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This is the online appendix to the ICML 2015 paper “Safe Policy Search for Lifelong Reinforcement Learning
with Sublinear Regret.” Appendix A includes derivations of the update equations for L and S in the special case
of Gaussian policies. Appendix B provides detailed proofs of all lemmas from the main paper, leading to the
proof of sublinear regret (Theorem 1).

A. Update Equations Derivation

In this appendix, we derive the update equations for L and S in the special case of Gaussian policies. Please note that these
derivations can be easily extended to other policy forms in higher dimensional action spaces.

For a task ¢, the policy wéfgj (ugn )\ (Kt )) is given by:
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Therefore, the safe lifelong reinforcement learning optimization objective can be written as:
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To arrive at the update equations, we need to derive Eq. (13) with respect to each L and S.

A.1. Update Equations for L

Starting with the derivative of e,.(L, S) with respect to the shared repository L, we can write:
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To acquire the minimum, we set the above to zero:
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Noting that stTj L™® (m%f’tj )> € R, we can write:
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To solve Eq. (14), we introduce the standard vec(-) operator leading to:
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Knowing that for a given set of matrices A, B, and X, vec(AX B) = (BT ® A) vec(X), we can write
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A.2. Update Equations for .S

To derive the update equations with respect to .S, similar approach to that of L can be followed. The derivative of e,.(L, .S)
with respect to S can be computed column-wise for all tasks observed so far:
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Using a similar analysis to the previous section, choosing
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B. Proofs of Theoretical Guarantees

In this appendix, we prove the claims and lemmas from the main paper, leading to sublinear regret (Theorem l).

Lemma 1. Assume the policy for a task t; at a round r to be given by w,&ﬂ( (k. s )| ) s =
N (atT] P (mgf’ ti ) , 0% > for ar:(]~c ) ¢ Xy, and u(lC ) ¢ Uy, with Xy, and Uy, representing the state and action
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With Upee = Maxy {‘u } and @ = maxy {HCP (:cg,{? tj)) H }for all trajectories and all tasks.
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Proof. The proof of the above lemma will be provided as a collection of claims. We start with the following:
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Using the Cauchy-Shwarz inequality (Horn & Mathias, 1990), we can upper bound maxy, ,, { ‘ <at_.
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as

Finalizing the statement of the claim, the overall bound on the norm of the gradient of /;, (c;, ) can be written as
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Claim: The norm of the gradient of the loss function satisfies:
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Proof: As mentioned previously, we consider the linearization of the loss function I;; around the constraint solution of the
previous round, 6,.. Since 6, satisfies A;, oy, = by, — ¢, , Vi, € Z,_;1. Hence, we can write
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= ay, = Al (b, —c;,) with Af = (A] Atk)_1 A/ being the left pseudo-inverse.
Therefore
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Combining the above results with those of Eq. (16) we arrive at
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The previous result finalizes the statement of the lemma, bounding the gradient of the loss function in terms of the safety
constraints.
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Lemma 2. The norm of the gradient of the loss function evaluated at 0. satisfies
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Proof. The derivative of I;,(0) 5 can be written as
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2
< g x d. Consequently,
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Finally, since 0} satisfies the constraints, we note that
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Lemma 3. The Ly norm of the constraint solution at round r — 1,
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with |Z,_1| being the cardinality of I,._; representing the number of different tasks observed so-far.
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the previously derived lemmas we can upper-bound ‘ ’ ftj ‘é ‘ ‘ as follows
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Theorem 1 (Sublinear Regret; restated from the main paper). After R rounds and choosing ny, = -+ =1, =1n = ﬁ

L| = diag,(C), with diag,,(-) being a diagonal matrix among the k columns of L, p < (? < q, and S’ = Opx |7}, for
6,

any u € K our algorithm exhibits a sublinear regret of the form
thj (ér) — ltj (’LL) =0 (\/E)
j=1

Proof. Given the ingredients of the previous section, next we derive the sublinear regret results which finalize the statement
of the theorem. First, it is easy to see that
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Further, from strong convexity of the regularizer we obtain:
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Finally, for any © € K, we have:
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Assuming ny, = --- =1, = 7, we can derive
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The following lemma finalizes the statement of the theorem:
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Lemma 5. After T rounds and formy, = ---=mn,; =n= ﬁ, our algorithm exhibits, for any uw € K, a sublinear regret
of the form
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Proof. 1t is then easy to see
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Since |Zr—1| < |T| with | T| being the total number of tasks available, then we can write
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with 5 (R) being a constant, which leads to
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Initializing L and S: We initialize L’ = diag,,(¢), withp < (? < gand S ‘é = 0y, |7 ensures the invertability of L
and that the constraints are met. This leads us to '
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Choosing 7, = --- =1y, = n = 1/VR, we acquire subhnear regret, finalizing the statement of the theorem:
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with 5 (R) being a constant. O



