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Abstract

In this paper we implement a collapsed Gibbs sampling method for the widely used latent
Dirichlet allocation (LDA) model on Spark. Spark is a fast in-memory cluster computing
framework for large-scale data processing, which has been the talk of the Big Data town
for a while. It is suitable for iterative and interactive algorithm. Our approach splits the
dataset into P ∗ P partitions, shuffles and recombines these partitions into P sub-datasets
using rules to avoid conflicts of sampling, where each of P sub-datasets only contains P
partitions, and then parallel processes each sub-dataset one by one. Despite increasing
the number of iterations, this method reduces data communication overhead, makes good
use of Spark’s efficient iterative execution and results in significant speedup on large-scale
datasets in our experiments.
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1. Introduction

The latent Dirichlet allocation (LDA) model is a general probabilistic framework that was
first proposed by Blei et al. (2003) to discover topics in text documents. The main idea
of the LDA model is based on the assumption that each document may be viewed as a
mixture of various topics, where a topic is represented as a multinomial probability dis-
tribution over words. Learning the mixing coefficients for the various document-topic and
topic-word distributions is a problem of Bayesian inference. Blei et al. (2003) developed
a variational Bayesian algorithm to approximate the posterior distribution in the original
paper; and an alternative inference method using collapsed Gibbs sampling to learn the
model from data was subsequently proposed by Griffiths and Steyvers (2004). Both of the
approaches have their advantages and disadvantages: the variational approach is arguably
faster computationally but can possibly lead to inaccurate inferences and biased learning;
though the collapsed Gibbs sampling approach is in principal more accurate, it has high
computational complexity, which makes it inefficient on large datasets.
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With the advent of the era of big data, the amount of data in our world has been
exploding, and analyzing large datasets has becoming a key in many areas. LDA model,
with the collapsed Gibbs sampling algorithm in common use, has now been broadly applied
in machine learning and data mining, particularly in classification, recommendation and
web search, in which both high accuracy and speed are required. Some improvements
have been explored for adapting to big data based on variational Bayesian, such as Teh
et al. (2006); Nallapati et al. (2007); Wolfe et al. (2008). The Collapsed Variational Bayes
(CVB) algorithm has been implemented in Mahout and Wen et al. (2013) improved it by
combining GPU and Hadoop. CVB converges faster than collapsed Gibbs sampling, but
the latter attains a better solution in the end with enough samples. So there is a significant
motivation to speedup collapsed Gibbs sampling for LDA model.

In this general context we introduce our parallel collapsed Gibbs sampling algorithm and
demonstrate how to implement it on Spark, a new in-memory cluster computing framework
proposed by Zaharia et al. (2010, 2012). The key idea of our algorithm is to reduce the time
taken for communication and synchronization. Only a part of global parameters are parallel
transferred in communication and no complex calculation is needed in synchronization.
However, a disadvantage of our algorithm is that the number of iterations significantly
increases. In order to overcome this problem, we adopt Spark, which is very suitable for
iterative and interactive algorithm, to implement our method.

We first briefly review the related work on collapsed Gibbs sampling in Section 2; some
prior knowledge, including the LDA model, collapsed Gibbs sampling for LDA and Spark,
is reviewed in Section 3; in Section 4 we describe the details of our distributed approach on
Spark via a simple example; in Section 5 we present perplexity and speedup results; finally,
we discuss future research plans in Section 6.

2. Related Work

Various implementations and improvements have been explored for speeding up LDA model.
Relevant collapsed Gibbs sampling methods are as follows:

• Newman et al. (2007, 2009) proposed two versions of LDA where the data and the
parameters are distributed over distinct processors: Approximate Distributed LDA
model (AD-LDA) and Hierarchical Distributed LDA model (HD-LDA). In AD-LDA,
they simply implement LDA on each processor and update global parameters after a
local Gibbs sampling iteration. HD-LDA can be viewed as a mixture model with P
LDA, which optimizes the correct posterior quantity but is more complex to implement
and slower to run.

• Porteous et al. (2008) presented a new sampling scheme, which produces exactly the
same results as the standard sampling scheme but faster.

• An asynchronous distributed version of LDA (Async-LDA) was introduced by Asun-
cion et al. (2008). In Async-LDA, each processor performs a local collapsed Gibbs
sampling step followed by a step of communicating with another random processor
to gain the benefits of asynchronous computing. Async-LDA has been improved in
GraphLab, a graph-based parallel framework for machine learning, which was pro-
posed by Low et al. (2010).
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• Yan et al. (2009) presented parallel algorithms of collapsed Gibbs sampling and col-
lapsed variational Bayesian for LDA model on Graphics Processing Units (GPUs),
which have massively built-in parallel processors with shared memory. And they pro-
posed a novel data partitioning scheme to overcome the shared memory limitations.

• Wang et al. (2009) implemented collapsed Gibbs sampling on MPI and MapReduce
called PLDA, then Liu et al. (2011) enhanced the implementation and called the new
approach PLDA+.

• Xiao and Stibor (2010) proposed a novel dynamic sampling strategy to significantly
improve the efficiency of collapsed Gibbs sampling and presented a straight-forward
parallelization to further improve the efficiency.

• Ihler and Newman (2012) presented a modified parallel Gibbs sampler, which obtains
the same speedups as AD-LDA, but provides an online measure of the approximation
quality compared to a sequential sampler.

In these works, the parallel LDA was first proposed and respectively implemented on
GraphLab, GPUs, MPI and MapReduce. All the above could run with high speed up
ratio and parallel efficiency. Unlike their works, we improved the collapsed Gibbs sampling
method and implemented it on Spark, which is a new model of cluster computing that aims
to make data analytics fast.

3. Prior Knowledge

3.1. Latent Dirichlet Allocation
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Figure 1: Graphical model for LDA.

Before delving into the details of our distributed algorithm for LDA on Spark, we first
briefly review the standard LDA model. In LDA, each of D documents is modeled as a
mixture over K latent topics, each being a multinomial distribution over W vocabulary
words. In order to generate a new document j, we first draw a mixing proportion θk|j from

a Dirichlet with parameter α. For the ith word in the document, a topic assignment zij is
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drawn with topic k chosen with probability θk|j . Then word xij is drawn from the zthij topic,
with xij taking on value w with probability φw|k, where φw|k is drawn from a Dirichlet prior
with parameter β. Finally, the generative process is below:

θk|j ∼ Dir(α) φw|k ∼ Dir(β) zij ∼ θk|j xij ∼ φw|zij (1)

where Dir(α) represents the Dirichlet distribution. Figure 1 shows the graphical model
representation of the LDA model.

Given the training data with N words x = xij , it is possible to infer the posterior
distribution of latent variables. An efficient procedure is to use collapsed Gibbs sampling,
which samples the latent variables z = zij by integrating out θk|j and φw|k. The conditional
probability of zij is computed as follows:

p(zij = k|z¬ij , x, α, β) ∝ (α+ n¬ijk|j )(β + n¬ijxij|k
)(Wβ + n¬ijk )−1 (2)

where the superscript ¬ij means the corresponding data-item is excluded in the count
values, nk|j denotes the number of tokens in document j assigned to topic k, nxij|k denotes
the number of tokens with word w assigned to topic k, and nk =

∑
w nw|k.

3.2. Spark

Spark is a fast and general engine for large-scale data processing that can run programs
up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk. The project
started as a research project at the UC Berkeley AMPLab in 2009, and was open sourced
in early 2010. After being released, Spark grew a developer community on GitHub and
entered Apache in 2013 as its permanent home. A wide range of contributors now develop
the project (over 120 developers from 25 companies) spa.

Relative to Hadoop, Spark was designed to run more complex, multi-pass algorithms,
such as the iterative algorithms that are common in machine learning and graph processing;
or execute more interactive ad hoc queries to explore the data. The core problem of these
applications is that both multi-pass and interactive applications need to share data across
multiple MapReduce steps. Unfortunately, the only way to share data between parallel
operations in MapReduce is to write to a distributed file system, which adds substantial
overhead due to data replication and disk I/O. Indeed, it had been found that this overhead
could take up more than 90% of the running time of common machine learning algorithms
implemented on Hadoop. Spark overcomes this problem by providing a new storage prim-
itive called resilient distributed dataset (RDD), which represents a read-only collection of
objects partitioned across a set of machines and provides fault tolerance without requiring
replication, by tracking how to compute lost data from previous RDDs. RDD is the key
abstraction in Spark. Users can explicitly cache an RDD in memory or disk across machines
and reuse it in multiple parallel operations.

Spark includes MLlib, which is a library of machine learning algorithms for large data,
including classification, regression, clustering, collaborative filtering, dimensionality reduc-
tion, as well as underlying optimization primitives. However, no topic model algorithm has
been added so far.
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4. Distributed Learning for LDA on Spark

We now introduce our distributed version of LDA where the data and the parameters
are distributed over distinct processors on Spark (which we will call Spark-LDA). Table
1 shows the symbols associated with Spark-LDA which are used in this paper. We first
simply distribute Nd and Nw over P processors, with N i

d = Nd/P and N j
w = Nw/P on each

processor, then show how to split, shuffle and recombine the datasets X to P sub-datasets
Xp with P partitions.

Table 1: Symbols associated with Spark-LDA

Symbol Description

X Datasets

Xp The pth sub-datasets

K Number of topics

D Number of documents

W Number of words in the vocabulary

Nd Document-topic count matrix

Nw Word-topic count matrix

N i
d The ith part of Nd

N j
w The jth part of Nw

Nk Word count assigned with topic k

Np
k Local copy of Nk on the pth processor

Ñp
k Difference between Nk and Np

k after sampling on a processor

In order to avoid potential read/write conflicts on Nd and Nw, it must be confirmed
that each partition in a sub-dataset cannot contain the same documents and words. Ihler
and Newman (2012) proposed a data partition scheme to meet the requirement. However,
this scheme requires an efficient shared memory, because each processor needs to access
all partitions. Obviously it is not suitable for cluster computing framework, so we made
some modifications to apply it on Spark. We first put the datasets X into P ∗P partitions,
through dividing the rows and columns into P parts, and put Nd and Nw into N i

d and

N j
w corresponding X; then select P partitions from X, each of them containing different

documents and words, to recombine to one sub-datasets. A simple example of the above
process is shown in Figure 2, and we will describe the details in the following.

For ensuring network load balance during communication, the number of columns of
each partition, which are associated with N j

w, must be equal with each other. In addition,
we must ensure that the number of words in each partition is close to each other, so as
to balance the load of each processor during the sampling process for each sub-dataset. In
fact, we only need to ensure that the value is minimal between the maximum and minimum.
We take the following steps to meet the above requirements:
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X split shuffle

(0, 2) (1, 0) (2, 1)

X0(0, 0)

(0, 1)

(0, 2) (1, 2)

(1, 1)

(1, 0)

(2, 2)

(2, 1)

(2, 0) (0, 0) (1, 1) (2, 2)

(0, 1) (1, 2) (2, 0) X1

X2

recombine

recombine

recombine

Figure 2: (x, y) represent partitions. In this case, X is split into 9 partitions, which are
shuffled and recombined to X0, X1 and X2.

• We first put the datasets X into P partitions, through dividing the columns into equal
P parts; then swap the columns to make the number of words in each partition closer.
After that, we divide the columns of Nw corresponding to X.

• Then we divide the rows into P parts, now the dataset X has been split into P ∗ P
partitions; and make the number of words in each partition, which belongs to the same
sub-dataset after recombination, closer. Though the number of rows is not necessarily
equal, it is still very difficult to find an efficient way to solve this problem. Here, we use
a simple randomized method to swap the rows and calculate the difference between
the maximum and minimum number of words in each partition which belongs to the
same sub-dataset. The smaller difference means better partitions. We can run this
method for several times and select the best one by calling an RDDs cache method
to tell Spark to try and keep the dataset in memory. It is fast, since the dataset is in
memory and can be calculated parallel. In our experiment, it works well.

• Finally, we select P non-conflict partitions and recombine them into a sub-dataset.
Repeat the process and we will get P sub-datasets at last.

Consider the sampling process for a sub-dataset. Each sub-dataset contains P non-
conflict partitions, which can be distributed to P processors; recall that N i

d and N j
w have

been distributed, too. So we can shuffle N i
d and N j

w corresponding to the partitions, and
let them, which contain the same documents and words, on one processor. Then standard
collapsed Gibbs sampling algorithm will be executed on each processor, N i

d and N j
w will be

updated at the same time. After completing the sampling of all partitions in a sub-dataset,
we calculate Nk by Ñp

k , which tracked changes in Np
k , and Nk is then broadcasted to all

processors and stored as Np
k . The above process via a simple example is given in Figure

3. Thus we have completed the sampling process for a sub-dataset, and then we need to
repeat this process for remaining sub-datasets. After sampling all the sub-datasets, we have
completed an iteration of the global.

To implement the algorithm 1 on Spark, there are two issues that must be resolved. One
is that it is asked to operate three RDDs, Xp, Nd and Nw, during the sampling process.
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Figure 3: A simple example of the sampling process. Dotted line represents that the trans-
mission on the same machine and the solid line indicates the transfer between
different machines.

Algorithm 1 Spark-LDA

1: for i < iteration do
2: /* Sample one sub-dataset */
3: for j < numberofsub-datasets do
4: for each processor p in parallel do
5: /* Sampling */
6: Initialize Ñp

k = {0} and Np
k = Nk

7: Sample z ∈ Xp with N i
d, N

j
w, N

p
k and update N i

d, N
j
w, N

p
k , Ñ

p
k

8: end for
9: /* Communication and synchronization */

10: Shuffle N i
d, N

j
w and update Nk = Nk +

∑
p Ñ

p
k

11: end for
12: end for

However, Spark is not good at operating more than two RDDs by default. We take the
following steps to solve the problem. First, we combine Xp, Nd and Nw into one RDD and
start sampling; after sampling, we then split the RDD into three RDDs.

The other problem is the way to partition RDD. Spark computes the hash code as the
partition id by default, and it provides another way to partition RDD by determining the
ranges of RDD. Both of the two methods cannot meet our requirements, so we implement
a new partition method, which uses our specified id as partition id. After finishing that,
we implement a location function to confirm the partitions of X and Nd are placed as our
algorithm’s request.

23



Qiu Wu Wang Shi Yu

Obviously, this parallel approach significantly increases the number of iterations; how-
ever, all operations are performed in memory and Spark has a highly efficient compression
to reduce the size of data transfer in network, so the speed is very fast.

5. Experiments

We used three text datasets retrieved from the UCI Machine Learning Repository for eval-
uation (http://archive.ics.uci.edu/ml/datasets/Bag+of+Words): KOS blog entries,
NIPS full papers and NY Times news articles. These three datasets span a wide range
of collection size, content and average document length. The KOS dataset is the smallest
one, NYT dataset is relatively large, while NIPS dataset is moderately sized. For each text
collection, after tokenization and removal of stopwords, the vocabulary of unique words was
truncated by only keeping words that occurred more than ten times. The characteristics of
these three datasets are shown in Table 2.

Table 2: Size parameters for the three datasets used in experiments

Dataset KOS NIPS NYT

Total number of documents, D 3,430 1,500 300,000

Size of vocabulary, W 6,909 12,419 102,660

Total number of words, N 467,714 1,932,365 99,542,125

We measured performance in two ways. First, we compared LDA (standard collapsed
Gibbs sampling on a single processor) and our distributed algorithm, Spark-LDA, using two
small datasets, KOS and NIPS, by computing the perplexity on the test set. Secondly, we
measured the speedup of Spark-LDA using all these datasets. All experiments were carried
out on the computers, each one equipped with an Intel Xeon 2.00GHz CPU and 8GBytes
memory. LDA was executed on one computer while Spark-LDA was on 25 computers
including 1 master and 24 workers.

In our perplexity experiments, we split each dataset into a training set and a test set by
assigning about 10% of the words in each document to the test set. And for every document,
the words in test set were never seen in training set. Then we learned our models on the
training set, and measured the performance on the test set using perplexity which was
computed as Perplexity(xtest) = exp (− 1

Ntest log p(xtest)). For each of our experiments, we
performed S = 10 different Gibbs runs, with different random initializations and each ran
lasting 1000 iterations, and we obtained a sample at the end of each of those runs. Then
perplexities were calculated using:

log p(xtest) =
∑
j,w

log
1

S

∑
s

∑
k

θsk|jφ
s
w|k

θsk|j =
α+ nsk|j

Kα+ nsj
φsw|k =

β + nsw|k

Wβ + nsk

(3)

where α = 50/K and β = 0.1.
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Figure 4: Test set perplexity versus number of processors P for KOS (left) and NIPS (right).
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Figure 5: Test set perplexity versus number of topics K for KOS (left) and NIPS (right).

Figure 4 shows the test set perplexity for KOS and NIPS. We used standard LDA to
compute perplexity for P = 1 and Spark-LDA for P = 8, 16, 24. The figure clearly shows
that the perplexity results were of no significant difference between LDA and Spark-LDA for
varying numbers of topics. It suggests that our algorithm converged to models having the
same predictive power as standard LDA. We also used Spark-LDA to compute perplexities
for KOS with K = 128, 256, NIPS with K = 80, 160, and the results presented the same
conclusion. Because the perplexities increased with the number of topics increasing in the
current parameters, which made the figure confusing, we only showed parts of these results
in Figure 5. Limited by the hardware conditions, we did not perform experiments on more
than 24 processors.

The rate of convergence is shown in Figure 6. As the number of processors increased, the
rate of convergence slowed down in our experiments, since the information for sampling in
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each processor was not accurate enough. However, all of these results eventually converged
to the same range after the burn-in period of 1000 iterations.
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Figure 6: Test set perplexity versus iteration on KOS, K = 8.

We respectively performed speedup experiments on two small datasets (KOS, NIPS)
and one large dataset (NYT). The speedup was computed as Speedup = 1

(1−S)+S/P , where
S was the percent of sampling time and P was the number of processes. The results are
shown in Figure 7 (left). The figure clearly shows that speedup increased as the dataset
size. The phenomenon reflected that our algorithm performed well on large dataset, but
the effect was not significant on small datasets.
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Figure 7: Speedup of Spark-LDA (left) and the proportion of the sampling time per iteration
(right) on KOS, NIPS and NYT

In order to analyze the causes of this phenomenon, we then measured the proportion
of the sampling time per iteration and showed the results in Figure 7 (right). With the
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number of processors increasing, the number of words in each partition was fewer, and the
execution time of sampling was less, too. In our experiments, only about 40ms was taken
for sampling per iteration on KOS with K = 8, P = 24. However, starting jobs consumed
constant time, so the proportion of the sampling time got smaller. This process explained
why the performance of Spark-LDA was not good on small datasets. For large dataset, this
phenomenon also occurred but still within the acceptable range in our experiments.

6. Discussion and Conclusions

In this paper, we described the details of our distributed approach. The results of our
experiments show that our algorithm ensured accuracy and achieved impressive speedup.
However, there are still two issues to be solved. One is low speedup caused by too few
words in each partition; the other is how to make the speedup close to the perfect when
the dataset is big enough. Both of them need to operate multiple RDDs at the same time.
Limited to the status of Spark, it is difficult to solve these two problems. Spark, after all,
is still in a period of rapid development, and it will be maturing with the contribution of
many developers. We will continue to focus on Spark and optimize our algorithm in the
future.
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