
JMLR: Workshop and Conference Proceedings 36:29–45, 2014 BIGMINE 2014

FAQ: A Framework for Fast Approximate Query Processing
on Temporal Data

Udayan Khurana udayan@cs.umd.edu
University of Maryland, College Park, MD

Srinivasan Parthasarathy spartha@us.ibm.com
IBM T.J. Watson Research Center, Yorktown Heights, NY

Deepak Turaga turaga@us.ibm.com

IBM T.J. Watson Research Center, Yorktown Heights, NY

Editors: Wei Fan, Albert Bifet, Qiang Yang and Philip Yu

Abstract

Temporal queries on time evolving data are at the heart of a broad range of business and
network intelligence applications ranging from consumer behavior analysis, trend analysis,
temporal pattern mining, sentiment analysis on social media, cyber security, and network
monitoring. In this work, we present an innovative data structure called Fast Approximate
Query-able(FAQ), which provides a unified framework for temporal query processing on
Big Data. FAQ uses a novel composition of data sketching, wavelet-style differencing for
temporal compression, and quantization, and handles diverse kinds of queries including
distinct counts, set membership, frequency estimation, top-K, p-norms, empirical entropy,
and distance queries such as Histogram `p-norm distance (including Euclidean and Man-
hattan distance), cosine similarity, Jaccard coefficient, and rank correlation. Experiments
on a real-life multi dimensional network monitoring data sets demonstrate speedups of 92x
achieved by FAQ over a flat representation of data for a mixed temporal query workload.

1. Introduction

Temporal aggregation, similarity and distance queries are at the heart of several important
data exploration and knowledge discovery tasks such as prediction, forecasting, classifica-
tion, clustering, search and retrieval on time evolving data sets [21, 18, 24, 2]. Efficient
temporal query processing is a critical factor in our ability to understand and leverage the
ocean of data that is continuously generated in our interconnected environment. The pro-
cess of exploratory data analysis and knowledge discovery often poses additional challenges
for temporal query processing since the data scientist is interested in exploring the data
through multiple lenses: what interesting behaviors and patterns emerge when the data is
viewed at the granularity of a day vs week vs month? How does the data cluster when
the clustering algorithm uses Manhattan vs Euclidean distance? A cardinal question that
emerges here is as follows: Are there algorithm design and data structure principles that can
be leveraged for efficient temporal query processing at multiple granularities and are they
robust and generic enough to handle a variety of aggregation, similarity and distance func-
tions? We answer this question in the affirmative by presenting an innovative framework
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called Fast Approximate Query-able(FAQ). We begin with a few scenarios that illustrate
temporal queries and subsequently describe the FAQ framework.

Illustrative Temporal Queries:

1. Consider the set of Twitter users and the subset of Tweets containing mentions of
consumer products. What were the top 10 frequently mentioned products across all
users belonging to a given geographical region over a given hour, day, week or month?
What is the similarity score between the set of products mentioned today compared
to the day before?

2. Consider two blogging communities each of which generates a time evolving collection
of blogs. How divergent are the set of topics mentioned by the two communities over
a given hour, day, week, or month? What is the divergence score if measured in terms
of the Jaccard coefficient, Manhattan distance, or Euclidean distance?

3. Consider the set of all devices in an enterprise network and the DNS queries made by
these devices. Given a subnet, what is the number of distinct domains queried by all
the devices in this subnet over a second, hour, day, week, or 3-month interval? What
is the empirical entropy and the second frequency moment of the query distribution?

Key Aspects of Temporal Query Processing: The aforementioned scenarios illustrate
a few key aspects of the problem we address in this work, namely: (i) Entities often exhibit
behavior that is sparse and stable over time: for instance, the set of DNS queries emanat-
ing from a device is determined by various applications installed on the device as well as
the web browsing preferences of the owner of the device; in practice, both of these change
infrequently over time. Temporal aggregation and distance queries can reap tremendous
benefits in terms of efficiency if temporal sparsity of this kind can be exploited appropri-
ately1; (ii) Temporal data could be either real-valued vectors (e.g., frequency or empirical
distribution over DNS domains) or categorical (e.g., set of products mentioned); (iii) Ag-
gregation could be over multiple time resolutions and more generally, over arbitrary time
intervals; (iv) Aggregation could be across various entities each of which is a distinct source
of the time evolving data (e.g., multiple devices in a subnet, each of which generates its
own DNS queries); (v) Aggregation, similarity and distance functions could be of diverse
types; and (vi) Exploratory data analysis applications generally tend to be tolerant of small
bounded errors. Processes such as NLP, entity recognition, and sentiment extraction are
often approximate and probabilistic in themselves and hence a marginal increase in error in-
troduced by query processing for the purpose of delivering substantial performance benefits
is a welcome trade-off.

Existing Approaches: The preeminent approach for answering aggregate, similarity and
distance queries on time evolving data the approach of data sketching; we refer the reader
to Cormode et al. [10] for a useful survey of sketching techniques. Sketching algorithms
are often simple and practical to implement, and many sketches achieve significant space
efficiency by constructing various succinct random estimators from the raw data and yielding
a function of these estimators as the answer to the query. However the literature on sketching
algorithms do not generally focus on efficiently handling multi-resolution queries posed

1. This fact is borne out by our experiments in Section 5
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over arbitrary time windows, and do not provide a means for exploiting temporal sparsity
for efficiently processing temporal aggregation queries. Wavelet transformation of time
series data is a well-studied alternate representation that is particularly suitable for multi-
resolution analysis of time-series data as observed by Chan et al. [7] and provides significant
compression benefits for temporally sparse data. However, wavelets are geared towards
signal reconstruction and recovery and generally do not achieve the level of compression
achieved by sketching algorithms (often poly-logarithmic in the size of the original signal).
Further, wavelets are geared towards real valued time series and are not directly applicable
for categorical data such as time evolving sets or graphs.

The FAQ Approach: The core contribution of this work is a novel data structure for
temporal aggregation, similarity, and distance query processing called Fast Approximate
Query-able index (FAQ). FAQ uses Wavelet-style differencing techniques to convert any
given data sketching scheme into a multi-resolution range-tree that is suitable for temporal
query processing. For real-valued histograms and sketches, FAQ introduces a novel ge-
ometric quantization scheme which yields further benefits in terms of compression. The
flexible composition of these algorithmic techniques enables FAQ to handle diverse types
of temporal queries with a high degree of accuracy while achieving substantial speedups on
real-world data sets.

Specific Contributions: The specific contributions of this work are as follows.

1. Multi-resolution: We introduce an innovative data structure called FAQ which
converts any data sketching scheme into a multi-resolution range tree structure that
is ideal for handling temporal aggregation, similarity, and distance queries. This
structure guarantees bounded (squared-logarithmic) traversal time for any arbitrary
time range over which the aggregation query is posed.

2. Temporal Sparsity: FAQ explicitly identifies and leverages opportunities for tem-
poral compression in the presence of temporal sparsity. Specifically, during its con-
struction phase, FAQ explores multiple possible data representations and chooses the
locally space-optimal representation for each FAQ node / edge in order to achieve
temporal compression.

3. Geometric Quantization: FAQ introduces a novel geometric quantization tech-
nique that can be applied to histograms and real-valued sketches which yields added
benefits in terms of compression. The quantization error introduced by this encoding
can be analytically upper bound; this opens up interesting optimization opportunities
for the FAQ query planner to straddle across multiple versions of the FAQ data struc-
ture (each representing the same underlying data set) in order to speedily answer a
given query.

4. Generality via Flexible Composition: The flexible composition of the aforemen-
tioned algorithmic techniques makes FAQ a highly efficient general purpose data struc-
ture for answering a wide variety of aggregation queries such as distinct counts, set
membership, frequency estimation or top-K, p-norms, empirical entropy, and distance
and similarity queries such as Histogram distances (`p-distances including Euclidean
and Manhattan distance), cosine similarity, Jaccard coefficient, and Rank correlation.
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5. Empirical Evaluation: We demonstrate the benefits of FAQ in terms of accuracy
and speedups for histogram aggregation and distance queries on two large real-world
network data sets.

Outline: In the remainder of this paper, we survey related work in Section 2; we provide
formal definitions of our data and query model in Section 3, and describe the construction
and operation of FAQ in Section 4. We demonstrate the power and benefits FAQ for
histogram aggregation and distance queries on large real-world network data sets in Section 5
and conclude with Section 6.

2. Related Work

2.1. Sketching

Sketching algorithms have been developed over the years for a wide variety of useful queries;
refer to Cormode et al. [10] for a survey of such techniques. Specific sketches have been
developed for common temporal aggregation functions such as distinct counts [12, 1, 4],
set membership [14], frequency counts and top-K items [11, 8], frequency moments, p-
norms, and `p-distances [15, 19], empirical entropy [20], Jaccard coefficient [5] and Cosine
similarity [9]. Our work builds on top of existing research on data sketches and provides
a way to leverage all of these sketches within the FAQ framework which is well-suited for
multi-resolution temporal queries.

2.2. Frequency Domain Transformation

Frequency domain transformations of time series measurements underlie much of signal
processing theory and applications. An overview of such transforms and specifically, their
applications to time series distance metric computation is presented by Wang et al. [28].
These transforms include the Discrete Fourier, Cosine, and Wavelet transforms, Singular
Value Decomposition, Polynomial approximation schemes, Symbolic Aggregate approXima-
tion, and Indexable Piecewise Linear Approximation. This work also includes a discussion
on the computation of different distance functions between time series fragments includ-
ing the Euclidean distance, Dynamic Time Warping (DTW), distance based on Longest
Common Subsequence, Edit Distance with Real Penalty, Edit Distance on Real sequence,
DISSIM, Sequence Weighted Alignment model, Spatial Assembling Distance, and similar-
ity search based on Threshold Queries (TQuEST). In a recent paper, Rakthanmanon et
al. [25], show several optimizations in similarity computation, tailored for efficient approx-
imate searching within very large time series datasets. Kim et al. [17] present a document
retrieval solution based on time series similarity computation.

Multi-resolution representation as well as quantization are both canonical algorithmic
techniques which underlie the FAQ data structure and which are inspired by the world
of frequency domain signal transformations. However, there are three specific aspects of
FAQ which go beyond these well-known signal encoding techniques: first, our focus is on
efficiently processing aggregate queries, and aggregated histogram distance queries. Specif-
ically, our queries involve aggregations over a set of multi-dimensional time series across
time intervals and distance queries posed over such aggregates. While the frequency do-
main and wavelet transformations tend to focus on signal reconstruction, our focus is on
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approximate aggregate and distance query processing; we approach this problem by compos-
ing wavelet-style multi-resolution transformation techniques on top of sketching algorithms
which provide substantial dimensionality reduction for each snapshot (or sample) in time in
addition to compression across time. Second, FAQ is a generic data structure that handles
not only continuous or real-valued multi-dimensional time-series data, but also discrete data
such as time evolving sets and temporal aggregation queries on them such as distinct count,
membership, and set similarity. Third, the nature of quantization introduced by FAQ en-
sures that the number of bits needed for signal encoding is logarithmic in its range (and
not linear), and simultaneously provide a way to probabilistically upper bound the error
introduced by this encoding. We are not aware of such geometric quantization schemes
employed in the context of query processing.

2.3. Timeseries Indexing

There has been a considerable amount of work on timeseries indexing in the last few years,
mostly aimed at efficient specific mining and searching applications. Most of the work
considers search across a large number (millions) of 1-D time series. For instance, Niennat-
trakul et al. [23] present an index for searching similar time series using DTW. It indexes the
sequences in database using groups and when a query is issued, relevant groups are filtered
based upon lower bound on distance. iSAX [27] present a novel multi-resolution symbolic
representation using a tree based index structure to facilitate fast exact search on millions of
one dimensional time series of small lengths (typically 16). iSAX2+ [6] extends the index-
ing to beyond 1 billion time series. Reeves et al. [26] use multi-scale analysis to decompose
time series and obtain sparse representations in different domains, such as the time and
frequency domain. These sparse representations are stored compactly on disk and queries
such as trend, histogram and correlations can be answered directly without reconstructing
the raw data. Mueen et al. [22] present an efficient way to compute all-pair correlations
in a warehouse of tens of thousands of time-series, based on Discrete Fourier Transforms.
In [13], Gandhi et al. present a framework for on-line approximation of one-dimensional
time series. DeltaGraph [16] is a hierarchical index for large temporal graphs. It uses graph
deltas for compact disk storage and provides a near I/O-optimal snapshot reconstruction.
Wang et al. [28] present an extensive experimental study by re-implementing eight differ-
ent time series representations, nine similarity measures and testing their effectiveness on
thirty-eight different time series datasets from a wide variety of application domains.

FAQ is different from aforementioned indexing techniques as our data structure is in-
tended to be generic. FAQ handles i) a wide variety of aggregation and distance queries; ii)
multiple multi-dimensional time series as part of aggregation; iii) handles both real valued
and categorical time evolving data and queries on them. Our data structure can be used
in a database for general purpose time series applications involving fetching and similarity
computation. While it is very useful to build targeted indexes with a focus on specific tasks,
our data structure focuses on generic query optimization techniques that can be plugged
into a variety of exploratory data analysis and data mining tasks.
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3. Definitions

3.1. Data and Query Model

We consider data in the form of discrete time-evolving histograms defined over a set of
source and target entities U and V respectively. Time is discrete, and for every time slot in
[0, 1, 2, . . .], for each source entity u ∈ U , we are given a histogram σt(u) which is a vector of
counts defined over the target entities V . Given a histogram σ, we will let σ[j] denote the
value of its jth component, and Ω(σ) its support, i.e., the set of all non-zero components of
σ. Below, we provide the formal description of the data sets used as illustrative examples
in Section 1.

1. U and V represent the set of Twitter users and consumer products, respectively.
σt(u)[j] is the number of mentions of product j by user u during the hour t.

2. U and V represent the set of all blogs and topics, respectively. σt(u)[j] is the number
of mentions of topic j in blog u during the hour t.

3. U and V represent the set of all devices in an enterprise network and all DNS domains
on the Internet, respectively. σt(u)[j] is the number of queries made for domain j by
device u during the second t.

For a given subset of source entitiesA ⊆ U , and for any time range [t1, . . . , t2], the aggre-
gate histogram σ[t1,...,t2](A) is defined as the histogram obtained through the component-
wise addition of the |A| × (t2− t1 + 1) base histograms. The aggregation queries we deal
with are of the general form: f(σ[t1,...,t2](A)) where f is a histogram function such as entropy
or the `2-norm. The similarity and distance queries we deal with are of the general
form: g(σ[t1,...,t2](A), σ[t3,...,t4](B)), where g is a similarity function such as the Jaccard Coef-
ficient or a distance function such as the Euclidean distance. We are interested in efficiently
answering a wide variety of temporal aggregation, similarity and distance queries, including
but not limited to distinct counts, set membership, frequency counts, top-K items or heavy-
hitters, frequency moments, p-norms, `p-distances, empirical entropy, Jaccard coefficient,
rank correlation, and Cosine similarity.

3.2. Data Sketch

Sketches are succinct data structures that can be used to approximately and efficiently
answer a variety of aggregation queries. A data structure Γ(σ) computed from histogram
σ is a sketch iff there is a space-efficient combining algorithm Ψ such that for every two
histograms σ1 and σ2, we have Ψ(Γ(σ1),Γ(σ2)) = Γ(σ1◦σ2), where σ1◦σ2 is the aggregation
of the two histograms2. A linear sketch is a linear function of its histogram input σ. Note
that Ψ is simply the addition operation in the appropriate vector space in this special case.
A real sketch of size n is a linear sketch which takes values from the vector space Rn.

2. By space efficient, in this paper, we will mean linear in the size of the inputs to Ψ; For instance, when
we deal with random projection sketches such as those employed for p-norms and `p-distances, ◦ and
Ψ are both vector additions, the former in the histogram domain and the latter in the sketch domain;
when we deal with sketches that are bitmaps as in a Bloom filter, ◦ represents set union while Ψ is the
bit-wise OR operation
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4. The FAQ Data Structure

The FAQ data structure is a composition of three distinct algorithmic principles, namely
i) range-tree organization, ii) sparse representation and iii) geometric quantization. These
algorithmic principles can be applied purely in the histogram domain, or in the sketch
domain, or a hybrid of the two. We first describe these algorithmic principles in the following
three subsections and subsequently describe how they can be configured together in multiple
way within the architecture of our current prototype.

4.1. Range-tree Organization

Given a source entity u, consider the set of all sketch values associated with this entity:
i.e., ∀t, Γ(σ(u)[t]). FAQ organizes these sketches for u in the form of a binary3 range-tree
in order to expedite temporal range queries for this source. This concept is illustrated in
Figure 1(a). The root of this binary tree contains the aggregate sketch for u over all time-
slots, and the leaf nodes contain the sketches for individual time slots. Consider an internal
node of this tree which spans a set of contiguous time slots w. The left and right children
of this node span the left and right halves4 of the time range w respectively. The Lemma
below follows from the standard analysis of range trees.

Lemma 1 The aggregated sketch for any arbitrary time range [t1, t2) can be computed by
combining the sketch values of at most O(log n) internal and leaf nodes. For any internal
node, the sketch value can be computed by traversing a path of at most O(log n).

4.2. Sparse Representation

In this subsection, we describe how temporal sparsity can be opportunistically leveraged
during the construction of a hybrid FAQ structure that contains a combination of sketch
values, raw histogram values, sketch domain and histogram domain differences. Time evolv-
ing histograms can manifest sparsity in a variety of different ways: (i) a histogram for a
particular time-range could be low dimensional: i.e., only a small number of histogram
components are non-zero, or (ii) the histograms could display temporal continuity: con-
sider histograms σt0(u) and σt0+1(u): the histogram difference σt0+1(u)− σt0(u) could be a
sparse vector, or iii) the histogram of a parent node could be a scaled up version of one of
its children plus a sparse perturbation, or iv) sparsity could manifest in the sketch domain:
i.e., Γ(σt0(u)), or Γ(σt0+1(u)) or Γ(σt0+1(u))−Γ(σt0(u)) is a sparse vector. Table 1 presents
the sketch domain differences for a few well-studied sketches. The FAQ data structure is
designed to exploit all of the above opportunities for sparse representation.

Let us now consider the construction of FAQ for a specific source entity u. FAQ node
and edge values are created for u by prioritizing the lower levels: i.e., nodes or edges farther
from the root are processed prior to the nodes or edges closer to the root; within a given
level, FAQ processes nodes from left to right. While processing any node, FAQ considers
the following four options: (1) storing the raw histogram or sketch value for this node; (2)

3. The range-tree may have a higher arity than two. The binary case is used for simplicity of illustration.
4. This description assumes that the total number of time slots is a power of two. This assumption can

be trivially realized by rounding up the number of slots to the nearest power of two, and assigning
zero-valued histograms to the artificially added slots
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Figure 1: (a) FAQ Range Tree: The histogram and / or sketch values for a source at the
level of individual time units as well as aggregated time intervals represented as a binary
range-tree. Given an aggregate query involving time window [t2, . . . , t6], FAQ needs to
aggregate values at nodes u1, u2, and t6 in order to arrive at the result. In this illustrated
example, the dotted nodes or edges do not have any values associated with them, while
solid nodes and edges do. Computing the value at node z0 will involve traversing v1, v0, u0,
t1 and t0 and aggregating the values found along the nodes and edges in this traversal; (b)
Geometric Quantization: Illustration of geometric quantization with α = ε = 1. Values
in the bucket (−1, 1) are rounded to zero. If a value p falls in the bucket (2i, 2i+1), we store
i+ 1 with probability 2− p

2i
and store i+ 2 with probability p

2i
− 1. For instance, if p = 7,

then p is rounded up to 8 and the value 4 is stored with probability 3
4 , and it is rounded

down to 4 and the value 3 is stored with the complementary probability 1
4 . Negative values

are treated analogously.

and (3) storing the difference with respect to its left or right child along the left or right
edges down the tree, respectively and (4) if this node is a right child, storing the difference
with respect to its left sibling along the left edge. In all of the above cases the raw values or
differences could be either in the histogram domain or the sketch domain. While processing
a node, FAQ greedily chooses that option among the above eight choices which minimizes
the storage needed at this node. The notion of storing both node and edge-wise values is
illustrated in Figure1(a).5

4.3. Geometric Quantization

The final layer of optimization that FAQ employs for real sketches is geometric quantization
(illustrated in Figure 1(b)). The quantization logic is parameterized by two small positive
constants α and ε. The positive real axis is divided into buckets of geometrically increasing
lengths: [0, α), [α, α(1 + ε), [α(1 + ε), α(1 + ε)2), . . .. We designate the bucket [0, α) as the
positive zero bucket. Consider a real sketch and one of its components with a non-negative
value p. If p falls in the bucket [a, b), it is rounded up to value b with probability p−a

b−a
and rounded down to a with the complementary probability. Components rounded to zero

5. The FAQ structure is cyclic due to edges between siblings and hence not a tree in the strict graph
theoretic sense of the term. We use the term tree due to FAQ’s structural similarity to a range tree.
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Query
type

Data sketch
Native representa-
tion

FAQ Representation

Distinct
Count

Flajolet-Martin
Sketch [12]

Γ(σ) = γ1, . . . , γk each
of which is an integer
random variable

Ω(σ1),Ω(σ2),Γ(σ1),Γ(σ2), Ω(σ1) \
Ω(σ2), Ω(σ2) \Ω(σ1), non-zero com-
ponents of Γ(σ1)− Γ(σ2)

Frequency
Estimation
and Top-K

CCFC
Sketch [8]

Count Min-
Sketch [11]

Frequency
moments
p-norms

Histogram
distances

Random projec-
tion sketches [9,
1, 15, 20, 19]

Γ(σ) = γ1, . . . , γk each
of which is a real ran-
dom variable

Non-zero components of σ1, σ2, σ1−
σ2, Γ(σ1), Γ(σ2), Γ(σ1 − σ2)

Empirical
entropy
Cosine
similarity

Jaccard
Coefficient

Min-wise inde-
pendent permu-
tation [5]

Γ(σ) = {γ1, . . . , γk}
all of which are ele-
ments from Ω(σ)

Ω(σ1), Ω(σ2), Γ(σ1) \ Γ(σ2), Γ(σ2) \
Γ(σ1)

Rank Cor-
relation

Correlation
Sketch [3]

Set mem-
bership

Dynamic Bloom
Filters [14]

Γ(σ) = [γ1, . . . , γk], a
bit vector

Ω(σ1), Ω(σ2),Γ(σ1), Γ(σ2), Ω(σ1) \
Ω(σ2), Ω(σ2) \ Ω(σ1), Γ(Ω(σ1) \
Ω(σ2)), Γ(Ω(σ2) \ Ω(σ1))

Table 1: Sparse FAQ Representation options for various Sketches. The same native rep-
resentation often underlies multiple different sketches (for e.g., random projection sketches
for multiple applications all produce a random real vector). In the last column, σ1, and
σ2 could correspond to either parent and child nodes or left and right siblings in the FAQ
range tree. For instance, in the case a random projection sketch, we might store the sketch
of the parent, and the sketch domain or histogram domain difference between the parent
and a child; the latter option requires that the histogram domain difference be sketched and
added to the parent to derive the child’s sketch value while answering a query. The various
options and the space-optimal selection among these options are described in Section 4.2.

are discarded; we store the exponent i + 1 whenever a component is rounded to the value
α(1 + ε)i. Negative components in the sketch are treated analogously.

The key benefit of the geometric quantization scheme is the reduction in the storage
(number of bits) needed for individual sketch components: for instance, with α = 1 and
ε = 0.01, we can store any sketch component in the range (−4.006601e + 141, 4.006601e +
141) using a 16-bit signed integer value as opposed to a floating point value. Of course,
quantization also introduces additional errors which we analyze below.
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FAQ answers a query by creating an aggregated sketch that is composed from multiple
constituent sketches. Consider an aggregated sketch and one of its component values x
which is derived by summing the corresponding components in the constituent sketches:
i.e., x =

∑
i x

pz
i +

∑
j x

nz
j +

∑
k x

p
k +

∑
l x

n
l . In the preceding expression, we have grouped

together the constituent values that make up x into four groups, the values that fall in
the positive zero bucket (xpz), the negative zero bucket (xnz), positive non-zero buckets
(xp), and negative non-zero buckets (xn). Now consider their quantized analogues: x̂ =∑

i x̂
pz
i +

∑
j x̂

nz
j +

∑
k x̂

p
k +

∑
l x̂

n
l . It is easy to verify the following lemmas.

Lemma 2 The quantized sums
∑

k x̂
p
k and

∑
k x̂

n
k are at most a factor of (1+ ε) away from

their un-quantized counterparts
∑

k x
p
k and

∑
k x

n
k respectively.

Lemma 3 The expected value of a quantized value equals its original un-quantized value.

Lemmas 2 and 3 allow us to use large deviation bounds to probabilistically bound the
maximum error introduced via quantization: if this error estimate is within acceptable limits
for a given query, we use the values yielded by the quantized sketch; if not, we recompute
the answer to the query using the un-quantized FAQ.

4.4. FAQ Architecture

The architecture of our current FAQ prototype is illustrated in Figure 2(a). The main
components are as follows:

• Index consists of multiple representations of the raw data, each of which imposes its
own storage requirement, provides accuracy guarantees, and performance in terms
of query response times. For instance, FAQ used for the computation of histogram
distances using random projection sketches could have three distinct representations:
(i) A version based on pure histograms without sketching or quantization, and hence
yielding error-free results, (ii) A version based on a hybrid of sketches and histograms,
and (iii) A version based on a hybrid of quantized sketches, and histograms. In the
current prototype, the construction parameters of the index are specified manually.

• Query Planner is responsible for selecting the appropriate representation in order to
answer a given query. The optimal representation answers a query within the required
bound on error, in the shortest possible time amongst all other representations: for
instance, if the quantized version yields a (fast) result but exceeds the error bounds
specified by the query, the planner might resort to the un-quantized version or the
pure histogram version of FAQ. In general, the query planning component employs a
variety of different optimization strategies and heuristics which beyond the scope of
this paper.

• Index Manager handles the different representations in the index, and the computation
of aggregates. It also deals with memory materialization, i.e., caching of certain parts
of the range trees for speeding up the query processing.

• Error Estimator estimates the errors involved in a particular query evaluation. It
assists the query planner in making the decisions on selecting across representation.
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Figure 2: (a) FAQ system architecture highlighting the Query Planner, Index Manager,
Error Estimator and the Index; Query times for (b) Range tree (Histogram based) vs.
Histograms and, (c) Range tree (Sketches) vs. Sketches. It can be seen that while the
query time increases linearly for histograms or sketches with increasing query size, it remains
relatively constant for range tree (in fact, there is a logarithmic decrease).

5. Empirical Evaluation

In this section, we present the performance evaluation conducted on the FAQ prototype.
Our intent is to demonstrate the time-accuracy tradeoff through the selection of different
representations of timeseries, the selection of several parameters for each representation,
and the overall benefits through FAQ. We focus on evaluating one kind of query in an
extensive manner, in order to understand the impact of different components of FAQ. We
present results from similarity computation over multi-resolution aggregation of timeseries.

5.1. Implementation and Dataset

We implemented the system in Java using KyotoCabinet6 for disk storage. Since the his-
tograms are sparse, we used a representation that can be thought of as a list of (dimension,
value) pairs. The dimensions can be short integers or integers, while the values are in-
tegers. The sketches are represented as an array of double floating point numbers. The
quantized histograms or sketches use short ints. The range tree is a homogenous structure
and any node can contain either of the representations mentioned above. The experiments
were based on computing euclidean distance over several temporal and entity aggregations
of timeseries. The general query can be expressed as, d(σ[t1,...,t2](A), σ[t3,...,t4](B)), where
σ[t1,...,t2](A) and σ[t3,...,t4](B) are aggregated histograms over time periods [t1, . . . , t2] and
[t3, . . . , t4], respectively for entities A and B, respectively. We make use of the following
terms while reporting the results:

• Query Time is the response time taken to evaluate a given distance query. This
involves fetching both histograms or alternate representations (sketches) from FAQ,
followed by the distance computation. Unless otherwise specified, the results are
reported in milliseconds.

6. http://fallabs.com/kyotocabinet/
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• Query Size is the number of time slots across which the histograms are aggregated
in query. This could be different for the two sets of histograms, but in the our
experiments, we keep it the same for both sides, unless specified otherwise.

• Entity Count is the number of entities across which the aggregation was performed in
the query. Unless specified otherwise, A and B have the same entity count.

• Accuracy is defined as the percentage difference from the answer obtained while using
histograms. Since we treat histograms as the base data, its accuracy is always 100%.

The following parameters influence FAQ construction and hence the size, accuracy and
query time as well.

• Dimensionality(D) is the number of bins in the histograms. For example, it is the
total number of ports in Dataset 1 (described below).

• Sketch Size(k) is the size of the sketch vector used in a particular representation.

• Arity(r) is the branching factor of range tree.

The minimum confidence was fixed at 0.95 (i.e., error < 0.05) for all the experiments. We
evaluated FAQ for two datasets:

Dataset 1: This dataset contains one hour of anonymized traffic packets from CAIDA’s
equinix-sanjose monitor7. We processed the data to create histograms with bins consisting
of the frequency destination ports from the base packet data. Each histogram represents
the activity aggregated over a 40 millisecond slot. In all there are 90,000 histograms.

Dataset 2: This dataset is slight modification of the dataset 1 where all the traffic is further
partitioned by source port. We used a subset of this data with the source ports 1 to 200,
due to which there were 18 million histograms in all.

5.2. FAQ speedup over raw histograms

We created a FAQ structure on dataset 1 containing, (a) Raw histograms on disk, (b) Range
tree with sketch size, k = 140 on disk, no quantization, (c) Range tree with sketch size,
k = 100 on disk, no quantization. (d) A quantized version of range tree of sketches with
sketch size, k = 100 in main memory, consuming 87MB.

On the other hand, we chose a representation of raw histograms, which used 87 MB
of memory (assigned to an arbitrary contiguous chunk of histograms) and disk for the rest
(roughly, 1.9 GB). We chose 100 queries at random with time range, w varying from 400ms
to 40,000ms in the multiples of 40ms and with varying εmax ∈ [85%, 95%], chosen at random.
The average time taken for a query by FAQ was, 31ms, where as the average time taken by
raw histograms was, 2940ms, which is a speedup of 92x.

5.3. Querying on histograms and sketches

Sketches speed-up distance computation over histograms considerably. On dataset 1, we
observed a speedup by a factor of 5-40 times with an accuracy in the range of 82%-97%. In

7. http://www.caida.org/data/passive/passive_2012_dataset.xml
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Figure 3: The (a) time taken and (b) accuracy for computing euclidean distance on sketches
of single entities from Dataset 2. It is seen that, higher the sketch vector size(k), higher the
query latency but higher the accuracy.

Figure 3, we show the behavior of query time and accuracy of query evaluation using sketches
for different entity counts. It can be seen that higher number of sketches incur higher
retrieval and processing costs. However, higher number of sketches also also means higher
accuracy or lesser error. Higher randomization introduced by more number of sketches
reduces the error [10]. This exhibits the tradeoff between response time and accuracy
accuracy mentioned earlier.

5.4. Entity aggregation

When aggregation is performed across multiple entities, using either histograms or sketches,
the query-time behavior is quite as expected – the time taken increases linearly with the
number of entities. However, while using sketches, we get the advantage of higher accu-
racy with higher number of entities, attributed to higher randomization. This is shown in
Figure 4(b).

5.5. Range Tree

We have seen that while querying on linear representations such as histograms and sketches,
the query time increases linearly with the query size. However, range trees give us the
advantage of directly fetching histograms that have already been aggregated temporally.
Figure 2(b,c) show the advantage of using range tree for queries with high query sizes.

We use the range tree structure in a flexible manner; it can contain a mix of sketches
and histograms. Figure 4(a) shows the query times for range trees that are based purely
out of histograms, purely out of sketches and the third one, a mix of both. The criteria
for selecting a sketch or a histogram as a range tree node was based on size. If the sketch
happens to be smaller, it becomes the value of the node, else it is the histogram. We can
see that the hybrid one performs somewhat better than either of the pure configurations.
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Figure 4: (a) Query times for different range tree configurations - purely histogram based,
purely sketch based and a hybrid of the two, respectively. The entity count is 1 and
performed on dataset 1. The hybrid one performs somewhat better than either of the pure
configurations. (b) Accuracy increases with the number of entities aggregated in a query.
We used sketches with size, k = 40 and k = 60, over 6 queries of size 400ms each on Dataset
2. (c) Query times and (d) Accuracy for histograms and the quantized version of histograms
for different query sizes: the loss of about 5% accuracy, yields a speedup of around 25%.

5.6. Quantization

The principal advantage of quantization is that by rounding coefficients, we can reduce the
space and achieve speedups. Quantization comes into effect in two forms - (a) storing lesser
information and hence fetching less at query time, and, (b) being able to utilize memory
in a more efficient manner by fitting the quantized representations in memory (reflected in
Section 5.2). Figure 4(c,d) show the comparison of query times and accuracy of quantized
histograms with non quantized ones in case of histograms as described in Section 4.3. The
disproportionately higher speedup compared to the small loss in accuracy is attributed to
the significant reduction in storage size due to quantization, leading to faster fetching times;
whereas, the final answer is only effected by a fraction.

6. Discussion

In this paper, we presented an approach to perform approximate multi-resolution temporal
aggregation queries in timeseries efficiently. We came up with a novel combination of data
sketching, wavelet-style differencing for temporal compression, and geometric quantization
to create compact representations of large timeseries. We showed, theoretically and empir-
ically, how to track error with such different representations. We also presented FAQ (Fast
Approximate Query-able), a data structure spanning disk and memory, that uses multi-
ple representations of timeseries data to facilitate a trade-off choice between accuracy and
query time. Constrained to satisfy a specified error guarantee in the query, FAQ’s objective
is to evaluate the the query in the least response time. We show a 92-fold speed up for
euclidean distance queries using FAQ over a raw histogram representation. Since timeseries
data is omnipresent today and given the evaluation of temporal aggregates in applications
such as trend analysis, pattern discovery, drift detection, anomaly detection etc., we believe
such a structure will be useful for speeding up many offline and online tasks in stream and
historical data management. This work has given rise to a number of future directions of
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work. Firstly, we are engaged in deploying FAQ for use in multiple real world application
systems.Secondly, we are exploring the use of such representations in other aggregates also
in the context of different types of queries, such as, sliding window queries over streaming
data. Finally, we are also working on a data-driven optimization of the FAQ structure by
auto tuning of parameters, such as tree arity and sketch sizes.
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