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Abstract

Clustering is an important problem in Statistics and Machine Learning that is usually
solved using Likelihood Maximization Methods, of which the Expectation-Maximization
Algorithm (EM) is the most common. In this work we present an SQL implementation
of an algorithm merging Markov Chain Monte Carlo methods with the EM algorithm to
find qualitatively better solutions for the clustering problem. Even though SQL is not
optimized for complex calculations, as it is constrained to work on tables and columns,
it is unparalleled in handling all aspects of storage management, security of the informa-
tion, fault management, etc. Our algorithm makes use of these characteristics to produce
portable solutions that are comparable to the results obtained by other algorithms and are
more efficient since the calculations are all performed inside the DBMS. To simplify the
calculation we use very simple scalar UDFs, of a type that is available in most DBMS. The
solution has linear time complexity on the size of the data set and it has a linear speedup
with the number of servers in the cluster. This was achieved using sufficient statistics and
a simplified model that assigns the data-points to different clusters during the E-step in an
incremental manner and the introduction of a Sampling step in order to explore the solu-
tion space in a more efficient manner. Preliminary experiments show very good agreement
with standard solutions.

Keywords: Clustering, EM, DBMS, SQL, Monte Carlo, Markov chains, Bayesian me-
thods,

1. Introduction

Clustering is a fundamental data mining technique that is frequently used as a building block
for the treatment of more complex problems such as Class Decomposition and Bayesian
Classifiers. Among clustering algorithms, the Expectation Maximization (EM) algorithm
is popular due to its simplicity, its numerical stability and reliability. EM belongs in the
class of maximization algorithms, that solve a particular problem by finding a maximum of
a quantity that describes it, in this case the log-likelihood.

Maximization algorithms’ weakness is that, if the problem to be explored has more
than one possible extrema, the solution found might be a “good” solution, rather than
the “best” one. This has been extensively studied in the literature. Markov Chain Monte
Carlo methods can help us escape local extrema, but at the cost of an increase in orders of
magnitude of the number of iterations required for convergence. This negatively impacts
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the practicality of the implementation of a MCMC clustering algorithm, in particular in
the case of problems with a massive amount of data to process. When dealing with massive
data volumes we must also take into account the possibility of using all the RAM memory
available, even in modern systems. Therefore it is imperative to factor into the time per
iteration, the time needed to retrieve the information from secondary storage, as well as
data security and fault tolerance. For these reasons solving the clustering problem using
MCMC methods is more challenging, in particular when analyzing big data. This poses
a complication since the characteristics of big data often require the use of Markov chain
methods.

The SQL query language can thus be an important tool for the programmer. SQL
automatically handles all the problems with storage and data security and, since it’s imple-
mented inside the DBMS, that is usually the data repository, it simplifies the retrieval of
data, in particular when the data in question doesn’t fit in main memory. This, however,
comes at a cost: SQL is less flexible and slower than high level languages like C++, since
it is designed to work with tables inside a relational database.

In this work we present a new implementation of an MCMC EM algorithm for the
calculation of clustering in large tables, implemented inside the DBMS, using queries for
the calculation of the Expectation step, and an external step for the maximization and
sampling of the data. This hybrid approach was taken in order to allow for the use of
several separate nodes in a parallel implementation.

This article is organized as follows: Section 2 presents a brief introduction to the EM
algorithm and to Markov processes. Section 3 details our efforts to efficiently incorporate
MCMC into the EM algorithm. In Section 4 we describe the complete algorithm and show
the SQL queries required to calculate the E-Step. Section 5 shows the results obtained
and a validation of the method. Finally Sections 6 and 7 explore the related work and our
conclusions.

2. Definitions and Preliminaries

2.1. The EM Algorithm

The Expectation Maximization (EM) algorithm is an iterative method to estimate the
parameters of a mixture of k normal distributions. The EM algorithm finds the maximum
likelihood estimate of the parameters of a distribution for a given data set. In this case,
where the probability is a multivariate normal distribution, and each data point is a d-
dimensional vector x = {x1, . . . , xd}, the probability of a given data point belonging to a
cluster characterized by parameters Cj (mean) and Rj (covariance) is

P (x;Cj , Rj) =

√
(2π)d |Rj | × e−

1
2

(x−Cj)TR−1
j (x−Cj) (1)

It is important to note that Rj , the covariance matrix of cluster j is a d×d diagonal matrix,
so in practice it is convenient to store it in a vector of dimension d × 1. The likelihood is
calculated as the probability of the mixture:

P (x;C,R,W ) =
k∑
j=1

WjP (x;Cj , Rj) (2)
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where Wj is the weight of cluster j. This last equation introduces the d× k matrices C and
R, where the means and covariances of all the clusters are stored, as well as W , the 1 × k
matrix of weights (Table 1).

The EM algorithm is characterized by two distinct steps: An Expectation step (E-
Step) where the likelihood of a given solution is calculated using the current estimates of
the cluster parameters, and a Maximization step (M-Step), where the parameters of the
solution are re-estimated, based in the probabilities calculated on the expectation step.
The quality of the solution Θ = {C,R,W} is measured, as previously mentioned, by the
Log-Likelihood, L(Θ):

L (Θ) =
1

n

n∑
i=1

log
(
P
(
xi; Θ

))
(3)

The importance of this quantity cannot be overestimated, since it is at the core of any
Maximum-Likelihood algorithm. The classic EM algorithm alternates E-Steps and M-Steps
until the change in L is less than a predetermined limit.

Another important quantity that is commonly associated with mixtures of normal dis-
tributions is the Mahalanobis Distance. If we want to calculate how far is a point x from a
cluster j with mean Cj and covariance Rj , the Mahalanobis distance

δ (x,Cj , Rj) = δij =
√

(x− Cj)T R−1
j (x− Cj) (4)

gives a much better understanding than the regular Euclidean distance since it gives an
idea, not only of how far the data point is from the center of mass of the distribution, but
also of the density of the cluster, by scaling the distance by the covariance matrix.

Table 1: Cluster Matrices

Name Size Contents

C d× k means

R d× d× k variances

W 1× k weights

Table 2: Sufficient Statistics

Name Size

N 1× k

L d× k

Q d× k

2.2. The Markov Process

A Markov process is a stochastic process such that the conditional probability of value xi

at time ti is uniquely determined by the value xi−1 at time ti−1 and not by any knowledge
of the values at earlier times. In simpler terms it is a rule for randomly generating a new
configuration of a system from the present one (Binney et al. (1992)). This rule can be
expressed as a set of transition probabilities from state α to state α′. These probabilities
must satisfy the sum rule ∑

α′

P (α→ α′) = 1 (5)

since it is evident that at each step the system must go somewhere. A Markov Chain is a
sequence of states generated by a Markov process in which the frequency of occurrence of
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a state α is proportional to the Gibbs Probability pα and where the transition probabilities
obey the conditions of accessibility and microreversibility (or detailed balance)

In a Monte Carlo algorithm, we generate a Markov chain in which each successive state
is generated by its predecessor and accepted (or rejected) according to an acceptance ratio
determined by the probabilities of each state. This algorithm randomly attempts to sample
the solution space, sometimes accepting the move and sometimes remaining in place. Gibbs
Samplers are Markov Chain Monte Carlo algorithms for obtaining sequences of observations
of the joint probability distribution of a set of random variables, when direct sampling is
difficult. Gibbs Samplers are commonly used as means of Bayesian Inference but they retain
many similar characteristics to the maximization step of EM.

Monte Carlo algorithms (in particular the Metropolis Hastings model) were developed
to solve this kind of problems Hitchcock (2003). Deterministic schemes, such as the Gauss-
Newton Algorithm and its variants (or for that matter, EM) find progressively better solu-
tions in an iterative manner, with the result that, if there are several possible minima, the
algorithm can stop at a local one, without finding the global result we are looking for. In
contrast Monte Carlo iterations allow the solution to worsen, climbing out of the shallow
valleys in order to find the deep ones. In other words, Monte Carlo techniques effectively
sample phase space until the best possible solution is found.

There are many advantages to the use of MCMC methods to data analysis, such as
the calculation of confidence intervals, as used to calculate indirect effect by Preacher and
Selig (2012) and it has been successfully applied to the management of probabilistic data
by Jampani et al. (2008).

3. Merging EM with Monte Carlo

In this section we will describe our efforts to incorporate Monte Carlo techniques into the
EM algorithm. We will also describe some ways of improving the time performance of the
algorithm in order to reduce the number of iterations required for convergence.

3.1. Sufficient Statistics

At the core of the algorithm is the concept of sufficient statistics. Sufficient statistics are
multidimensional functions that summarize the properties of clusters of points. One of the
interesting properties of these summaries is that they are independent, that is, statistics
from one cluster do not depend on the values of the data points from other clusters.

For this algorithm we introduce three statistics per cluster Dj (j = 1, . . . , k)

Nj = |Dj | (6)

Li,j =
∑Nj

i=1 xi where x ∈ Dj (7)

Qi,j =
∑Nj

i=1 x
2
i where x ∈ Dj (8)

N is a (1 × k) matrix that stores the size of each cluster Dj , L is a (d × k) matrix that
stores the sum of the values of all data points that belong in each cluster, and Q is a (d×k)
matrix that stores the sum of the squares of the data points. These particular statistics
have another important property: Since they are calculated in an additive manner, they are
easy to calculate using multiple threads or multiple processors. We can use these sufficient
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statistics to reduce the number of reads of the dataset, allowing the periodic estimation
of the parameters without resorting to extra I/O steps, thereby significantly reducing the
algorithm’s running time.

3.2. The Fractal Nature of Data

For sufficiently large data sets, a portion of the data-set is representative of the whole. This
is particularly true in the case of very large multidimensional datasets, where there are
no preferred orderings, and any sufficiently large subset will closely resemble the complete
sample.

We can exploit this property of very large datasets to accelerate the convergence of the
EM algorithm. Following Ordonez and Omiecinski (2002), we can reduce the number of
iterations necessary for convergence by inserting M-Steps every ψ datapoints, instead of
waiting until the end of the dataset to maximize. Since the maximization step is performed
roughly bn/ψc times per iteration, the time needed for convergence is significantly shortened.
The authors arrive experimentally to a value of ψ = b

√
nc, however this can be tweaked to

fit the particular dataset to be explored.

3.3. The FAMCEM Algorithm

In this section we describe FAMCEM (Fast and Accurate Monte Carlo EM), an algo-
rithm that improves EM by incorporating ideas from Monte Carlos style algorithms, first
introduced in Matusevich et al. (2013).

Recalling the definitions of N , L and Q we calculate the parameters of the problem
using

Cj =
Lj
Nj

The d-dimensional cluster average (9)

Wj =
Nj∑k
j′=1Nj′

The weight of the cluster (10)

Rj =
Qj
Nj
−
LjL

T
j

N2
j

+ λΣ The d-dimensional variance (11)

where Σ is the global standard deviation and λ is a small positive constant used to cir-
cumvent EM’s weakness when variances approach zero. The introduction of the λΣ term
ensures that the variances will never be zero, even if there is very little change in any par-
ticular dimension. It should be chosen small enough that it will not impact negatively in
the calculations, but large enough that the covariance matrix is not singular.

FAMCEM introduces two significant changes to the EM algorithm. In the regular EM
algorithm, the datapoint is assigned a series of probabilities of belonging to each of the
clusters. In FAMCEM we use these probabilities to find a unique cluster to which the data
point belongs, this produces a decoupling between the clusters, simplifying (as we will see)
the calculation of the Log-Likelihood. However, instead of assigning the data point to the
cluster with highest probability, we make a random assignment. For each point we calculate
the set of probabilities of belonging to each of the clusters and using the histogram method,
we decide to which cluster to assign it.
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Algorithm 1 The FAMCEM Clustering Algorithm

Input: X = {x1, x2, . . . , xn} and k
Output: Θ = {C,R,W} and L(Θ)

// Parameters (defined in the text)
ψ ← b

√
nc, α← 1

d×k , λ← 0.01
for j = 1 to k do
Cj ← µ± α× r × diag|σ|, Rj ← Σj , Wj ← 1/k

end for
I = 0
while (|L(Θ)I − L(Θ)I−1| > ε and I ≤ MAXITER) do

// Initialize the sufficient statistic matrices
for j = 0 to k do
Nj = 0, Lj ←

−→
0 , Qj = 0

end for
for i = 1 to n do

// Expectation Step: Choose to which cluster the data point xi belongs
Find the maximum probability cluster m0

Choose m randomly, according to the probabilities pij .
a← Random number a ∈ [0, 1)
if p(m)/p(m0) > a then

Use m
else

Use m← m0

end if
if (i mod ψ = 0 or i = n) then

if (i < BURNIN) then
// Maximizing Step: During the burnin period, we maximize.
Update Equations 9 through 11

else
// Sampling Step: After the burn-in period, we sample instead of maximize
Update Equations 9 and 10
// We purposely de-tune the centroids, in order to avoid local extrema
Cj ← rnorm(Cj , Rj)

end if
end if

end for
Calculate the Log-Likelihood
ε← (1− L(ΘI−1)/L(ΘI))

end while

To illustrate this step, we can imagine a distribution of points in two-dimensional space:
Some points are relatively easy to place within a cluster, that is to say, the probabilities are
skewed in favor of only one cluster. However, in general this is not the case. In fact any point
between two centroids could belong to either one, particularly if the standard deviations
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(radii) are large enough. While at some point during the procedure, the probability might
favor one cluster to the detriment of others it is possible that this is just an artifact of the
current distribution. Allowing a certain opportunity to be included in other clusters, while
making the current iteration slightly worse, could lead to an overall improvement of the
solution.

The second important change is in the M-Step. After a good estimate for the parameters
is reached, we alternate the maximization step with a “sampling step”. During this S-Step
we update the parameters in Equations 9 and 10, however instead of updating 11, we
add an extra step: After we have an estimate for Cj we use a normal distribution to
calculate C ′j , using |Rj | as the standard deviation. This allows for further exploration of
the solution space, improving our chances of finding the global extrema. It is important to
emphasize that the Sampling phase only explores the priors of C and W but not R. R uses
a non-informative prior and remains fixed during Sampling, to reduce the complexity of the
problem (Liang (2009)). We decide whether to accept this C ′j using the Log-Likelihood as
a sort of energy function. For each cluster Dj we:

• Calculate the change in Log-Likelihood: ∆L = L(Θi)− L(Θi−1)

• If the change is a positive one, we accept it.

• Otherwise we find a random variable r ∈ [0, 1]

• Accept the new configuration if r ≤ e−β∆L

where β is a constant that regulates the mixing of the model: large values of β will propitiate
more chances of the change being accepted.

4. SQL Query optimization for the FAMCEM Algorithm

In this section we present the main contribution of the paper. We will describe how to im-
plement the FAMCEM algorithm using SQL queries automatically generated by our code,
complemented with simple scalar UDFs. The algorithm has two main sections, that are
executed in different parts of the system. The first part, the expectation step, is imple-
mented by sending queries to one or more database system (workers). The second part,
the maximization or sampling steps, are implemented in the main computer (master). The
reason for this separation is that, although they could have been solved as queries, it is
convenient to use the M and S steps as a way to join the results from the separate threads
that manage the worker servers. Thanks to this approach no data arrays were required and
no data was stored in the master computer’s main memory.

4.1. The System

The system used in the calculations is composed of a node fulfilling the role of Master,
where the algorithm is run and the queries are generated, and a cluster, hosting separate
DBMS with replicated tables, in the role of workers. Communications between the master
and the workers is accomplished using a ODBC driver.
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4.2. Initialization

Given table X, we need to compute some initial statistics for the data set, such as the number
of rows and the mean and standard deviation of each column (we assume that the table
has an ordinal primary key and that the index is clustered). This is accomplished using the
following query:

SELECT

sum(1.0),

AVG(X.X1),STDEV(X.X1),AVG(X.X2),STDEV(X.X2),...,AVG(X.Xd),STDEV(X.Xd)

FROM X

These initial statistics are used for to compute the initial parameters of the model. The
parameters Ch are chosen randomly in the interval (µh − 2× σh, µh + 2× σh) and we set
Rh = σh for all clusters. These parameters are then stored inside all the DBMS workers in
the form of a table ParamTable(gen, C1_1, R1_1, C2_1,..., Cd_k,Rd_k).

The final parameter that needs to be computed is ψ, the size of the disjoint sets our
table will be divided. ψ is empirically set to ψ =

√
n, but this number can be tailored to

the dataset.

4.3. The Expectation Step

Once the initial setup is completed we can start the optimization process. During the E-Step
we first compute the probabilities, given by the formula 1.

INSERT INTO P(i,gen,P1,...,Pk)

SELECT

X.i, g,

EXP(-0.5*(SQUARE(X.X1-Pa.C1_1)/Pa.R1_1+...+SQUARE(X.Xd-Pa.C1_d)/Pa.R1_d))/

SQRT(Pa.R1_d*...*Pa.R1_d)+lambda*sigma_1 p1,

...

EXP(-0.5*(SQUARE(X.X1-Pa.Ck_1)/Pa.Rk_1+...+SQUARE(X.Xd-Pa.Ck_d)/Pa.Rk_d))/

SQRT(Pa.Rk_1*...*Pa.Rk_d)+lambda*sigma_d pk

FROM X,

(SELECT *

FROM ParamTable

WHERE ParamTable.gen = g) Pa

WHERE X.i>g*psi

AND X.i<=(g+1)*psi;

In this query, g is an integer that denotes in which of the sub-tables we are performing the
calculations. g goes from 1 to bn/ψc. lambda is a small constant given by the user, and
sigma is the standard deviation of the cluster as calculated in the previous iteration. This
last term is introduced to insure that no probabilities are zero. lambda is chosen in such a
way that it is small enough not to interfere with the probabilities, while insuring there are
no singular errors due to round up. The probabilities are stored in table P.

The next step is to choose a cluster for each row in the sub-table. For this purpose
we wrote a scalar user defined function (UDF) and a user defined type (UDT) to pass
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it the information. Scalar UDFs are a very common way of simplifying calculations in a
DBMS, but we purposely chose to keep it as simple as possible in order to ensure an easy
transition to other DBMS, since the syntax can vary from one system to another. The UDF
is called histograms and takes the probabilities calculated in the previous step and returns
an assignment to a random cluster. We must remark that we used SQL Server syntax, and
this must be adapted to other systems.

INSERT INTO A(i, gen, a)

SELECT

P.i, g,

dbo.histograms(dbo.famcemRow::LoadValues(k,P.P1,...,P.Pk))

FROM P

WHERE P.gen = g;

Finally we aggregate the results into the sufficient statistics per cluster, Nh, Lh and Qh.
It is important to notice that in a particular cluster h Nh is a scalar quantity, Lh is a
d-dimensional vector and Qh is a d × d matrix. However in the simplified model we are
solving, Qh is a diagonal matrix, so it can be stored in a d-dimensional array.

SELECT

A.a,

SUM(1.0) N,

SUM(X.X1) L1,..., SUM(X.Xd) Ld,

SUM(X.X1*X.X1) Q1,...,SUM(X.Xd*X.Xd) Qd

FROM X

JOIN A ON X.i = A.i

WHERE A.gen = g

GROUP BY A.a;

This is the final query of the E-step and the values of N , L and Q are returned to the Master.
Since all the processing required by the E-step has been performed inside the DBMS, using
its efficient disk reading routines the calculation has been accelerated considerably. Fur-
thermore, since data never left the DBMS and only the sufficient statistics are transmitted
between computers, data security and privacy are preserved.

As mentioned before, we used more than one DBMS to compute the E-step. This was
accomplished by spawning m concurrent threads, one per worker and dividing the load
evenly between them. Since N , L and Q are additive functions, the results can easily
be accumulated at the end of the calculation, using a simple critical section with a spin
lock before terminating the threads. It is worthy of note that workers were assigned in a
random order, so it was unlikely that the same server would work on the exact same data in
successive iterations. This helped prevent the introduction of some bias to the calculation.
The data set and the temporary tables are horizontally partitioned using the primary key
and exploiting the fact that the tables had a clustered index.

4.4. The Maximization Steps

As mentioned before, in the classic EM the M Step is performed only once per iteration. In
FAMCEM we maximize bn/ψc+ 1 times in a single iteration. This is allowed by the size of
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the data set and the fact that part of a very large table, is still a table large enough to be
representative of the whole. There are two options for performing the M-Step: Inside the
DBMS using SQL queries, or as part of the Master’s program. We have chosen the second
option to make it double as the accumulation part of the threaded algorithm. Furthermore,
compared with the time that it takes for one E-Step to complete (even a fractional one as
we do here) the time required to get the sufficient statistics out of the DBMSs and into the
Master, is negligible.

In the M-Step we retrieve the results for the computation of sufficient statistics from
the databases. Given the relatively small size of these quantities, they are easy to transmit
and they can be manipulated in memory, with no disk accesses. They are accumulated in
the critical section of the program and added to the quantities previously calculated. Then
we update the parameters of the clusters using formulas 9, 11 and 10. We also compute
the log-likelihood of the partial model, as a guide to check the evolution of the system (this
partial log-likelihood is never used as a parameter). Finally the parameters are sent back
to the DBMSs to be used in the next E-Step.

INSERT INTO ParamTable

VALUES

(gen,C1_1,C2_1,...,Cd_k,...,R1_1,R2_1,...,Rd_k)

g,c1_1, c2_1,...,cd_k,r1_1,...,rd_k ;

where g,c1_1, c2_1,...,cd_k,r1_1,...,rd_k denote the values to be entered into the
table.

4.5. The Sampling Steps

After the algorithm has converged to a local minimum, we replace the M-Steps with S-Steps
(Sampling Steps). The structure of the S-Step is analogous to the M-Step: N , L and Q
are retrieved from the databases, they are combined and added to the sufficient statistics
already in memory and new Cj and Wj are calculated. As previously mentioned Rj is
not updated during the S-Step to avoid adding extra complexity to the problem. Now
the Monte Carlo detuning explained in 4 can be performed, using the log-likelihood as the
maximization parameter.

The de-tuning of each centroid is performed as follows: For each centroid we use a
normal distribution function to generate a new centroid, near the original one using a
random number generator with a normal distribution. The width of the normal distribution
is given by

√
Rj to insure that while the new parameters will be different from the original,

they will not be too far apart.
Once the new centroid parameter is generated we compare the log-likelihood of the model

with the original parameters and the likelihood of the new parameter. If there is a positive
improvement (positive in the sense of beneficial) we accept it and use it in our ParamTable.
If the change is detrimental to the log-likelihood, we roll a new random number and use
it to decide whether to accept the change or not based on it, in what amounts to a ‘coin
flip’. It is here where the Monte Carlo randomization happens: We allow the temporary
worsening of our parameters in hopes of finding a faster way to the global extrema. This
process is summarized in Algorithm 2.
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Algorithm 2 The De-Tuning Algorithm

Input: C = {C1, C2, . . . , Cn} and R = {R1, R2, . . . , Rn}
Output: C ′ = {C̃1, C̃2, . . . , C̃n}

for j = 1 to k do
for h = 1 to d do

Generate C̃hj using a normal distribution of width
√
Rij

end for
Calculate ∆L = L(Θ̃)− L(Θ)
if ∆L > 0 then

Use Θ̃
else

Generate a random number r
if exp (β∆L) > r then

Use Θ̃
else

Use Θ
end if

end if
end for

The β parameter can be set by the user to fine-tune the speed of convergence of the
algorithm. It could be convenient for some data-sets to allow for less probable centroids
during the initial iterations to sample the solution space efficiently, and to reduce the
randomness when we are confident we are near the global extrema.

4.6. Time Complexity

In the worst case scenario the time complexity is O(ndk) per iteration. The number of
iterations for the EM algorithm is affected b the distribution of data and the shape of the
clusters. However, per force Monte Carlo style algorithms need a much larger number of
iterations, than more conventional EM, since it much more difficult to achieve stability and
convergence.

Two important aspects must be emphasized: Most of the time is spent during the E-step,
and this time is dominated by disk access. The accumulation step, since is only O(

√
nkd)

and performed in memory is negligible in comparison.

5. Experimental Validation

The software used in this section can be found in Ordonez (2014) along with instructions
for compiling and running it.

We evaluated our proposed method by using a real data-set from the UCI Machine Learn-
ing Repository (Bache and Lichman (2013)). The data-set, represented measurements of
electric power consumption in one household with a one-minute sampling rate over a period
of almost 4 years. The data-set has 9 dimensions that include date of the measurement,
time and 4 electrical measurements and 3 dimensions that represented characteristics of
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Table 3: DBMS and Hardware characteristics.
Master Worker 1 Worker 2 Worker 3

DBMS SQL Server 2012 SQL Server 2008R2 SQL Server 2005 SQL Server 2008
Operating Sys. MS Windows 7 Pro MS Windows Server 2003, MS Windows Server 2003, MS Windows Server 2003,

Enterprise Edition Enterprise Edition Enterprise Edition
Processor Intel Q9550, Intel Dual Core CPU Intel Dual Core CPU Intel Quad Core CPU

2.83 GHz 3.0 GHz 3.0 GHz 2.153 GHz
RAM 4 GB 4 GB 4 GB 4 GB
Hard Disk 320 GB; 7200RPM 1 TB; 7200 RPM 1 TB; 7200 RPM 650 Gb; 7200 RPM

Table 4: Log-Likelihood Improvement
k = 10.

n FREM FAMCEM

10K -41.09 -22.22
100K -44.93 -42.32

1M -39.11 -36.99

Table 5: Time to convergence k = 10.

n Time [s] Iterations

10K 32 31
100K 280 32

1M 2833 60

the households. For our experiments we used the 5 non-categorical dimensions: d = 5. It
was expanded to occupy 10 million rows of data and occupied approximately 400 Mb in
the DBMS by performing a Cartesian product of the data set with itself. The hardware
configuration is described in Table 3. We used a personal computer as the master, since
no great stress was placed on it as part of the system. The workers were three rack servers
with similar profiles to insure all threads finish at roughly the same time. We only used
three servers since this was a proof of concept.

In order to give a measure of the improvement of our algorithm we compared the value of
the log-likelihood function to the one obtained using FREM Ordonez and Omiecinski (2002)
(Table 4). We think the comparison is a fair one, since both algorithms work with massive
data inside a DBMS. The main difference is that while FREM is able to show convergence
in a few iterations, we require an order of magnitude more passes of the data set to be
confident of convergence. In the three cases we compared, FAMCEM reached a state of
higher likelihood, suggesting that the solutions are of higher quality. We must remark that
the log likelihood function is not the best way of comparing solutions, but it is an indicator
of the goodness of the fit. Figure 1 we show the behavior of the Log-Likelihood function at
the end of each iteration for three different size of problem. We show an improved behavior
in all three cases.

Table 5 shows the time required for the algorithm to finish its calculation. We used a
very simple criterion for stopping the iterative process: If no improvement was found after 20
iterations, the algorithm terminated. We plan to introduce a more sophisticated mechanism
in the future. As we know, the time for shorter datasets is dominated by the sequential part
of the process (transmission delays) so when going from n = 10k to n = 100k, the algorithm
required less than twice the time. However when dealing with a larger dataset, n = 1M
the time increases by an order of magnitude. We believe there is margin for improvement
in this area.
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We tested our algorithm with one, two and three workers, and for three different table
sizes: 100 thousand rows, 1 million rows and 10 million rows. We calculated the time
required per iteration for different numbers of clusters considered, from three to twenty
five. These results are condensed in tables 6, 7 and 8. We cleared the buffers of the
DBMSs and did not operate in main memory. Future experiments will be performed using
a geometric progression of servers (1, 2, 4, 8, · · · ). In this set of experiments we concentrated
solely in the time improvements over quality of solutions.

Table 6: Time per iteration in seconds n = 100000.

k 1 Worker 2 Workers 3 Workers

3 10 9 8
5 11 7 7

10 12 10 9
15 14 10 10
20 16 11 13
25 17 15 14

Table 6 shows that for small datasets there is very little change in the time required
per iteration. The time per iteration is dominated by the transmission times, therefore the
addition of more workers will only affect the results negatively.

Table 7: Time per iteration in seconds n = 1000000.

k 1 Worker 2 Workers 3 Workers Acceleration

3 73 49 37 1.92
5 74 50 38 1.94

10 84 55 45 1.86
15 93 59 50 1.86
20 101 65 52 1.94
25 111 71 57 1.94

Table 7 shows a more interesting example. We show the time behaviour for 1 million
rows of data. We can clearly see that, even though the addition of more servers is reducing
the time per iteration, the decrease is not linear. Accumulation and transmission times are
sequential, and with larger number of clusters and more dimensions, the Amdahl’s law will
prevent us from improving the results. We also present a short comparison for the times of

Table 8: Time per iteration in seconds k = 10.

Workers n = 10K n = 100K n = 1M n = 10M

1 1 12 84 656
2 4 10 50 459
3 5 9 38 309
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operation for three dataset sizes. We can see that the results are consistent for the larger
datasets, the introduction of two more servers reduces the time per operation is reduced by
about one half.

We compared our results to a similar algorithm implemented in R, presented in Liang
(2009). The largest dataset we could test had only 10000 rows. In this dataset, the R
package took 61 seconds per iteration, for 3 and 5 clusters and 62 seconds when considering
10 clusters. We can see that R was 60 times slower than FAMCEM, even when using only
one worker server.

Table 9: Time per iteration in seconds for R and FAMCEM.

k n R FAMCEM

3 10000 61 1.0
5 10000 61 1.1

10 10000 62 1.3
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Figure 1: Log-Likelihood vs time.

Finally we calculated the time to convergence of an EM algorithm in R with a similar
problem with FAMCEM. The dataset had n = 10k rows and we considered k = 10 clusters.
as can be seen in Table 5 for that size of problem FAMCEM converged in 32 seconds, while
R took 637 seconds, almost 20 times more, even though our algorithm is a non-deterministic
one.

74



FAMCEM

6. Related Work

Considerable work has been invested in improving the EM algorithm and into accelerating
its convergence. Bradley et al. (1998) show a method for a scalable framework that needs
at most, one scan of the database. Ueda et al. (2000) present a survey of several approaches
from the Machine Learning community, with mathematical justifications for them. MC
techniques use random walks to explore the solution space. In general it is found that, even
though MC algorithms take a long time to converge, they reach very good solutions by
avoiding being trapped in local extrema. While in recent years the problem of accelerating
the EM algorithm has been studied, (Kumar et al. (2009) and Thiesson et al. (2001) among
others) not much has been done to speed-up the convergence of Gibbs Samplers for mixtures
of Gaussians. Matusevich et al. (2013) shows an implementation of FAMCEM in C++.

There has not been much focus in recent years on building machine learning algorithms
in SQL, mainly due to its degree of difficulty when compared to C++. Most efforts, like Lin
and Kolcz (2012), concentrate on crafting user defined functions that, while general in scope,
are specific to the DBMS they use. The EM algorithm was coded using SQL queries in
Ordonez and Cereghini (2000), proving that it is possible to program a clustering algorithm
entirely with queries. The main difference between this approach and ours is that it is an
iterative one while ours is incremental. Pitchaimalai et al. (2008) present an in-depth study
of distance calculations with SQL. More recently Sun et al. (2013) proposed an extension
to SQL called CLUSTER BY to calculate clustering of data and implemented it in Posgress.

7. Conclusions

We present an efficient parallel implementation of an MCMC Clustering algorithm in remote
servers. The algorithm uses a C++ program to generate SQL queries that are evaluated
in one or more servers concurrently, allowing for a considerable speed-up of the time spent
per iteration. We use SQL queries instead of UDF’s because of their generality and porta-
bility. In our comparisons with a similar algorithm written in R, we see a hundred-fold
improvement in small data sets. We project an even better performance differential with
larger datasets, where the efficiency of reads from physical media gives the DBMS a defi-
nite edge in speed. Our algorithm is general enough that with very few changes it can be
implemented in different database systems, and is independent of the operating system of
the worker machines. The algorithm’s time complexity is linear in the size of the data set
and we see an almost linear speedup when increasing the number of workers. Preliminary
experiments prove the worth of the approach.

Future avenues of research include the evaluation of the correctness of the algorithm
using synthetic data and more rigorous measures of model quality, the implementation
in an array stored relational database using native operators, the comparison with other
clustering algorithms and the processing of massive data sets in a large parallel cluster.
Finally we would like to explore the influence of the different parameters in the correctness
of the results, and implement a simulated annealing scheme to improve convergence times.
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