Classification Performance

The final accuracy is reported in Figure 2. In this experiment we evaluate the different
methods, over the different datasets, varying the budget percentage. We start with a budget
percentage of 0.03 and go up to a percentage of 0.3. Obviously, to evaluate the results we
need to take into account how the performances change when varying the budget size.

We can observe that DBALSTREAM outperforms the competitors over Airlines and
KDD99 datasets while it obtains comparable accuracy results for the other two datasets.
In particular, regarding Cover Type we can note that all the methods have very similar
behavior for budget values smaller or equal to 0.15 while for higher budget the performance
of ACLStream drops down w.r.t. the competitors. For the Cover Type dataset the best
result is obtained by DBALSTREAM with a budget value of 0.25. If we analyze the results
over FElectricity we can note that DBALSTREAM has better performance than the other
strategies for a big range of the budget value (between 0.1 and 0.25) while for smaller
budgets Rand Unc slightly outperforms our proposal.

To wrap up this set of experiments we can state that our new proposal obtains better
or comparable results with respect to previous approaches in the field of active learning in
data streams. These results underline that using the local density information of incoming
instances positively affects the active learning process in the data stream setting.
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Figure 2: Accuracy on a) Airlines b) Cover Type c) Electricity and e) KDD99
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4.3. Influence of the Window Size

In this subsection we focus our attention on the impact of window size over the final per-
formance. In particular, we analyse how the size of the window impacts the final accuracy
of DBALSTREAM. For this purpose, we run experiments varying the size of the batches
from 50 to 300 with a step of 50. We average each result over 30 runs.
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Figure 3: Accuracy Results for DBALSTREAM on a) Airlines b) Cover Type c) Electricity
and d) KDD99 varying the batch size from 50 to 300

The accuracy results are reported in Figure 3. We can observe that, considering Airlines
and Electricity benchmarks the performances of DBALSTREAM are not influenced by this
parameter and changes in the value of window size did not impact the final results. A
different behavior is shown for the Cover Type dataset. In this case we can note an important
difference in the results between the smallest value of window size (50) w.r.t. the other values
of window size (100-300). This is due to the fact that only considering the 50 previous
examples to evaluate the importance of a new one (considering its relative density) is not
enough. This can also be explained by the way the data were collected. As we will underline
in Section 4.5, the data came from a GIS database that stores raster cells considering their
spatial order. These cells are arranged in a matrix and, probably, a window size of 50 did
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not allow to capture temporal correlations among the data. For the KDD99 dataset we
note that no particular value of window size outperforms the others. Accuracy fluctuation,
also in this case, are very small and they did not exceed 0.5 accuracy points.

In summary, we can underline that for almost all of the benchmarks, this parameter
did not affect the final results and window size values bigger than 100 are a good choice in
order to compute good density estimates. As a conclusion we can state that, generally, our
method is quiet robust with respect to its parameter setting.

4.4. DBALStream: Confidence based vs Margin based uncertainty estimation

In Section 3 we underlined that our proposal quantifies the uncertainty over an instance
considering the Margin of the classifier while previous techniques for active learning in data
stream exploit the Confidence value (Zliobaite et al., 2014). In this section we evaluate how
the performances of DBALSTREAM are influenced considering these two different ways of
estimating the uncertainty of a classifier over an instance. Figure 4 shows the results of this
experiment over all benchmarks datasets.

We can note that, generally, the Margin based version clearly outperforms the Confi-
dence based one for almost all the datasets and all the budget values. This phenomena is
usually more visible for high budget values.

As a general finding we can state that considering the discrepancy between the two
most probable classes supplies much more information on the uncertainty of an instance
than only taking into account the maximum a posteriori probability. This also supports
our choice of using a Margin-based approach in our framework.

4.5. Performance with different types of concept drift

For analysis purposes, we also introduce two more datasets: Cover Type Sorted, in which
the instances of the Cover Type dataset are reordered w.r.t. the attribute elevation, and
Cover Type Shuffled, where the order of instances is randomly shuffled. Due to the nature of
the underlying problem, sorting the instances by the elevation attribute induces a natural
gradual drift on the class distribution, because at higher elevation some types of vegetation
disappear while other types of vegetation appear gracefully. Shuffling instances ensures that
the data distribution is uniform over time, i.e. there is no drift at all. Figure 5 plots the
prior probabilities of the classes over time in the two new versions of the dataset

Note, that the order of the Cover Type dataset is related to the spatial location of the
instances, as clarified by the authors in personal communication. This additional knowledge
about the data indicates that in the first two cases (Cover Type and Cover Type Sorted)
the data contains some kind of spatial auto-correlation while in the last scenario (Cover
Type Shuffled) this autocorrelation is broken by randomisation over the instances order.

Figure 6 plots the accuracy results of the compared approaches on three versions of the
Cover Type dataset: the original, sorted (gradual drifts), and shuffled (no drift).

We can observe that all the algorithms obtain similar performances on the original data
(Figure 6(a)) while on the sorted version (Figure 6(b)) we can note that DBALSTREAM
obtains a slight improvement w.r.t. the competitors for budget values around 0.1.

Considering the Cover Type Shuffled version (Figure 6(c)), DBALSTREAM clearly out-
performs all the competitors for all the budget values. The only exception happens for
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Figure 4: Accuracy Results for DBALSTREAM coupled with different Confidence based and
Margin based uncertainty estimation on a) Airlines b) Cover Type c) Electricity
and d) KDD99

budget value equals to 0.05 where the Rand Unc heuristic obtains the same results as our
proposal. This experiment underlines that DBALSTREAM performs similarly to state of
the art approaches for spatially auto-correlated data while it clearly outperforms the com-
petitors when data instances are not affected by this kind of auto-correlation.

5. Conclusions

Building classification models on data streams considering only a limited amount of labeled
data is becoming a common task due to time and cost constraints.

In this paper we presented DBALSTREAM, a novel algorithm to perform active learning
in a data stream scenario. Our approach exploits local instance correlation over the feature
space in order to improve sampling on the potentially most useful examples to label.

We assessed the performance of our proposal over real world benchmark datasets. The
results showed that the proposed approach outperforms state-of-the-art active learning
strategies for data streams in terms of predictive accuracy. We empirically studied dif-
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ferent factors that can impact our strategy: the window size used to estimate the local
density of a new instance and the way in which the uncertainty of an example is estimated.
As a final experiment we supplied an in-depth study on how our strategies deal with evolving
data and manage concept drift.

As future work we would like to investigate other ways to measure and incorporate
density into the active learning process for data streams.
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