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A. Average Losses
Lemma 4 in Appendix C motivates the following optimization problem:

min
h
v>(Lh− h) , (17)

where v is a distribution over the state space. If ĥ is an ε-optimal solution, then

v>(Lĥ− ĥ) ≤ v>(Lh− h) + ε .

Thus, by Lemma 4 in Appendix C,

λπ
ĥ

+ (v − µπ
ĥ
)>(Lĥ− ĥ) ≤ λπh + (v − µπh)>(Lh− h) + ε .

Thus, for any λ̂ and λ,

λπ
ĥ

+ (v − µπ
ĥ
)>(Lĥ− ĥ− λ̂1) ≤ λπh + (v − µπh)>(Lh− h− λ1) + ε .

Thus,
λπ

ĥ
− λπh ≤

∥∥v − µπ
ĥ

∥∥
1

∥∥∥Lĥ− ĥ− λ̂1∥∥∥
∞

+ ‖Lh− h− λ1‖1,v + ‖Lh− h− λ1‖1,µπh .

Unfortunately, the optimization objective (17) is not convex.

B. Proofs of Section 2
Before proving Theorem 1, we prove a useful lemma.

Lemma 3. Let J : X → R be a function. We have that

JPJ (x1)− J(x1) =
∑
T∈T

PJ(T )
∑
x∈T

(LJ − J)(x) .

Proof. We have that

`(x, PJ) = q(x) +
∑
x′∈X

PJ(x, x′) log
PJ(x, x′)

P0(x, x′)

= q(x)−
∑
x′∈X

PJ(x, x′)J(x′)− logZ(x) . (18)

By definition and (18),

JPJ (x) = q(x) +
∑
x′∈X

PJ(x, x′)(JPJ (x′)− J(x′))− logZ(x) .

Thus,

JPJ (x)− J(x) = q(x) +
∑
x′∈X

PJ(x, x′)(JPJ (x′)− J(x′))− logZ(x)− J(x)

= (LJ − J)(x) +
∑
x′∈X

PJ(x, x′)(JPJ (x′)− J(x′)) .

Let f(x) = JPJ (x)− J(x) and g(x) = (LJ − J)(x) so that f(x) = g(x) +
∑
x′∈X PJ(x, x′)f(x′). Because there are no

loops and there exists an absorbing state such that (LJ − J)(z) = 0, we obtain the desired result:

JPJ (x1)− J(x1) =
∑
T∈T

PJ(T )
∑
x∈T

(LJ − J)(x) .
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Proof of Theorem 1. Because ŵ ∈ W , by the positivity assumption below (7) we have that Jŵ(x) ≤ − log g for any state
x. Thus,

(LJŵ)(x) = q(x)− log
∑
x′

P0(x, x′)e−Jŵ(x′)

≤ q(x) +
∑
x′

P0(x, x′)
(
− log e−Jŵ(x′)

)
≤ Q− log g .

Thus, for any x,

max{Jŵ(x), (LJŵ)(x)} ≤ Q− log g . (19)

By the fact that ŵ is an ε-optimal solution, for any w ∈ W , we have

Jŵ(x1) +H
∑
T∈T

v(T )
∑
x∈T

∣∣∣Ψ(x, :)ŵ − e−q(x)P0(x, :)Ψŵ
∣∣∣ ≤

Jw(x1) +H
∑
T∈T

v(T )
∑
x∈T

∣∣∣Ψ(x, :)w − e−q(x)P0(x, :)Ψw
∣∣∣+ ε .

Thus,

Jŵ(x1) +He−Q+log g
∑
T∈T

v(T )
∑
x∈T
|Jŵ(x)− LJŵ(x)| ≤

Jw(x1) +H
∑
T∈T

v(T )
∑
x∈T

e−lw(x) |Jw(x)− LJw(x)|+ ε ,

where we used (9) and (19). Thus, by the choice of H and Lemma 3,

JPJŵ (x1) +
∑
T∈T

(v(T )− PJŵ(T ))
∑
x∈T
|Jŵ(x)− LJŵ(x)| ≤ JPJw (x1)

+H
∑
T∈T

v(T )
∑
x∈T

e−lw(x) |Jw(x)− LJw(x)|

+
∑
T∈T

PJw(T )
∑
x∈T
|Jw(x)− LJw(x)|+ ε .

Thus,

JPJŵ (x1)− JPJw (x1) ≤
∑
T∈T

(PJŵ(T )− v(T ))
∑
x∈T
|Jŵ(x)− LJŵ(x)|

+H
∑
T∈T

v(T )
∑
x∈T

e−lw(x) |Jw(x)− LJw(x)|

+
∑
T∈T

PJw(T )
∑
x∈T
|Jw(x)− LJw(x)|+ ε

≤ ‖PJŵ − v‖1 max
T∈T

∑
x∈T
|Jŵ(x)− LJŵ(x)|

+H
∑
T∈T

v(T )
∑
x∈T

e−lw(x) |Jw(x)− LJw(x)|

+
∑
T∈T

PJw(T )
∑
x∈T
|Jw(x)− LJw(x)|+ ε .
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Input: Starting state x1, number of rounds N , a decreasing sequence of step sizes
(ηt), a positive v over states, estimate of optimal average cost b.
Let ΠW be the Euclidean projection ontoW .
Initialize w1 = 0.
for t := 1, 2, . . . , N do

Sample state x ∼ v/‖v‖1.
Compute subgradient estimate rt defined by (20).
Update wt+1 = ΠW(wt − ηtrt).

end for
ŵT = 1

T

∑T
t=1 wt.

Return policy PhŵT defined in Section 3.

Figure 3. The Stochastic Subgradient Method for Average Cost Markov Decision Processes

C. Algorithm and Proofs of Section 3
The stochastic subgradient algorithm for average cost MDPs is presented in Figure 3, where the stochastic subgradient of
c(w) for a randomly sampled state x takes the following form,

r(w) = ‖v‖1sign
(
e−bΨ(x, :)w − e−q(x)P0(x, :)Ψw

)(
e−bΨ(x, :)− e−q(x)P0(x, :)Ψ

)
. (20)

Before proving Theorem 2, we prove a useful lemma.

Lemma 4. Let h : X → R be a bounded function and assume that the Markov chain induced by the greedy policy Ph is
irreducible and aperiodic. Then, we have that

λPh = µ>Ph(Lh− h) ,

where µPh is the stationary distribution with respect to Ph.

Proof. The proof argument uses ideas from the proof of Theorem 8.4.1 in Puterman (1994). Let f(x) = (Lh)(x)− h(x).
We have that

Phf = Ph`(:, Ph) + P 2
hh− Phh = Ph`(:, Ph) + Ph(Ph − I)h .

By repeating this argument, we get that P shf = P sh`(., Ph) + P sh(Ph − I)h. Summing over s = 1 . . . t, we obtain

t∑
s=1

P shf =

t∑
s=1

P sh`(:, Ph) + (P th − I)h .

Averaging and taking the limit, we obtain

P∞h f = lim
t→∞

1

t

t∑
s=1

P shf = lim
t→∞

1

t

t∑
s=1

P sh`(:, Ph) + lim
t→∞

1

t
(P th − I)h = λPh1 ,

where we used λP1 = P∞`(:, P ) and boundedness of P∞h h. Thus, λPh = µ>Phf .

Proof of Theorem 2. For a differential value function h, let V = e−h. We know that Lh = q − logZ and Z(x) =∑
x′ P0(x, x′)e−h(x

′) =
∑
x′ P0(x, x′)V (x′). Then

e−Lh − e−h−b = e−q+logZ − e−h−b = e−qP0V − e−bV .

Let ŵ be an ε-optimal solution, then for any w ∈ W , we have,

v>
∣∣e−qP0Ψŵ − e−bΨŵ

∣∣ ≤ v> ∣∣e−qP0Ψw − e−bΨw
∣∣+ ε .
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Recall that hŵ = − log Ψŵ. Let uŵ = max(Lhŵ, hŵ + b) and lw = min(Lhw, hw + b). By (9),(
e−uŵ � v

)> |Lhŵ − hŵ − b| ≤ (e−lw � v)> |Lhw − hw − b|+ ε .

By Lemma 4, we have
λPhŵ − b ≤ µ

T
Phŵ
|Lhŵ − hŵ − b| ,

which further implies that,

−b+ λPhŵ + (e−uŵ � v − µPhŵ )> |Lhŵ − hŵ − b| ≤
(
e−lw � v

)> |Lhw − hw − b|+ ε .

This gives the performance bound in the theorem,

λPhŵ − λPhw ≤
∣∣b− λPhw ∣∣+ ‖(e−uŵ � v − µPhŵ )‖1‖Lhŵ − hŵ − b‖∞

+ ‖ (Lhw − hw − b) ‖1,(e−lw�v) + ε.


