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Abstract
We consider the problem of building probabilistic
models that jointly model short natural language
utterances and source code snippets. The aim is to
bring together recent work on statistical modelling
of source code and work on bimodal models of
images and natural language. The resulting mod-
els are useful for a variety of tasks that involve
natural language and source code. We demon-
strate their performance on two retrieval tasks:
retrieving source code snippets given a natural lan-
guage query, and retrieving natural language de-
scriptions given a source code query (i.e., source
code captioning). Experiments show there to be
promise in this direction, and that modelling the
structure of source code improves performance.

1. Introduction
Software plays a central role in society, touching billions
of lives on a daily basis. Writing and maintaining software
— in the form of source code — is a core activity of soft-
ware engineers, who aim to provide reliable and functional
software. However, writing and maintaining source code
is a costly business; software developers need to constantly
look at documentation and online resources, and they need
to make sense of large existing code bases. Both of these
can be challenging and slow down the development process.

This need motivates our work here, where we seek to build
joint models of natural language and snippets of source code.
Advances in joint models of these two modalities could
lead to tools that make writing and understanding software
significantly faster and easier. Our approach combines two
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lines of work. First, Hindle et al. (2012); Maddison &
Tarlow (2014); Raychev et al. (2015); Tu et al. (2014) have
built increasingly sophisticated statistical models of source
code. Second, in machine learning and computer vision
there have been rapid recent advances in bimodal models
that map between images and natural language (Srivastava
& Salakhutdinov, 2012; Kiros et al., 2013; Socher et al.,
2014; Fang et al., 2014; Vinyals et al., 2014; Karpathy &
Fei-Fei, 2014). Can we take inspiration from these recent
works and build models that map from natural language to
source code, and from source code to natural language?

We explore the problem in this work, building a model that
allows mapping in both directions. We leverage data that
has short natural language utterances paired with source
code snippets, like titles of questions along with source
code found in answers from StackOverflow.com. We make
three main contributions: (1) combining ideas from the two
lines of work mentioned above, showing that this direction
has promise going forward; (2) describing modelling and
learning challenges that arose in the process of building
these models and giving solutions that allowed us to over-
come the challenges; and (3) showing how the performance
of the models are affected by increasingly difficult instances
of the problem. Results on the retrieval task show that we
can often discern the proper natural language description for
previously unseen source code snippets from a reasonably
sized set of candidate descriptions.

2. Preliminaries
Let L be a sequence of words in natural language and C be a
source code snippet. The first high level choice is whether to
formulate a model where code is conditional upon language
(i.e., P (C | L)), language is conditional upon code (i.e.,
P (L | C)), or perhaps use an undirected model. While any
of these would be possible, we decided to define the model
in terms of P (C | L) because it leads to the more natural
way of encoding known structure of source code.
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if (x < 100) x = 0;

Figure 1. Source code Example

(1)IfStatement

(2)IfToken -- (3) if

(4)OpenParenToken -- (5) (

(6)LessThanExpression

(7)IdentifierName -- (8)IdentifierToken -- (9) x

(10) <

(11)NumericalLiteralExpression

(12)NumericalLiteralToken -- (13) 100

(14)CloseParenToken -- (15) )

(16)ExpressionStatement

..

Figure 2. Parse Tree corresponding to Figure 1. Shaded nodes are
terminal nodes. Numbers in parentheses are the identity of the
node, labeled according to a left-to-right depth first traversal.

The next high level decision is how to represent source code.
In its most basic form, source code is simply a string. How-
ever, programming languages are designed such that two
transformations can be done unambiguously: converting an
unstructured string into a sequence of tokens (lexing), and
converting the sequence of tokens into a parse tree (parsing).
Moreover, these operations can be performed easily using
modern compilers. We choose to take advantage of the parse
tree structure and follow previous works like Maddison &
Tarlow (2014) in formalizing the model over source code.
From hereon, when we refer to a source code snippet C,
we mean its parse tree structure. As an example, a source
code snippet and its associated parse tree are shown in Fig-
ure 1 and Figure 2 respectively. The leaf nodes (gray) of
the tree are tokens (i.e., strings that appeared in the orig-
inal source code text). The internal nodes are specific to
the programming language and correspond to expressions,
statements or other high level syntactic elements such as
ForStatement and Expression. These node types
are specified by the programming language designers, and
parsers allow us to map from a raw string to these trees.

Notation. We let I be the set of internal nodetypes
(nonterminals) and K be the set of tokens (terminals) that
appear across all snippets in our dataset. A parse tree
C = (N , ch, val) is a triple made up of nodes N =
{1, . . . , N}, a children function ch : N → N ∗ that
maps parent nodes to tuples of children nodes, and a
value function val : N → I ∪ K that maps nodes to
an internal node type or a token. We use the conven-
tion that ch(n) = ∅ means n is a leaf node. For conve-
nience, we will also overload notation and define tuple
operations ch((n1, . . . , nK)) = (ch(n1), . . . , ch(nK)) and
v = val ((n1, . . . , nK)) = (val(n1), . . . , val(nK)). Nodes
are indexed according to when they would be instantiated

during a left-to-right depth first traversal of the tree. For
example, if a is the root, ch(a) = (b, c), ch(b) = (d),
and ch(c) = (e), then the nodes would be labeled as
a = 1, b = 2, c = 3, d = 4, e = 5. Finally, we also
define partial parse trees C≤n to be equal to C but with the
nodes restricted to be N = {1, . . . , n}, and for any node n′

such that ch(n′) contains a node with index > n, ch(n′) is
set to ∅.
Model Overview. We model a parse tree with a directed
model that sequentially generates a child tuple for node n
conditional upon the natural language inputL and the partial
tree C≤n:

P (C | L) =

N∏
n∈N :ch(n)6=∅

P (val(ch(n)) | L, C≤n). (1)

In a bit more detail, we define supp(i) = {v : v =
val(ch(n))∧val(n) = i for some n in dataset} to be the set
of all children tuples that appear as the children of a node of
type i in our dataset (the “empirical support”). To define our
models, we will construct scoring functions sθ(v,L, C≤n)
that can be converted to probabilities by exponentiating and
normalizing over the support of the parent node type:

P (v | L, C≤n) =
exp sθ(v,L, C≤n)∑

v′∈supp(val(n)) exp sθ(v,L, C≤n)
, (2)

where θ are parameters to be learned from training data.
This formulation gives quite a bit of flexibility over the
range of models depending on how exactly the generation
of the next children tuple depends on the natural language
and previous partial tree. For example, if we were to define
sθ(v,L, C≤n) = log count(v, val(n)), where count is the
number of times that v has appeared as a child of a node of
type val(n), then this is a probabilistic context free grammar
(PCFG). Following previous work on modelling source code,
we explore models with richer dependency structure.

To sample from these models at test time, we can incremen-
tally construct a tree by fixing the root node, sampling a
children tuple conditional upon the initial partial tree (just
the root node), then recursing to the left-most child n such
that val(n) ∈ I, updating the partial tree, and repeating
until children tuples have been chosen for all nonterminals.

3. Joint Code and Natural Language Models
We now turn our attention to the modelling specifics. Within
all models we adhere to the structure described in the previ-
ous section. The variation in models will come from three
modelling choices: how to represent the natural language L;
how to represent the partial trees C≤n; and how to combine
the above representations. As is now common (e.g., Kiros
et al. (2013)), we focus on learning fixed-length real-valued
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vector representations for each component of the model.
There are three classes of representation vector: natural lan-
guage vector l ∈ RD computed from a given L, partial tree
vector c ∈ RD computed from a given C≤n, and production
vector r ∈ RD that is unique to each parent-children (i,v)
pair. Finally, there are production-specific biases bi,v .

3.1. Combining Representations

We experimented with two ways of mapping from repre-
sentation vectors to score functions. The first is an ad-
ditive model where s(v,L, C≤n) = (l + c)>r + b, and
the second is a multiplicative model where s(v,L, C≤n) =
(l� c)>r + b, where � denotes elementwise multiplication.
The multiplicative model is similar to the multiplicative
compositional models of Mitchell & Lapata (2010) and a
special case of the factored model of Kiros et al. (2013). We
have found reason to prefer the multiplicative interactions
in the natural language-to-source code domain. A detailed
explanation appears in Sec. 4.2 when we discuss results on
a simple synthetic data set.

3.2. Natural Language Representations

Here we focus on how to map L to l. Our approach is to use
a bag of words (BoW) assumption, learning a distributed
representation for each word, then combining them as a
simple average. More specifically, in the BoW model, we
let each natural language word w have a D-dimensional
representation vector lw that is shared across all appearances
of w, then we let l be the average of the representation
vectors for words in L; i.e., l = 1

|L|
∑
w∈L lw.

While this representation may appear simplistic, we believe
it to be reasonable when natural language takes the form of
short search query-like utterances, which is the case in much
of our data. In future work, as we turn towards learning
from longer natural language utterances, we would like to
experiment with alternative models like LSTMs (Hochreiter
& Schmidhuber, 1997; Sutskever et al., 2014).

3.3. Partial Tree Representations

The final component of the model is how to represent de-
cisions that have been made so far in constructing the tree.
This involves extracting features of the partial tree that we
believe to be relevant to the prediction of the next children
tuple. The two main features that we use are based on the
10 previous tokens that have been generated (note that due
to the definition of C≤n, tokens are generated in the order
that they appear in the input source code text), and the 10
previous internal node types that are encountered by follow-
ing the path from node n to the root. In both cases, padding
symbols are added as necessary. Feature values (e.g., int,
i, =) are shared across different feature positions (e.g., pre-

vious token, two tokens back, three tokens back). For each
feature value φ, there is a representation vector cφ. The
cφ vectors depend only on the feature value, so in order
to preserve the (position, value) pairs and not just the set
of values, a different context matrix Hj is needed for each
feature position j. We then modulate the feature vectors
by a position-specific diagonal context matrix to get the c
vector: c =

∑J
j=1 Hjcφj

.

3.4. Learning

At training time, we observe (L, C) pairs. Our goal is to
learn parameters (representation vectors and context matri-
ces) so as to maximize the probability P (C | L). All partial
trees of C can be constructed easily, so training amounts to
maximizing the sum of log probabilities of each production
given the associated natural language and partial tree up
to the current prediction point. We approximate the objec-
tive using noise contrastive estimation (NCE) (Gutmann &
Hyvärinen, 2012; Mnih & Teh, 2012), which eliminates the
need to compute expensive normalizing constants. Letting
k be a parameter of the NCE training and ∆s(v,L, C≤n) =
sθ(v,L, C≤n) − log(kPnoise(v | val(n))), the objective
can be written as in Mnih & Kavukcuoglu (2013):

E(L,C≤n,v)∼D [log ∆s(v,L, C≤n)]

+ kE(L,C≤n,v′)∼noise [log(1−∆s(v′,L, C≤n))] , (3)

whereD is the data distribution, and noise is the distribution
where (L, C≤n) pairs are sampled from the data distribu-
tion then child tuple v′ is drawn from the noise distribution,
which can be conditional upon L and C≤n. Our noise dis-
tribution Pnoise(v | i) is the posterior PCFG of the training
data with a simple Dirichlet prior (so it only depends on the
partial tree C≤n). For optimization, we use AdaGrad (Duchi
et al., 2011). We initialize the biases bi,v to the noise PCFG
distribution such that bi,v = logPnoise(v | i). The rest of
the representations are initialized randomly around a cen-
tral number with some small additive noise. li components
are initialized with center 0, cφi

components centered at 1
when using the multiplicative model or centered at 0 for the
additive model and the diagonals of Hi at 1

J .

4. Evaluation
In this section, we evaluate the bimodal source code lan-
guage model, using natural language descriptions and C#
code. We use Roslyn(.NET Compiler Platform) to parse C#
source code snippets into parse trees. For each of the evalu-
ation datasets, we create three distinct sets: the trainset that
contains 70% of the code snippets, the test1 set that contains
the same snippets as the trainset but novel natural language
queries (if any) and the test2 set that contains the remaining
30% of the snippets with their associated natural language
queries. Each snippet is described by a constant number of
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queries, uniformly sampled with replacement from all the
queries describing it. The rationale for this choice is to avoid
balancing training and evaluation against code snippets that
are expressed with disproportionally more natural language
queries than other snippets.

Experimental Setup. The goal of our current work is to
use the code language model to assist two retrieval tasks:
The Snippet Retrieval Task (L → C) refers to the problem
of retrieving the most relevant snippet C, given a natural
language query L. The reverse problem, i.e. the Query Re-
trieval Task (C → L) aims to retrieve a natural-language
query L, given a specific snippet C. To evaluate the perfor-
mance of the models, we sample at uniform 100 retrieval
targets (i.e. snippets and queries pairs). Then, for each target
pair, we sample 49 distractor targets. We then compute the
probability of each of the query-snippet pairs and rank them
according to the per production cross-entropy. Based on this
ranking, we compute the mean reciprocal rank (MRR). As
a baseline, we include a natural language only (NL-only)
model that does not take into account the tree representation
c and thus has s(v,L, C≤n) = l>r + b. This model can be
interpreted as a PCFG conditioned on natural language.

4.1. Synthetic Data

We generate synthetic data on a limited domain to test the
ability of the model to learn in a controlled environment.
The Text dataset is concerned with simple text operations
that may be performed in strings. String operations include
splitting delimited strings (i.e. delimited with comma, tab,
space or new line), uppercasing or lowercasing the letters
of a word, counting the number of characters, retrieving
a substring of the a string, getting the length of a string
and parsing a string to a double. An aggregation operation
may also be applied; such operations include concatenat-
ing strings, finding the minimum or maximum of some
(numeric) elements, summing, counting, finding distinct
elements, averaging numerical elements and retrieving the
first or last element of a list. We synthesize LINQ queries
(MSDN) that correspond to all the type-correct operations
and a large number of synthetic language queries for each
snippet. The resulting dataset contains 163 code snippets
with 27 natural language queries in each of the train, test1
and test2 datasets.

We then train (D = 20, 100 iterations) and evaluate the
logbilinear models on the synthetic data. Results are shown
in Table 1. The multiplicative model performs the best,
while the additive and the natural language models have
inferior performance. Since this is a synthetic dataset, in a
limited domain, we can achieve very high MRR. By using
the model to generate snippets give code, we observe that
it can correctly generate previously unseen snippets from
new natural language queries. For example, the test natural

Model Train Test 1 Test 2

L
→
C multiplicative 0.986 0.988 0.921

additive 0.890 0.805 0.919
NL-only 0.876 0.817 0.803

C
→
L multiplicative 0.995 0.995 1.000

additive 0.860 0.883 0.892
NL-only 0.917 0.895 0.845

Table 1. Mean Reciprocal Rank for the Text synthetic dataset for
the two retrieval problems.

L C Required Relationships

1 a→ p (l1 � ca)
>
rp � (l1 � cb)> rp

b→ q (l1 � cb)> rq � (l1 � ca)
>
rq

2 a→ q (l2 � ca)
>
rq � (l2 � cb)> rq

b→ p (l2 � cb)> rp � (l2 � ca)
>
rp

Table 2. Synthetic example: Modality L (L ∈ {1, 2}) modulates
modality C (C ∈ {a, b}) for the target space {p, q}. The composi-
tion operation � can be either an addition or a multiplication.

language query “each element parse double separated by a
tab and get max”, returns the snippet

var res=input_string.Split(’\\t’).Select(
(string x) => Double.Parse(x)).Max();

The model was able to generate this snippet although it never
saw the snippet before. However, the model had learned
from the training snippets

var res=input_string.Split(’ ’).Select(
(string x) => Double.Parse(x)).Max();

var res=input_string.Split(’\\t’).Select(
(string x) => Double.Parse(x)).Min();

the correct mapping between the natural language and
source code, generalizing successfully.

4.2. The Importance of Multiplicative Combination

Looking at Table 1 the multiplicative model has a clear
performance advantage. Indeed, the multiplicative and the
additive models have different representational capacities.
While the gating behavior of multiplicative models has been
discussed previously (Memisevic & Hinton, 2007; Taylor
& Hinton, 2009; Kiros et al., 2013), our aim here is to
explain the importance of these multiplicative interactions
in the context of source code modelling, and to point out a
concrete difference in their representational abilities.

Suppose we have two modalities with two possible values
each. The natural language L specifies one of two possible
values for l, say whether the goal is to iterate over a matrix
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in row major order (l1) or column major order (l2). Simi-
larly, the context representation c has two possible values,
denoting the context of being about to declare an identifier
within an outer for loop (ca) or an inner for loop (cb).
Finally, assume our data always has i as the row index and
j as the column index, and our goal is to choose whether to
use i (rp) or j (rq). In this example, the natural language
modality L needs to acts as a switch that inverts the meaning
of the context. This can be done by the multiplicative model,
but cannot be done by the additive model.

Table 2 formalizes this claim. The required relationships
come from writing down the constraints implied by the
above situation. When substituting the composition oper-
ation � with +, the l>r terms cancel and we are left with
(L = 1 case)

c>a rp � c>b rp ∧ c>b rq � c>a rq =⇒ c>a rp � c>a rq (4)

and (L = 2 case)

c>a rq � c>b rq ∧c>b rp � c>a rp =⇒ c>a rq � c>a rp, (5)

which are contradictory and thus impossible to satisfy. The
inadequacy of the additive model resembles the inability of
a single perceptron to learn a XOR relationship. In contrast,
it is easy to show that the multiplicative model (i.e. substi-
tuting � with �) is able to satisfy the inequalities in Table 2.
In early development of these models, we encountered sit-
uations where this issue manifested itself, and we believe
(perhaps softer versions of it) to be an important property of
multimodal models of source code.

4.3. Real-World Datasets

We now create two real-world datasets to evaluate the
model’s ability to achieve good performance in the retrieval
tasks. We mine C# snippets from two sources: First, we
use StackOverflow1, a question and answer site that is com-
monly used by developers. StackOverflow contains ques-
tions in natural language and answers that may contain
snippets of code. StackOverflow data is freely available
online though the StackExchange Data Explorer. We extract
all questions and answers tagged with the C# tag and use
the title of the question as the natural language query and
the code snippets in the answers as the target source code.
We filter out any questions that have less than 2 votes or
answers that have less than 3 votes, or have been viewed less
than 1000 times or have no code snippets or the code snip-
pet cannot be parsed by Roslyn. We also remove snippets
that contain more than 300 characters, assuming that longer
snippets will be less informative. The goal of this filtering is
to create a high-quality corpus with snippets that have been
deemed useful by other developers. We use the abbreviation

1http://stackoverflow.com

SO perls-captions perls-all

Sn
ip

pe
ts Train 24812 1467 1467

Test1 17462 - 1467
Test2 11469 328 328

Q
ue

rie
s

pe
r

Sn
ip

pe
t Train 10 1 15

Test1 10 - 15
Test2 10 1 15

Table 3. Size of the real-world datasets

SO to refer to this dataset. Similarly, Dot Net Perls2 is a
popular site with C# tutorials. We scraped the site for code
snippets along with the natural language captions they are
associated with. We refer to this dataset as perls-all.

For both datasets, to increase the natural language data, we
additionally use data from a large online general-purpose
search engine adding search engine queries that produced
clicks that led to any of the StackOverflow or Dot Net Perls
web pages in the original dataset. We remove any queries
that mapped to more than 4 different snippets, since they
are probably vague. For each of the two datasets we create
the three different sets, train, test1 and test2 as explained
in the beginning of this section. The size of each of the
resulting datasets are shown in Table 3 and samples of the
datasets are shown in Table 4 and in the supplemental mate-
rials of this paper. Specifically, for Dot Net Perls, we also
create the perls-captions dataset that contains only one
natural language description for each snippet (the caption),
excluding the queries from the general-purpose search en-
gine. perls-captions does not have a test1 set, since we
have no alternative natural language descriptions.

We randomly sample five full datasets (train, test1, test2)
from the original data and train our models. The evaluation
results are reported in Table 5. The multiplicative model
is achieving the highest MRR for both retrieval problems
and overall the performance on the C → L task is signif-
icantly better than the performance in L → C. Samples
of retrieved queries (C → L) are also shown in Table 4.
Figure 3 shows how the performance of the models change
for different values of D. As expected, when D increases,
MRR improves with diminishing returns. Also, the perls-
all and perls-captions dataset which are smaller and more
sparse have minor improvements for D larger than 50 and
are more prone to overfitting. Finally, the additive model
fails to improve significantly as D increases.

Qualitative Analysis. To qualitatively analyse the perfor-
mance of the models, we use the trained models as con-
ditional generative models of snippets given an input test
query. We do not expect the model to generate perfect snip-
pets that match exactly the target snippet, but we hope to

2http://dotnetperls.com

http://stackoverflow.com
http://dotnetperls.com
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C L Retrieval Results

S
O while (number >= 10)

number /= 10;

how to get ones digit, first digit of int,
get first two digits of a number, get ones
place of int, get specific digit, how to get
the first number in a integer, get specific
digit, how to get a digit in int, get the
first 3 digits of a number

1. how to get ones digit
2. string generate with number of spaces
3. check digit in string
4. number within certain range of an-
other
5. integer between 3 and 4

string SearchText = "7,true,NA,\
false:67,false,NA,false:5";

string Regex = @"\btrue\b";
int NumberOfTrues = Regex.Matches(

SearchText, Regex).Count;

count how many times same string ap-
pears, how to search a character maxi-
mum no in a file, how to count the num-
ber of times a string appears in a list,
determine how many times a character
appears in a string, how to search a char-
acter maximum no in a file, count how
many times a string appears in another
string

1. string []
2. setvalue letters
3. truncate string to a length
4. replace multiple groups
5. efficient way to count zeros in byte
array

using (var cc = new ConsoleCopy(
"mylogfile.txt")) {

Console.WriteLine("testing 1-2");
Console.WriteLine("testing 3-4");
Console.ReadKey();
}

write to file or console, copy all console
output to file, console output to a file,
console app output log, write console,
send output to console window and a
file, add log file to console app,

1. do not overwrite file
2. copy all console output
3. open file path starting with
4. copy file in addition to file
5. hashing table

pe
rls

-a
ll

path=Path.GetFullPathInternal(path);
new FileIOPermission(

FileIOPermissionAccess.Read,
new string[] { path },
false, false).Demand();

flag = InternalExists(path);

check for file extension, how to tell if a
directory exists, exist, determine a file
exist on shared folder, check if list of
files exists, how to tell if a directory ex-
ists createifexist file, excel file does not
exist

1. wpf get directory name from path
2. determine a file exist on shared
folder
3. open file dialog class
4. create directory pathname
5. load binary file to variable

using System;
class Program {
static void Main() {
string input = "Dot Net Perls";

char[] array = input
.ToCharArray();

for (int i = 0;
i < array.Length; i++) {

char let = array[i];
if (char.IsUpper(let))
array[i] = char
.ToLower(let);

else if (let == ’ ’)
array[i] = ’-’;

else if (let == ’e’)
array[i] = ’u’;

}
string result = new string(array);
Console.WriteLine(result);

}
}

how do i replace asingle string character,
single character in array, modify string
at, char to caps, single character in ar-
ray, change string to, replace a string of
characters, replace character in string
position, change one char in a string,
how to replace a character in a string
at a postion, how do i replace asingle
string character, how to modifiy a char
in string, replace at position string

1. get number of character in a string
2. remove a value from a list
3. check if selected tab is null or not
4. convert string to
5. modify string at

Table 4. Examples from datasets and natural language query retrieval examples. To retrieve the queries we restrict the method by removing
all natural language descriptions that are assigned to the target snippet, except for one. All samples from test2 datasets.
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SO perls-captions perls-all
Model Test 1 Test 2 Test2 Test 1 Test 2

L
→
C multiplicative 0.182 ±.009 0.170 ±.012 0.254 ±.017 0.441 ±.036 0.270 ±.016

additive 0.099 ±.008 0.105 ±.005 0.152 ±.057 0.078 ±.003 0.106 ±.010
NL-only 0.120 ±.008 0.125 ±.005 0.090 ±.002 0.239 ±.024 0.205 ±.013

C
→
L multiplicative 0.434 ±.003 0.413 ±.018 0.650 ±.012 0.716 ±.007 0.517 ±.012

additive 0.218 ±.011 0.211 ±.013 0.356 ±.017 0.426 ±.041 0.309 ±.011
NL-only 0.248 ±.008 0.261 ±.008 0.145 ±.013 0.599 ±.018 0.453 ±.015

Table 5. Macro-averaged Mean Reciprocal Rank (MRR) and Standard Error for 5 random splits of SO and for the two retrieval problems.
D = 50 for all models.
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SO Test 1 mul
SO Test 2 mul
perls-all Test 1 mul
perls-all Test 2 mul
perls-captions Test 2 mul

SO Test 1 add
SO Test 2 add
perls-all Test 1 add
perls-all Test 2 add
perls-captions Test 2 add

Figure 3. Performance on the datasets for different values of D.
Graph shows the relative performance compared to the multiplica-
tive model at D = 50 as shown in Table 5.

see the correlations that have been learned from the data.
Two random examples from the datasets follow.

perls-all Query: dictionary lookup

Generated
using System;
using Generic;
class Generic {
static void dictionary() {
dictionary.ContainsKey(ContainsKey);

}
}

SO Query: comma delimited list trailing comma

Generated
foreach (string Split in Join) {
return string.Join(’,’,

this string s => string.ToString(’,’));
}

While the sampled code is far from the ground truth snip-
pets, the model has learned interesting connections between
source code and natural language features. For example,
for the perls-all query “dictionary lookup” the model has
learned that identifiers of variables such as dictionary or
method names like ContainsKey are relevant to the query.
Similarly, for the SO query “comma delimited list trailing
comma” that string operations are relevant, as well as the
comma character. It can also be seen that the target snippets
are very noisy, containing literals and code that do not neces-
sarily correlate with the target query. It can also be seen that
the SO dataset usually contains shorter (but sometimes more
noisy) snippets. Finally, it is important to note that while our
source code only produces parsable snippets under the as-
sumption that input source code is parsable, this assumption
is sometimes violated with SO data, which causes Roslyn
to return erroneous or incomplete partial parses. This noise
in the StackOverflow data introduces some noise in the code
generation, but as seen from Table 5 the model can score
reasonably snippet-query pairs in the retrieval tasks.

Ranking Confidence. During evaluation, we noticed that
the model made errors when it did not have enough informa-
tion to discriminate between the target and the distractors.
Figure 4 (a) and Figure 4 (b) plot the average MRR de-
pending as we vary the minimum confidence threshold for
making a suggestion. We define the confidence metric for a
single ranking as the difference between the maximum and
mean cross-entropy of the retrieved snippets. It can be seen
that as the confidence level increases (and thus the sugges-
tion frequency decreases), the MRR also increases. For the
query retrieval problem, the two quantities correlate with
spearman correlation ρfull = 0.315 for the multiplicative
model and ρnl = 0.268 for the NL-only model. Simi-
larly, for the snippet retrieval problem, ρfull = 0.218 while
ρnl = 0.132. All ρ are statistically significant (p� 10−5)
except from ρnl of the snippet retrieval task. The difference
between the maximum and average cross-entropies seems to
be a reasonable suggestion confidence metric that allows us
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Figure 4. Suggestion Frequency vs MRR for the (a) query and (b)
snippet retrieval tasks for perls-all. As the minimum confidence
level increases (fewer suggestions are made), MRR increases.

to measure how much the retrieved modality can change the
probability of the data under the model. If the confidence
is high, the model has more evidence on how the retrieved
modality is correlated with the base modality. Using the
standard deviation of cross-entropies as a confidence metric
returns similar but slightly inferior results. For example, for
the query retrieval task, we can increase the MRR to 0.698
(from 0.517, a 35% improvement) by making suggestions
on 16% of the snippets.

5. Related Work
In recent years, the use of probabilistic models for software
engineering applications has grown. Hindle et al. (2012);
Nguyen et al. (2013); Allamanis & Sutton (2013); Tu et al.
(2014) have argued that even simple n-gram-based models
can improve over traditional code autocompletion systems.
Maddison & Tarlow (2014) built a more sophisticated gen-
erative model of source code that is closely related to the
source code model used in this work. Other applications
include extracting code idioms (Allamanis & Sutton, 2014),
code migration (Karaivanov et al., 2014), inferring coding
conventions (Allamanis et al., 2014) and type inference
(Raychev et al., 2015). Movshovitz-Attias et al. (2013)
use simple statistical models like n-grams for predicting
comments given a piece of source code. It is worth noting
that comments are often focused on “why?” rather than
“what?” which makes the task rather different. Gulwani &
Marron (2014) synthesize a restricted domain-specific lan-
guage for spreadsheets given a natural language query, using
translation-inspired algorithms. Searching source code is
still an active area, but most work (Bajracharya et al., 2014;
Keivanloo et al., 2014) has focused on retrieving snippets
given code tokens, or by retrieving snippets of code via text
available in some surrounding context.

Another related area is that of semantic parsing, where the
goal is to map a natural language utterance to a logical
description of its meaning (Zelle & Mooney, 1996; Zettle-
moyer & Collins, 2005; Liang et al., 2013). The difference
between our setting and these is that the connection between
natural language and target code is much looser. We do not
expect the natural language to describe step-by-step how
to construct the code; a semantic parse of the natural lan-
guage would bear little resemblance to the target source
code. These systems also often require additional hand-
specified knowledge about the mapping between natural
language and the logical forms; for example, to create a
lexicon. We note Kushman & Barzilay (2013) weaken the
assumption that language and target are well-aligned in a
natural language to regular expression application, but the
method is specific to regular expressions, and the mapping
is still more aligned than in our setting.

6. Discussion
While the task considered in this work is very hard, the
results are reasonably good. On the perls-captions data,
we are able to rank the true caption for a previously unseen
piece of code amongst the top few when presented against
the distractors captions. As we move to noisier natural
language (perls-captions) and noisier code snippets (SO),
performance degrades, but only moderately. Interestingly,
it appears easier to pick the proper natural language for a
given piece of code than it is to pick the proper code for a
given piece of natural language. We think this is due to the
fact that there is less variability in the code, so picking apart
subtle differences is more difficult. Another interesting note
is how the models that incorporate structure of the code
consistently and soundly outperform the models that do
not. Our interpretation is that the models that ignore code
structure force the model to account for correlations in the
source code via the natural language, which makes the task
harder while also increasing the risk of overfitting.

While the dataset sizes we have used are moderate, we
think a promising path forward is to find larger datasets.
Some ideas for where to find these include generalizing
the model to handle a larger set of programming languages,
and/or learning from longer text snippets, as would be found
in a programming language specification document. This
will likely require more sophisticated representations in the
natural language component.

Finally, we think there is value in establishing the analog
between multimodal source code and natural language mod-
els, and multimodal image and natural language models.
As these models improve, more applications will become
possible, and we are particularly excited by the potential for
cross-fertilization between these two application areas.
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