
A Lower Bound for the Optimization of Finite Sums

A. Optimization of a strongly convex smooth functions
The most accessible derivation of this classic lower bound (Nesterov, 2004) relies on the simplifying assumption that the
successive points xk lie in the span of the gradients previously returned by the oracle. This section provides a derivation of
the lower bound that does not rely on this assumption and is critical for Theorem 1 where no such assumptions are made.

This section considers algorithms that produces an approximate solution of the optimization problem

x∗f = argmin
x∈`2

f (x) =
µ

2
‖x‖2 +g(x) where f (x) ∈ Sµ,L(`2) . (9)

using, as sole knowledge of function f , an oracle that returns the value f (x) and the gradient f ′(x) on points successively
determined by the algorithm. Note that this writing of f is without loss of generality, since any µ-strongly convex function
can be written in the form (9) where g is convex.

Remark 2 We could equivalently consider an oracle that reveals g(xk) and g′(xk) instead of f (xk) and f ′(xk) because
these quantities can be computed from each other (since µ is known.)

At a high-level, our proof will have the following structure. We will first establish that any algorithm for solving the
minimization problem (9) for all f ∈ Sµ,L(`2) will be forced to play the point xK in the span of the previous iterates and
gradients. This essentially shows that the restriction made by Nesterov is not too serious. The second part of the proof
constructs a resisting oracle for such algorithms whose final query point falls within the span of the previous responses.
Combining these ingredients, we obtain the desired lower bound.

A.1. Restriction of final solution to span

Consider an algorithm that calls the oracle on K > 1 successive points x0, . . . ,xK−1. The first part of the proof describes
how to pick the best possible xK on the basis of the oracle answers and the algorithm’s queries.

Definition 6 For any γ ≥ 0, let Sµ,L
γ (`2) be the set of all functions f ∈ Sµ,L(`2) that reach their minimum in a point x∗f

such that ‖x∗f ‖= γ .

Definition 7 Let G f
γ ⊂ S

µ,L
γ (`2) be the set of the functions of Sµ,L

γ (`2) whose values and gradients coincide with those of
f on points x0 . . .xK−1. Let H f

γ ∈ `2 be the set of their minima.

When the function f is clear from the context, we will drop the superscript for brevity. Since all functions in Gγ are
compatible with the values returned by the oracle, running our algorithm on any of them would perform the same calls
to the oracle and obtain the same answers. Therefore, in order to offer the best guarantee on ‖xK − x∗f ‖2 without further
knowledge of the function f (x), our algorithm must choose xK to be the center of the smallest ball containing Hγ .

Definition 8 Let P = Span{x0 . . . xK−1, f ′(x0) . . . f ′(xK−1)}. Let ΠP(x) be the orthogonal projection of point x on P and
let Mp(x) = 2ΠP(x)−x be its mirror image with respect to P.

Stated differently, we know that any point x can be decomposed into ΠP(x) and ΠP⊥(x) such that x = ΠP(x)+ΠP⊥(x).
Then the above definition yields MP(x) = ΠP(x)−ΠP⊥(x), which is the natural reflection of x with respect to the subspace
P.

Proposition 3 The set Hγ is symmetric with respect to P.

Proof Consider an arbitrary point x∗h ∈ Hγ which minimizes a function h ∈ Gγ . Since function x 7→ h(MP(x)) also belongs
to Gγ , its minimum Mp(x∗h) also belongs to Hγ . �

Corollary 2 The center of the smallest ball enclosing Hγ belongs to P.

We are now in a position to present the main ingredient of our proof that allows us to state a more general result than
Nesterov. In particular, we demonstrate that the assumption made by Nesterov about the iterates lying in the span of
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previous gradients can be made almost without loss of generality. The key distinction is that we can only make it on the
step K, where the algorithm is constrained to produce a good answer, while Nesterov assumes it on all iterates, somewhat
restricting the class of admissible algorithms.

Lemma 3 For any γ > 0 and any algorithm A that performs K ≥ 1 calls of the oracle and produces an approximate
solution xAK( f ) of problem (9), there is an algorithm B that performs K calls of the oracle and produces an approximate
solution xBK( f ) ∈ Span{x0 . . . xK−1, f ′(x0) . . . f ′(xK−1)} for all f ∈ Sµ,L

γ (`2) such that

sup
f∈Sµ,L

γ (`2)

‖xBK− x∗f ‖2 ≤ sup
f∈Sµ,L

γ (`2)

‖xAK− x∗f ‖2 . (10)

Proof Consider an algorithm B that first runs algorithm A and then returns the center of the smallest ball enclosing
H f

γ as xBK( f ). Corollary 2 ensures that xBK( f ) belongs to the posited span. This choice of xBK( f ) also ensures that
supx̄∈H f

γ

‖xBK( f )− x̄‖ ≤ supx̄∈H f
γ

‖xAK( f )− x̄‖. Equivalently, supg∈G f
γ

‖xBK(g)− x∗g‖ ≤ supg∈G f
γ

‖xAK(g)− x∗g‖, where we use

the fact that xBK(g) = xBK( f ) and xAK(g) = xAK( f ) because function g ∈ G f
γ coincides with f on x0 . . .xK−1. Therefore,

sup
f∈Sµ,L

γ (`2)

sup
g∈G f

γ

‖xBK(g)− x∗g‖ ≤ sup
f∈Sµ,L

γ (`2)

sup
g∈G f

γ

‖xAK(g)− x∗g‖ .

This inequality implies (10) because Sµ,L
γ (`2) = ∪ f∈Sµ,L

γ (`2)
G f

γ . �

Lemma 3 means that we can restrict the analysis to algorithms that pick their final estimate xK in the subspace P that results
from the execution of the algorithm. In order to establish a lower bound for such an algorithm, it is sufficient to construct a
function fK whose minimum is located sufficiently far away from this subspace. We construct this function by running the
algorithm against a resisting oracle, which is quite standard in these lower bound proofs. Each call to the resisting oracle
picks a new objective function fk among all the Sµ,L(`2) functions that agree with the values and gradients returned by all
previous calls to the oracle. This constraint ensures that the optimization algorithm would have reached the same state if it
had been run against function fk instead of the resisting oracle.

A.2. Construction of a resisting oracle

We start by defining the basic structure of the function which will be used by our oracle to construct hard problem instances.
This structure is identical to that used by Nesterov.

Definition 9 (Nesterov) Fix ρ > 0 and let Nµ,L denote the function

Nµ,L(x) =
L−µ

8

(
(x[1])2 +

∞

∑
i=1

(x[i+1]− x[i])2−2ρ x[1]

)
+

µ

2
‖x‖2 .

Proposition 4 Nµ,L ∈ Sµ,L(`2) and reaches its minimum in x∗N = (ρ qi)∞
i=1 with q =

√
κ−1√
κ+1 .

Proof The assertions µI �N′′
µ,L � LI and N′

µ,L(x
∗
N) = 0 follow from direct calculation, as shown in Nesterov (2004, p. 67).

�

Remark 3 We can arbitrarily choose the value of ‖x∗N‖ by appropriately selecting ρ .

We also need some other properties of the function, which are also present in Nesterov’s analysis.

Proposition 5 Let [e1,e2, . . . ] be the canonical basis of `2 and let Rk = Span(e1 . . .ek).

x ∈ Rk ⇒ N′µ,L(x) ∈ Rk+1 .
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Proof Through a direct calculation, it is easy to verify that

∂

∂x[i]
Nµ,L(x) =

{ L−µ

4 (x[1]+(x[1]− x[2]−2ρ)+µx[1] for i = 1,
L−µ

4 (2x[i]− x[i+1]− x[i−1]) for i > 1.

The statement directly follows from this. �

We now recall our earlier definition of the matrix notation for orthonormal families in Definition 5. The resisting oracle we
construct will apply the function Nµ,L to appropriately rotated versions of the point x, that is, it constructs functions of the
form Nµ,L(S>x), where the orthonormal operators S will be constructed appropriately to ensure that the optimal solution is
sufficiently far away from the span of algorithm’s queries and the oracle’s responses. Before we define the oracle, we need
to define the relevant orthogonalization operations.

Definition 10 (Gram-Schmidt) Given a finite orthonormal family S and a vector v, the Gram-Schmidt operator
Gram(S,v) augments the orthonormal family, ensuring that v lies in the new span.

Gram(S,v) =

{
S if v ∈ Span(S)[

S, v−SS>v
‖v−SS>v‖

]
otherwise

Our resisting oracle incrementally constructs orthonormal families Sk and defines the functions fk(x) as the application of
function Nµ,L to the coordinates of x expressed an orthonormal basis of `2 constructed by completing Sk.

Definition 11 (Resisting oracle) Let S−1 be an empty family of vectors. Each call k = 0 . . .K−1 of the resisting oracle
performs the following computations and returns yk = fk(xk) and gk = f ′k(xk).

Sk = Gram(Gram(Sk−1,xk),vk) for some vk /∈ Span(Sk−1,xk). (11)
S̄k = [Sk, . . .] (12)
yk = fk(xk) = Nµ,L(S̄>k xk) (13)

gk = f ′k(xk) = S̄k N′µ,L(S̄
>
k xk) (14)

Step (11) augments Sk−1 to ensure that Span(Sk) contains both xk and an arbitrary additional vector. This construction
ensures that dim(Sk) ≤ 2k+ 2. Step (12) nominally constructs an orthonormal basis S̄k of `2 by completing Sk. This is
mostly for notational convenience because the additional basis vectors have no influence on the results produced by oracle.
Step (13) computes the value of yk = fk(xk) by applying the function Nµ,L to the coordinates S̄>k xk of vector xk in basis S̄k.
Since xk belongs to the span of the first dim(Sk)−1 basis vectors, S̄>k xk ∈ Rdim(Sk)−1. Finally, step (14) computes the
gradient gk = f ′k(xk). Note that gk ∈ Sk because proposition 5 ensures that N′

µ,L(S̄
>
k xk) ∈ Rdim(Sk).

Proposition 6 The resisting oracle satisfies the following properties:

(a) Sk = Span{x0 . . . xK−1, f ′(x0) . . . f ′(xK−1)} dim(Sk)≤ 2k+2 .

(b) ∀ i < k yi = fk(xi) gi = f ′k(xi) .

Proof Property (a) holds by construction (see discussion above). Property (b) holds because both xi and gi belong to
Span(Si). Therefore yi = fk(xi) because S>i xi = S>k xi and gi = f ′k(xi) because N′

µ,L(S̄
>
k xi) = N′

µ,L(S̄
>
i xi) ∈ Rdim(Si). �

A.3. Proof of Theorem 2

We now have all the ingredients to establish the main result of this appendix on the complexity of optimizing smooth and
strongly convex functions. Given our work so far, we know that the solution xK lives in a 2K +2 dimensional subspace of
`2. We also know that our resisting oracle constructs orthonormal operators Sk, so that the optimal solution of the function
f being constructed can be as far away as possible from this subspace. The next proposition, which almost establishes the
theorem, essentially quantifies just how far the optimum lies from this span.
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Proposition 7 The minimum x∗ of function fK−1 satisfies

dist[ x∗, Span(SK−1) ] ≥ ‖x∗‖ q2K with q =

√
κ−1√
κ +1

and κ =
µ

L
.

Proof Any vector x ∈ Span(SK−1) is such that (S̄K−1)
>x ∈ Rdim(SK−1) ⊂ R2K .

Meanwhile, equation (13) and Proposition 4 imply that (S̄K−1)
>x∗ = (ρ qi)∞

i=1. Therefore

‖x∗− x‖2 = ‖(S̄K−1)
>x∗− (S̄K−1)

>x‖2 ≥
∞

∑
i=2K+1

(ρ qi−0)2 = q4K
∞

∑
i=1

(ρqi)2 = q4K‖x∗‖2 . �

Proposition 7 and Lemma 3 then directly yield the theorem. Indeed, the theorem is trivial when K = 0. Consider otherwise
an algorithm B known to pick its answer xBK in Span(x0 . . . xK−1, f ′(x0) . . . f ′(xK). For an appropriate choice of constant ρ ,
Proposition 7 constructs a function that satisfies the theorem. Finally, for any algorithm A, lemma 3 implies that there is a
function f ∈ Sµ,L

γ (`2) such that ‖x∗f − xAK‖ ≥ ‖x∗f − xBK‖ .

Lemma 2 then yields the corollary.

Corollary 3 In order to guarantee that ‖x∗− xK‖ ≤ ε‖x∗‖ for ε < 1, any first order black box algorithm for the optimiza-
tion of f ∈ Sµ,L(`2) must perform at least K = Ω(

√
κ−1 log(1/ε)) calls to the oracle.

Since this lower bound is established in the case where X = `2, it should be interpreted as the best dimension independent
guarantee that can be offered by a first order black box algorithm for the optimization of L-smooth µ-strongly convex
functions.


