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Abstract

SciDB is a parallel array DBMS that provides multidimensional arrays, a query language
and basic ACID properties. In this paper, we introduce a summarization matrix operator
that computes sufficient statistics in one pass and in parallel on an array DBMS. Such
sufficient statistics benefit a big family of statistical and machine learning models, including
PCA, linear regression and variable selection. Experimental evaluation on a parallel cluster
shows our matrix operator exhibits linear time complexity and linear speedup. Moreover,
our operator is shown to be an order of magnitude faster than SciDB built-in operators,
two orders of magnitude faster than SQL queries on a fast column DBMS and even faster
than the R package when the data set fits in RAM. We show SciDB operators and the R
package fail due to RAM limitations, whereas our operator does not. We also show PCA
and linear regression computation is reduced to a few minutes for large data sets. On the
other hand, a Gibbs sampler for variable selection can iterate much faster in the array
DBMS than in R, exploiting the summarization matrix.

Keywords: Array, Matrix, Linear Models, Summarization, Parallel

1. Introduction

Row DBMSs remain the best technology for OLTP [Stonebraker et al. (2007)] and col-
umn DBMSs are becoming a competitor in OLAP (Business Intelligence) query processing
[Stonebraker et al. (2005)] in large data warehouses [Stonebraker et al. (2010)]. However,
both kinds of DBMS are slow and difficult to use for mathematical computations on large
data sets due to the abundance of matrices. Currently, Hadoop, MapReduce and no-SQL
systems (HadoopDB, Cassandra, Hive, MongoDB, Mahout project, and so on) are the most
popular for big data analytics. Array DBMSs (SciDB [Stonebraker et al. (2013)], Rasdaman
[Baumann et al. (2013)]) represent alternative novel systems, closer to relational DBMSs,
to support matrix computations, which share many features with old DBMSs like I/O ef-
ficient algorithms, indexing, query processing, concurrency control and parallel processing,
but which have significantly different storage, retrieval and query processing mechanisms.

In this work, we focus on the optimization of algorithms to compute three fundamental
and complementary models. Specifically, we study the computation of principal component
analysis (PCA), linear regression (LR) and variable selection (VS) on large data sets on an
array DBMS (SciDB). These three multidimensional models involve many matrix equations,
which is an excellent fit for an array DBMS. However, these three models require different
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numerical and statistical methods for the their solutions: PCA is generally computed with
a Singular Value Decomposition (SVD) on the correlation (covariance) matrix of the data
set; LR is solved with least squares via a matrix factorization; VS requires visiting an expo-
nential search space of variable combinations, whose most promising solution is currently
found by MCMC methods, used in Bayesian statistics [Gelman et al. (2003)]. With that
motivation in mind, we introduce a fast generic algorithm that divides the computation into
two phases: (1) summarization, (2) model computation, including iterative behavior. Our
main contribution is a powerful summarization operator in an array DBMS, which allows
computing many linear models reading the data set once and in parallel. We should point
out that our array operator has generality and remarkable efficiency, as it can be exploited
in many statistics and machine learning models, but it cannot summarize the data set for
every potential model (e.g. SVMs, decision trees). Experimental evaluation on large data
sets shows our summarization operator is much faster than the R package (even if the data
sets fits in RAM) and much faster than a column DBMS (one of the fastest DBMSs cur-
rently available) using SQL queries. Moreover, we show existing matrix operators in SciDB
are slower or exhibit RAM limitations.

2. Definitions

This section introduces mathematical definitions and models studied in this work. PCA
represents an unsupervised (descriptive) model where there is no target or predicted at-
tribute. Linear regression is a fundamental supervised model in statistics, whose solution
helps understanding and building many other linear models. Variable selection (VS), a
supervised model, is among the computationally most difficult problems in statistics and
machine learning, in which Markov Chain Monte Carlo (MCMC) methods [Hastie et al.
(2001); Gelman et al. (2003)] are a promising solution.

2.1. Data Set and Model

All models take a matrix X as input. Let X = {x1, ..., xn} be the input data set with n
points, where each point is in Rd. That is, X is a d × n matrix, where xi is a column
d-vector (i.e., equivalent to a d×1 matrix) and i = 1 . . . n and j = 1 . . . d are used as matrix
subscripts. In the case of LR and VS X is augmented with a d+ 1th dimension containing
an output variable Y . We will use Θ, a set of matrices and associated statistics, to refer to
the model in a generic manner.

2.2. Principal Components Analysis (PCA)

The objective of PCA is to reduce the noise and redundancy of dimensions by re-expressing
the data set X on a new orthogonal basis, which is a linear combination of the original
basis. In this case X has d potentially correlated dimensions but no Y . In general, PCA is
computed on the covariance or the correlation matrix of the data set [Hastie et al. (2001)].

The PCA model Θ is U , a set of orthogonal vectors, called the principal components
of the data set, ordered by their length (associated variance) in decreasing order and V ,
their squared eigenvalues. Such principal components are computed with a singular value
decomposition (SVD) of the covariance V or correlation matrix ρ. In general, ρ is preferred
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as it rescales all dimensions. Given ρ, its SVD is a symmetric matrix factorization expressed
as ρ = UV UT . In general, only a few components carry to most important information
about variance of the data set and the remaining ones can be safely discarded to reduce
d. When the data set has been normalized (i.e. with a z-score centering at the origin
subtracting µ and rescaling by standard deviation σj) ρ = XXT ; we pay attention to the
efficient computation of this matrix outer product. In this work we focus on getting U
and V . The actual reduction of d to some lower dimensionality k (i.e., the k principal
components) requires just a matrix multiplication, which is much simpler and faster than
computing Θ.

2.3. Linear Regression (LR)

Let X = {x1, . . . , xn} be a set of n data points with d explanatory variables and Y =
{y1, . . . , yn} be a set of values such that each xi is associated to yi. The linear regres-
sion model characterizes a linear relationship between the dependent variable and the d
explanatory variables.

Using matrix notation, the data set is represented by matrices Y (1×n) and X (d×n),
and the linear model can be compactly defined as:

Y = βTXXX + ε (1)

where β = [β0, . . . , βd] is the column-vector of regression coefficients, ε represents Gaussian
error and XXX is X augmented with an extra row of n 1s stored on dimension X0. Notice X,
in this model, is a (d+ 1)×n matrix, in order to make notation more intuitive. The vector
β is usually estimated using the ordinary least squares method [Marin and Robert (2007)],
whose solution is:

β̂ = (XXXXXXT )−1XXXY T (2)

2.4. Variable Selection (VS)

We now focus on one of the hardest analytics problems: variable selection in statistics,
feature selection in machine learning. Since we have previously introduced linear regression,
we will study variable selection in this model. However, our algorithms have the potential to
be used in other models such as probit models [Hastie et al. (2001)], Bayesian classification
[Ordonez and Pitchaimalai (2010)] and logistic regression [Hastie et al. (2001)], all of which
have similar underlying matrix computations.

The input is X, like LR, but it is necessary to add model parameters. In general, a linear
regression model is difficult to interpret when d is large, say more than 20 variables. The
search for the best subsets of explanatory variables that are good predictors of Y [Guyon
and Elisseef (2003)] is called variable selection. The assumption of this search is that the
data set contains variables that are redundant, or that they have low predictive accuracy
and thus they can be safely excluded from the model. When d is high, an exhaustive search
on the 2d subsets of variables is computationally intractable for even a moderately large
d. Traditional greedy methods, for instance stepwise selection [Hastie et al. (2001)] can
only find one subset of variables, likely far from the optimal, but the probabilistic Bayesian
approach aims to identify several promising subsets of variables, which in theory can be
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closer to the optimal. In this work, the set of selected variables will be represented by a
d-dimensional vector γ ∈ {0, 1}d, such that γj = 1 if the variable j is selected and γj = 0
otherwise. We denote by Θγ the model that selects k out of the d variables, corresponding
to the vector γ. The dot product k = γT · γ indicates how many variables were selected.
Throughout this paper we will use γ as an index to project matrices on selected variables
such as βγ and XXXγ .

MCMC Methods: the Gibbs Sampler

We use the Bayesian formulation and Gibbs sampler introduced in [Marin and Robert
(2007)] based on a Zellner G-prior, which has the outstanding feature of sharing several
intermediate matrix computations with the other models defined above. Given a model Θ
with K parameters, one of the parameters is sampled from its prior distribution, while the
others K − 1 parameters remain fixed. The set of variables selected at iteration i of the
sequence of observations is denoted by a vector γ[i]. The Gibbs sampler for variable selection
generates the Markov chain: γ[0], . . . , γ[N ], in which it is expected the best variable subsets
will appear more frequently. At each iteration I, the Gibbs sampler generates γ[I] based on

the previous state of the Markov chain, γ[I−1]. Since each coordinate γ
[I−1]
j is a parameter

of model Θγ , the Gibbs sampler visits all d entries of γ[I]. In more detail, for every variable

γ
[i]
j the normalized probabilities p(γ

[i]
j = 0) and p(γ

[i]
j = 1) are calculated. Based on these

probabilities either γ
[i]
j = 0 or γ

[i]
j = 1 is chosen by sampling and the jth position of vector

γ
[i]
j is updated accordingly. The Markov chain becomes stable after an initial number of

iterations, known as the burn-in period B. Then the MCMC method iterates for a large
number of iterations until the posterior probabilities of γ have been sufficiently explored
(essentially a very demanding computation, which requires many trial and error runs).

3. A Fast Summarization Array Operator

We start by reviewing matrices containing sufficient statistics. Then we generalize them
into a single matrix that can be exploited in several intermediate demanding computations
for the linear models introduced in Section 2. Once we establish the importance of this
summarization matrix, called Γ, we introduce an array operator and we carefully analyze
how to optimize its computation.

3.1. Sufficient Statistics

A significant body of work, in the past in database mining and now in big data analytics,
has focused on summarizing the data set. Several linear models, including PCA and lin-
ear regression, can be more efficiently computed using sufficient statistics, as proposed in
[Ordonez (2010)]. We significantly generalize such work, looking at variable selection and
MCMC methods under a unifying mathematical framework.

We first review the general definition of sufficient statistics. Then we integrate and
generalize such matrices for the three models studied in this work. Sufficient statistics are
defined as:
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n = |X| (3)

L =
n∑
i=1

xi (4)

Q = XXT =
n∑
i=1

xi · xTi (5)

(6)

Intuitively, n counts points, L is a linear sum and Q is a quadratic sum, with xi in outer
product powers 1 and 2, respectively. As explained in Section 2.3 , the linear regression
model uses an augmented matrix, represented by X. We introduce a more general aug-
mented matrix Z, created by appending one additional row to X, which contains the vector
Y. Since X is d× n, Z has (d+ 2) rows and n columns. We will study how to compute the
matrix outer product (related, but not the same as the Gram matrix ZTZ):

Γ = ZZT (7)

Matrix Γ contains a comprehensive and accurate summary of X, sufficient to compute
all models previously defined. We explain below how this is done for each model.

Γ =

[
Q XY T

YXT Y Y T

]

=

 n LT
∑
yi

L Q XY T∑
yi Y XT Y Y T


=

 n
∑
xTi

∑
yi∑

xi
∑
xix

T
i

∑
xiyi∑

yi
∑
yix

T
i

∑
y2i


Matrix Γ is comparatively much smaller than X for big data and symmetric. Such facts

are summarized in the following properties:

Property 1: Given a large data set X where d� n, matrix Γ is O(d2)� O(dn) as n→∞.

Property 2: Γ = ΓT , resulting in d+ (d+ 2)2/2 ≈ d2/2, saving 1/2 of CPU operations.

Property 3: Γ can be equivalently computed as follows: Γ = ZZT =
∑n

i=1 zi · zTi .

Property 1 means that if Γ can fit in main memory it is feasible to maintain a summary
of X in main memory. However, we emphasize we cannot assume X can fit in main memory.
Therefore, the challenge is to efficiently compute Γ, minimizing the number of times X must
be read from secondary storage. Property 2 is straightforward, but saves half of CPU work.
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Table 1: Summary of matrices.

Matrix Size Description

X d× n Data set: independent variables, dimensions
U d× d Principal components
V d× d Squared eigenvalues; diagonal
Y 1× n Dependent variable
XXX (d+ 1)× n Augmented matrix with 1s
β (d+ 1)× 1 Regression coefficients including Y intercept
γ d× 1 Selected variables; binary vector
Z (d+ 2)× n Augmented X matrix with 1s and Y
Γ (d+ 2)× (d+ 2) Generalized summarization matrix

Property 3 gives two equivalent expressions to get Γ: one as a matrix multiplication and a
second one as a sum of vector products. Given the prominent importance of Γ we believe
it should be available as an operator on any big data analytic system. Therefore, we will
call our operator Γ(X). Table 1 provides as summary of matrices, including the input data
set, the output variable, model Θ and Γ.

3.2. Two Phase Algorithm

Based on Γ our algorithm to compute Θ works in two phases:

1. Compute Γ.

2. Exploit Γ in intermediate matrix computations.

This paper focuses on optimizing Phase 1, which is a well defined problem for any input
data set X. Phase 2 requires incorporating Γ in the steps of numerical and statistical
methods. By exploiting Γ it becomes possible to reduce the number of times X is read, and
to reduce CPU computations in iterative methods. Identifying in which models intermediate
matrix computations accept Γ is a deep research topic. We point out that this paper builds
on top of previous research and we make clear to which kind of models our optimizations
apply. That is, our choice of PCA, LR and VS has been carefully done based on the fact
that they can exploit Γ.

3.3. Array DBMS: SciDB

An array DBMS enables the manipulation of multidimensional arrays of unlimited size,
removing RAM limitations in a large matrix computation. The fundamental difference
between SciDB and a row or column DBMS is storage by chunk. Such chunk requires a
different kind of programming and optimization, compared to UDFs or stored procedures
in SQL.

SciDB organizes array storage by chunks, as explained in [Stonebraker et al. (2013)]. A
chunk is a large multidimensional block on secondary storage that stores a preferably large
fraction of values for one attribute. The storage of an array in SciDB can be visualized like
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a grid of rectangular chunks, where each chunk comprises a rectangular area of contiguous
cells, as defined by the array dimensions.

The major question is how to program the computation of Γ in SciDB. The major
choices are: exporting (with a bulk mechanism) the X matrix to a linear algebra package
(LAPACK), in the query language provided by the DBMS (AQL, AFL), calling existing
array operators or as a new array operator. Exporting data is evidently a bad idea, as it
defeats the purpose of the DBMS, no matter how fast the computation can happen outside.
The query language is a second option, but we will show it is inefficient as it requires
a similar evaluation query plan as an SQL query with a costly relational join operation.
Existing operators, will be shown to be inadequate as Γ is a is a matrix product that is
particularly difficult to optimize. Last, we will show a new operator is required, providing
orders of magnitude time improvement. These are the alternatives we will compare:

1. Query: programmed in AQL. Such query requires a join operation with arrays.

2. R operator: crossprod() function, available in SciDB-R to compute Γ

3. AFL function call: use gemm() and transpose() built-in operators to compute Γ

4. New operator: programmed in C++ in the SciDB extensibility interface.

The query alternative is interesting as it establishes a connection with query optimiza-
tion, a classical topic in database systems research. The R operator is the choice for the
typical R user of SciDB. SciDB provides an R library that allows users to embed key matrix
computations on SciDB. It should be pointed out it is difficult to identify which and how
such computations should be mapped to SciDB. The function call is a compromise between
an export and a main memory computation. Basically, the data set needs to reorganized to
be passed to the efficient LAPACK library. Such conversion is necessary because LAPACK
is a compiled Fortran library, which has a very simple, but different, memory management
at run-time. Finally, our new operator requires developing a “chunk-aware” algorithm that
we explain below.

3.4. The Gamma Operator on an Array DBMS

Previous work [Ordonez (2010)] on the computation of statistical models on a relational
DBMS showed that the most efficient mechanism to compute sufficient statistics are aggre-
gate UDFs, complemented by scalar UDFs for scoring. The main drawback is that they
are tailored to relational DBMSs, which are known to be slow and cumbersome for matrix
computations.

As pointed out by previous research [Ordonez (2010)], it is straightforward to compute
n,L as they only require sums of a value (counting) and summing a d-vector. Recalling that
Γ has n,L,Q as submatrices. the main difficulty is getting Q which requires cross-products
among all dimension pairs. Therefore, computing Γ subsumes computing Q.

From a high performance angle, we will focus on optimizing Γ assuming X is a dense
matrix. For high d X will likely be a sparse matrix, which in turn will require a sparse
matrix multiplication for Γ. Since sparse matrices require completely different storage and
access methods such operator is reserved for future research.
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Observation: We make the following fundamental observation. Even though it is tempting
to evaluate ZZT as a matrix multiplication it would be a bad idea: we need to compute
and materialize ZT first, a costly transposition, storing it and then perform the actual
matrix multiplication. Instead, we will study how to evaluate the summation

∑n
i=1 zi · zTi .

Assuming zi fits in main memory then it is reasonable to assume the vector outer product
also fits in main memory. Therefore, it makes more sense to evaluate such sum in parallel.

Our operator requires that all data of zi (xi in consequence) fits in one chunk. In other
words, zi cannot be partitioned into several chunks in spanned storage. This requirement
is important to accelerate I/O: larger chunks improve I/O because our Γ computation
requires a full scan on the data set. Smaller chunks would trigger seeks, resulting in worse
performance. Fitting many points xi in one chunk is not a major limitation because SciDB
favors fairly large chunk sizes, typically ranging above 8MB. Another major requirement and
advantage is that the operator must work in parallel. It is a requirement that complicates
programming because it is essential to design and develop the operator in such a way
that X can be evenly partitioned across N processing nodes, with minimal or no need of
synchronization overhead. The advantage is, of course, the ability to scale processing to
more nodes as the data set size grows. Our Γ operator works fully in parallel with a partition
of X into N database subsets D1 ∪ D2 ∪ · · · ∪ DN = X, where we compute ΓI on DI for
each node I. In SciDB terms, each worker I will compute ΓI . When all workers are done
the coordinator node will gather all results and compute a global Γ = Γ1 + · · ·+ΓN . This is
essentially an obvious parallel computation [Stonebraker et al. (2010)], coming from the fact
that we can push the actual multiplication of zi · zi into the array operator. The sequential
algorithm to compute Γ is below whose generalization to a parallel one is straightforward.
Given the additive properties of Γ the same algorithm is applied on each node I = 1 . . . N
to get ΓI , combining all partial results Γ =

∑
I ΓI in the coordinator node.

Data: X = {x1, x2, . . . , xn}, Y = {y1, . . . , yn}
Output: Γ

Z← [1, X, Y ] = {z1, z2, . . . , zn}
Γ← 0
for i = 1 . . . n do

for a = 0 . . . d+ 1 do
for b = 0 . . . d+ 1 do

Γab ← Γab + zia ∗ zib
end

end

end
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3.5. Algorithms Exploiting Gamma Operator

3.5.1. Principal Component Analysis (PCA)

As mentioned in Section 2.2, PCA can be calculated by computing SVD on the correlation
matrix. To compute PCA we rewrite the correlation matrix equation based on the sufficient

statistics in Γ: ρab = (nQab − LaLb)/(
√
nQaa − L2

a

√
nQbb − L2

b). The PCA algorithm two

phases are:

1. Compute Γ, which contain n,L,Q

2. Compute ρ, solve SVD of ρ, select the k principal components.

3.5.2. Linear Regression (LR)

The LR can be solved by the least squares method: β̂ = (XXT )−1XY T . As explained
above, Γ contains XXT and XY T . Therefore, the LR algorithms becomes:

1. Compute Γ, which contains XXT and XY T .

2. Solve β̂.

3.5.3. Variable Selection (VS)

Recall we perform variable selection with an MCMC method, potentially requiring thou-
sands of iterations. We base the computation of π (γ|X,Y ) on the Zellner G-prior due to
[Marin and Robert (2007)]. Zellner’s G-prior relies on a conditional Gaussian prior for β
and an improper (Jeffreys) prior for σ2 [Marin and Robert (2007)], with parameters c and
β̃. The most common prior probability for γ is the uniform prior π (γ|X) = 2−d [George
and McCulloch (1993); Marin and Robert (2007)]. Under Zellner’s G-prior, the parameter
c influences the number of variables selected by the model: large c values lead to parsimo-
nious models (few variables), whereas small values of c promote saturated models (many
variables) [Liang (2008)]. On the other hand, β̃ is a hyper-parameter to impose a Gaussian
on β.

β|σ2, X ∼ Nk+1

(
β̃, cσ2

(
XXT

)−1
)

(8)

σ2 ∼ π
(
σ2|X

)
∝ σ−2 (9)

For notational convenience Xγ , β̃γ ,Qγ mean projecting X, β̃,Q on selected variables.
Recall X = [1, X]. The full equation to get the posteriors of γ involves:

π(γ|X,Y ) ∝ (c+ 1)−
k+1
2
(
Y Y T− c

c+ 1
(YXγ

T )(Qγ)−1(XγY
T )−

−(c+ 1)−1β̃Tγ Qγ β̃γ

)−n/2
(10)

The Zellner G-prior is computationally convenient for big data, because equations can
be expressed in terms of Γ. We will use the sufficient statistics by equations 3, 4 and
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Table 2: Data sets.

Data set d n Description

KDDnet 100 10M Network intrusion detection (KDD Cup)
Year 90 500k Predict year of song release (UCI)

5 in order to avoid recomputing those matrix products at each iteration. Therefore, our
optimized algorithm becomes

1. Compute Γ, which contains XγXγ
T and XγY

T .

2. Iterate the Gibbs sampler a sufficiently large number of iterations to explore π(γ|X,Y )

3.6. Time Complexity and Cost Analysis

Phase 1: Computing Γ is clearly O(d2n); taking into account that Γ is symmetric the CPU
cost is halved. Phase 2: Since we are computing various factorizations derived from Γ
time is Ω(d3), which for a hard dense matrix problem it may approach O(d4), when the
number of iterations in the method is proportional to d. I/O cost is just reading X with
the corresponding number of chunk I/Os.

.

4. Experimental Evaluation

This section presents an experimental evaluation with well-known data sets used in data
mining. Since our operator and the 2-phase algorithm do not change the accuracy of ma-
trices we do not measure accuracy. We should emphasize that our summarization operator
was used to produce the Γ matrix to be consumed by the R package. That is, the actual
model Θ computation happened in R. Therefore, the model computed by R and the model
computed by SciDB in tandem with R are the same. We first present time benchmark-
ing experiments comparing our operator with other systems, including R. Then we study
scalability and speedup on a large cluster in the cloud.

4.1. Experimental Setup

We used two data sets: the network intrusion data set and the year prediction data set,
summarized in Table 2, obtained from the KDD 99 Cup and UCI machine learning reposi-
tory, respectively. We sampled and replicated both data sets to get varying n (data set size)
and d (dimensionality). The original KDDnet data set had n=5M and d = 34 and many
zeroes, resulting in singular matrices. Its columns were replicated 3X and rows 2X to get
d = 100, n = 10M to analyze time performance. Then rows were sampled or replicated in
log-10 scale. On the other hand, Year had few zeroes, resulting in non-singular (numerically
good) matrices. In this case Year rows were replicated to get larger n in log-2 scale. Scal-
ability on d, being computationally more demanding and numerically more problematic, is
not analyzed in this paper.
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Table 3: Software and hardware.

Item Local Cloud

Array DBMS SciDB 14.3 SciDB 14.3
OS Linux Ubuntu Linux Ubuntu
Processor Intel Quadcore CPU 2.153 GHz Intel Xeon E5-2680v2, 8vCPUs
RAM 4 GB 15 GB
Storage HD 3 TB SSD 1 TB

Table 4: Summary of cluster configurations (default in bold face).

Cluster Nodes Instances Cores RAM Disk

Local 1/1 1 1 4 4 GB 3 TB
Local 1/2 1 2 4 4 GB 3 TB
Local 1/4 1 4 4 4 GB 3 TB
Local 2/4 2 4 8 8 GB 6 TB
Cloud 1/4 1 4 8 15 GB 1 TB
Cloud 2/8 2 8 16 30 GB 1 TB

From a software angle, we used the SciDB DBMS as it supports the development of new
operators, it provides a big library of functions and it is fully parallel. For comparison pur-
poses, we used the Vertica DBMS, one of the fastest column DBMSs today to evaluate SQL
queries on large databases. For statistical processing the R package is the standard with its
well known RAM limitation. Finally, all our systems used LAPACK underneath for difficult
linear algebra computations (e.g. SVD, matrix inversion). We tested on three hardware
configurations: local server 1 node (default), local cluster with 2 nodes and a cluster in the
Amazon cloud with 2 powerful nodes. Table 3 summarizes the local server/cluster, whereas
Table 4 shows the clusters.

For PCA and LR we used the R default values to get accurate results. For VS we
used a small number of iterations (1000) since this algorithm is CPU bound (after being
optimized) and we were interested in understanding performance, rather than a reliable
Bayesian model which requires many trial/error runs and tens of thousands of iterations
(i.e., exploring the posterior probability and evaluating convergence of the Markov Chain).

We ran each system three times and we report the average. When a system crashes,
mainly due to RAM limitations, we report “fail”. When the computation could not finish
in 30 minutes we report “stop”. In general we show execution times in seconds.

4.2. Comparing Summarization Operator: array DBMS, R and column DBMS

We start by comparing R with our SciDB program. For PCA and LR we use the princomp()
and lm() standard R function calls. For VS in R we use the R script available from [Marin
and Robert (2007)]. The original script was so slow that it could not run in under 1 hour
even for n=1k. Therefore, we were forced to incorporate our optimization based on Γ. The
SciDB operator computes Γ, which is passed to an R script further optimized by us. Table
5 compares total time to get Θ in R and the DBMS+R. R scales in a decent manner, but
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Table 5: Computing model Θ; data set KDDnet d = 100; 1 node local 1/2; time in secs.

n PCA LR VS
R Γ operator + R R Γ operator + R R Γ operator + R

10k 0.7 0.8 0.7 0.9 13.1 13.0
100k 5.7 2.5 6.3 2.6 34.4 14.8

1M 61.2 16.8 60.5 16.9 113.0 29.1
10M fail 194.9 fail 194.9 fail 207.2

Table 6: Comparing only summarization; data set KDDnet d = 100; 1 node local 1/2;
time in secs.

n R SQL queries Γ operator

10k 0.9 3.1 0.3
100k 6.5 27.1 1.3

1M 44.1 612.5 13.7
10M fail 13286.5 150.2

eventually crashes due to RAM capacity. These times prove the power and superiority of
our operator and our 2-phase algorithm.

Clearly, Γ can be used on other systems, beyond an array DBMS. We investigate how
Γ performs on each system. For the column DBMS we use a query storing X on a vertical
layout with one entry Xij per row (i, j, v). Table 6 provides a straight comparison of our
operator programmed in each system. For R the data set was loaded in RAM and Γ was
obtained with a matrix multiplication using %*% (i.e. the fastest mechanism available).
For SQL queries we defined the table in such a way that the DBMS could do a merge-join
(fastest join possible in time O(n). Our operator is 3X faster than R and two orders of
magnitude faster than SQL queries.

We would like to emphasize our time measurements on SciDB do not include the time
to load the data set (neither on the column DBMS) and apply a redimension operator to
convert it from table to matrix because they are a one-time event. To give an idea about
this bottleneck with KDDnet d = 100, n=1M, loading took 118 secs and redimensioning
208 secs, totaling 326 secs. In contrast, our operator took 14 seconds as shown on Table 6.

We now analyze if it is indeed necessary to program a specialized summarization Γ
operator at the chunk level, instead of taking advantage of other built-in operators in the

Table 7: Comparing SciDB programming mechanisms; data set KDDnet d = 100; 1 node
local 1/2; time in secs.

n AQL/AFL spgemm() SciDB-R Γ operator

10k 168.3 3.1 19.1 0.3
100k stop 15.3 76.8 1.3

1M stop 177.8 stop 13.7
10M stop fail stop 150.2
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Table 8: Correlation matrix ρ; local 2/4; data set Year d = 90; time in secs.

n size SciDB-R Γ operator

500k 0.4 GB 240 6
1M 0.7 GB 559 13
2M 1.4 GB fail 26
8M 5.8 GB fail 103

16M 11.6 GB fail 205

Table 9: Time to compute models using Γ in local cluster local cluster 1/4; dataset Year
d = 90; time in secs.

n Γ operator LR PCA VS

1M 19 0.02 0.08 143
2M 36 0.02 0.09 146
8M 118 0.02 0.09 145

16M 233 0.02 0.09 148

array DBMS. Table 7 compares all available programming alternatives on KDDnet. SciDB
offers two flavors of matrix multiplication: sparse (spgemm()) and dense (gemm()). We
tested both of them and spgemm() was able to handle larger matrices. Clearly, our operator
scales better and more importantly, it does not present RAM limitations.

4.3. Parallel Processing

In Table 10, we present another set of experiments measuring running time for our custom
operator varying data set size (n). In order to analyze scalability and parallelism, these
experiments are conducted increasing the number of SciDB instances, in 1 and 2 servers,
respectively. Such setup allows us to measure intra-node parallelism interleaving CPU and
I/O. In our local system we vary from 1 to 4 instances, whereas experiments on the Amazon
EC2 cluster, instances vary from 4 to 8. These execution time measurements are plotted
in Figure 1. In order to evaluate scalability, the parallel speed up can be easily computed
from the time measurements in Table 10. Clearly, the scalability of our custom operator is
nearly perfect, when our servers run with up to 2 instances. The small RAM of our servers
and contention for CPU and disk hinder an ideal speedup for 4 instances on one server.

Table 10: Scalability of Γ summarization operator; dataset Year d = 90; time in secs.

n Local 1/1 Local 1/2 Local 1/4 Local 2/4 Cloud 1/4 Cloud 2/8

500k 25 12 9 6 3 2
1M 51 26 19 13 7 3
2M 101 55 36 26 14 6
8M 410 227 118 103 59 26

16M 818 455 232 205 109 52
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Figure 1: Time for 1,2,4,8 SciDB instances varying n (data set size).

5. Related Work

Optimizing matrix computations when matrices cannot fit in RAM is a classical topic
in numerical linear algebra [Demmel (1997)], exploiting significantly different algorithms
and data structures compared to database systems. On the cloud computing side the
currently dominating technology is the Hadoop ecosystem including HDFS, MapReduce
and no-SQL systems. Despite the prominence of linear models in statistics, there is not
much work studying how to accelerate their computation on a DBMS. Integrating linear
regression with a DBMS has received limited attention, compared to more popular models
like clustering [Ordonez and Cereghini (2000)] and decision trees [Gehrke et al. (1999)]. More
recently, [Hellerstein et al. (2012)] explains the MADlib library to compute statistical models
with SQL mechanisms, combining queries and UDFs, following a similar summarization
method presented to the one presented in [Ordonez (2010)] to compute linear regression.
Nevertheless, neither [Ordonez (2010)] nor [Hellerstein et al. (2012)] had envisioned a vector-
based outer product computation which can be pushed into an aggregation with arrays as
input and output. From a mathematical point of view, variable selection and Bayesian
models, are much more difficult. System requirements for an array DBMS are outlined in
[Stonebraker et al. (2009)], whereas [Stonebraker et al. (2013)] provides a technical overview
of SciDB. Optimizing the computation of statistical models and matrix operations on array
DBMSs, with SciDB in particular, is not well explored.

6. Conclusions

We studied how to efficiently compute three different and well-known statistical models
on an array DBMS. Specifically, we studied PCA, linear regression and Bayesian variable
selection with MCMC methods. We identified common sufficient statistics across all models
to summarize the data set. After the data set is summarized, sufficient statistics are used
to derive the correlation matrix for PCA (solved with SVD), compute linear regression
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coefficients (solved with least squares) and get a Bayesian variable selection model (using
the well-known Gibbs sampler). Our main contribution is a new array operator that enables
fast summarization of a large data set for a big family of linear models, including those
presented in this paper. This operator has the outstanding property of pushing vector
products to RAM, avoiding materializing on secondary storage a matrix transposition and
eliminating a cross-product between two large matrices. We carefully analyzed parallel
speedup, performance bottlenecks and scalability. Experimental evaluation on the SciDB
parallel DBMS produced encouraging results. Our operator is remarkably efficient, two
orders of magnitude faster than SQL, an order of magnitude faster than SciDB built-in
operators and even faster than the R package when the input matrix fits in RAM. Moreover,
our operator does not present any RAM limitations, whereas some SciDB operators do. The
remaining model computations take negligible time for PCA and linear regression, whereas
the Gibbs sampler does take significant time, but it iterates fast in RAM. In summary,
our summarization array operator has linear scalability as data set size grows and linear
speedup as the number of processing nodes grows. We believe this operation will help array
DBMSs being used in more big data analytics problems.

There are many research opportunities. The next step is to investigate how to handle a
summarization matrix that does not fit in RAM. This is particularly important for genomics
and text data. Our operator does not exploit LAPACK to perform vector multiplications in
RAM. Thus it is necessary to investigate if it is worth converting vectors to major column
order to be consumed by LAPACK. Our operator has wide applicability, but it certainly does
not work for every model. However, the same approach going from matrix to vector, back
to matrix, may work for other models. Last but not least, we need to develop incremental
algorithms that can produce model approximations as the data set is being scanned.
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