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Abstract
This paper investigates how hidden layers of
deep rectifier networks are capable of transform-
ing two or more pattern sets to be linearly sepa-
rable while preserving the distances with a guar-
anteed degree, and proves the universal classifi-
cation power of such distance preserving rectifier
networks. Through the nearly isometric nonlin-
ear transformation in the hidden layers, the mar-
gin of the linear separating plane in the output
layer and the margin of the nonlinear separating
boundary in the original data space can be closely
related so that the maximum margin classifica-
tion in the input data space can be achieved ap-
proximately via the maximum margin linear clas-
sifiers in the output layer. The generalization per-
formance of such distance preserving deep rec-
tifier neural networks can be well justified by
the distance-preserving properties of their hidden
layers and the maximum margin property of the
linear classifiers in the output layer.

1. Introduction
With the exponential increase in computing power and
the development of efficient training techniques (Hinton
et al., 2006; Glorot & Bengio, 2010; Sutskever, 2013),
deep learning networks have achieved impressive successes
across a wide variety of domains such as speech recogni-
tion ((Seide et al., 2011; Hinton et al., 2012; Deng et al.,
2013), handwritten digit recognition (Ciresan et al., 2012),
object recognition (Krizhevsky et al., 2012; Zeiler & Fer-
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gus, 2014; Lee et al., 2014; He et al., 2015) and face verifi-
cation (Taigman et al., 2014; Sun et al., 2014).

Deep rectifier networks, wherein the rectifier (i.e.
max(0, x)) acts as the nonlinear activation function, are
among the most successful deep learning networks. The
training advantages and improved performance of rectifiers
over sigmodal activation functions have been shown in a
number of recent deep learning networks (Nair & Hinton,
2010; Zeiler et al., 2013; Krizhevsky et al., 2012; Bengio,
2013; Maas et al., 2013; Glorot et al., 2011), with recti-
fier networks providing some of the best results on several
benchmark problems for object classification (Krizhevsky
et al., 2012) and speech recognition (Dahl et al., 2013).

While there is a vast body of empirical evidence for the
excellent generalization performance of deep neural net-
works, there is only a limited body of works that have
sought to provide a theoretical justification of such perfor-
mance. Most of the theoretical works have focused on the
universal approximation power of deep neural networks for
functions (Hornik et al., 1989) or for probability distribu-
tions (Le Roux & Bengio, 2010; Montufar & Ay, 2011).
Recently, several publications have investigated the supe-
rior expressive power of deep networks against shallow net-
works (i.e., with a single hidden layer). (Delalleau & Ben-
gio, 2011) showed that the deep network representation of
a certain family of polynomials can be much more compact
(i.e., with less hidden units) than that provided by a shallow
network. Similarly, with the same number of hidden units,
deep networks are able to separate their input space into
much more regions of linearity than their shallow counter-
parts (Pascanu et al., 2014; Montúfar et al., 2014). How-
ever, the universal approximation power and the superior
expressive power are not enough to explain the superior
generalization performance of deep neural networks. In
fact, there is currently no clear theoretical justification of



the excellent empirical performance of deep networks with
a huge number of parameters.

Motivated by the fact that rectifier neural networks perform
linear classification in the output layer and the generaliza-
tion performance of linear classifiers (e,g. Support Vec-
tor Machines (SVM)(Cortes & Vapnik, 1995)) can be well
justified by their maximum margin property, this paper in-
vestigates the distance preserving properties of the rectifier
hidden layers in achieving linear separability, and estab-
lishes the link between the margin of the linear separating
boundary in the output layer and the margin of the nonlin-
ear separating boundary in the input data space. If the dis-
tances are preserved perfectly in the transformation from
the data space to the output of the topmost hidden layer,
the area bounded by two parallel hyperplanes in the output
layer would correspond to an area bounded by two parallel
manifolds in the input data space.

The link between the output and input of a hidden
layer is a rectified linear transformation (RLT), namely,
max(0,WTx + b). The only difference between linear
transformations and RLTs lies in that the rectifier forces all
the negative outputs to be zero. However, this seemingly
small change makes all the big differences between linear
transformations and RLTs. We will prove that RLT can
make any disjoint data linearly separable through a cascade
of two RLTs, and consequently, two-hidden-layer rectified
feedforward networks are universal classifiers. Our proof
is constructive, with the aid of a new proposed data model,
and explains the strategies of RLTs in transforming linearly
inseparable data to be linearly separable. Furthermore, we
will show how RLT can preserve at least

√
2
2 ≈ 70.7% of

the distance of any two vectors in the input space, and for
two-hidden-layer rectifier networks, half of the distances
can thus be preserved. The separating boundary area with
a margin γ, bounded by two parallel hyperplanes from a
linear SVM in the output layer, is related to a separating
boundary area, in the original data space, bounded by two
manifolds with margins varying from γ to 2γ. The gener-
alization performance of such deep rectifier networks can
be well justified by their approximate distance preserving
properties and the maximum margin properties of the linear
classifiers in the output layer.

The main contributions of this paper include: 1) Dis-
joint Convex Hull Decompositions of Data−A new data
model is proposed to construct the rectified linear units
that can transform linearly inseparable data to be linearly
separable; 2) Bidirectional RLT−A new type of ReLU,
which splits the positive and negative components of lin-
ear units into two separate features, is introduced for sake
of distance preservation; 3) Distance Preserving Rectified
Networks–A special type of rectifier networks is identi-
fied to have both universal classification power and distance

preserving properties. It is shown that, through a cascade
of two orthogonal bidirectional RLTs, any two or more dis-
joint pattern sets can be transformed to be linearly sepa-
rable under the constraint that the distance distortions are
within factors from 0.5 to 1.

Notations: Throughout the paper, we use capital letters to
denote matrices, lower letters for scalar numbers, and bold
lower letters for vectors. Given an integer m, we use [m]
to denote the integer set from 1 to m, I the identity matrix
with proper dimensions and 0 a vector with all elements be-
ing 0. Given a finite number of points xi (i ∈ [m]) in Rn, a
convex combination of these points is a linear combination
of them in which all coefficients are non-negative and sum
to 1. The convex hull of a set X , denoted by CH(X ), is a
set of all convex combinations of the points in X .

The rest of this paper is organised as follows. In Section 2,
we introduce the disjoint convex hull decomposition mod-
els of data, and then use this model, in Section 3, to address
the power of RLTs in transforming linearly inseparable data
to be linearly separable. The bidirectional RLTs are intro-
duced and their distance preserving properties are investi-
gated in Section 4. Section 5 addresses distance preserving
rectifier networks and their universal classification power,
while Section 6 concludes the paper with a discussion on
the related works and future research directions.

2. Decomposition of Multiple Pattern Sets
Two pattern sets, namelyX1 andX2, are called linearly sep-
arable if there exist w and b such that wTx+b > 0, ∀ x ∈
X1 and wTx+ b ≤ 0, ∀ x ∈ X2. It is well known that two
pattern sets are linearly separable if and only if their con-
vex hulls are disjoint. In order to investigate how linearly
inseparable pattern sets can be transformed to be linearly
separable, we model each pattern set with several subsets
so that the convex hulls of these subsets are disjoint across
different classes of patterns. More precisely, we define the
disjoint convex hull decomposition model of data as below.

Definition 1 (Disjoint Convex Hull Decomposition) Let
Xk, (k ∈ [m]), be m disjoint subsets in Rn. A decompo-
sition of Xk, namely, Xk =

⋃Lk

i=1 X i
k,, is called a disjoint

convex hull decomposition if the unions of the convex hulls
of X i

k, denoted by X̂k ,
⋃Lk

i=1 CH(X i
k), are still disjoint,

i.e.,
X̂k ∩ X̂l = ∅, ∀ k 6= l (1)

or equivalently, for all i ∈ [Lk], j ∈ [Ll],

CH(X i
k) ∩ CH(X j

l ) = ∅, ∀ k 6= l. (2)

For finite pattern sets Xk, a trivial disjoint convex hull de-
composition is to select each point as a subset. Hence,



any disjoint pattern sets have at least one disjoint convex
hull decomposition. The complexity of the decomposition
model can be characterised by its size, i.e., the number of
involved linearly separable subsets. To generate a small
size disjoint convex hull decomposition, one can proceed
as follows. First, we decompose X1 as X1 =

⋃L1

i=1 X i
1 so

that the size L1 is minimal and

CH(X i
1)
⋂(

m⋃
l=2

Xl

)
= ∅,∀ i ∈ [L1]. (3)

Then, we decompose X2 as X2 =
⋃L2

j=1 X
j
2 so that the size

L2 is minimal and

CH(X j
2 )

⋂ (
m⋃
l=3

Xl

)
= ∅,∀ j ∈ [L2]

CH(X j
2 )

⋂ (
L1⋃
i=1

CH(X i
1)

)
= ∅,∀ j ∈ [L2].

(4)
Sequentially, we can obtain the decompositions for all Xk

and form a disjoint convex hull decomposition.

According to the characteristics of disjoint convex hull de-
composition models, pattern sets can be categorized into
three typical categories:

1) Linearly Separable Pattern Sets: Two linearly separa-
ble pattern sets have a disjoint decomposition convex
model with L1 = L2 = 1, i.e., CH(X1) ∩ CH(X2) =
∅;

2) Convexly Separable Pattern Sets: Two pattern sets are
called convexly separable if they have a disjoint con-
vex hull decomposition with min(L1, L2) = 1. They
are referred to as convexly separable because there ex-
ists a convex region which can separate one class from
the other, i.e., CH(X1)∩X2 = ∅ or CH(X2)∩X1 = ∅;

3) Convexly Inseparable Pattern Sets: If any disjoint
convex hull decomposition of X1 and X2 satisfies
min(L1, L2) > 1, then they are called convexly in-
separable.

Given that the classification of linear inseparable patterns
is more challenging, it is desirable to transform the linearly
inseparable pattern sets into linearly separable ones since
the latter have been well investigated and there are many
well-developed solutions (e.g linear SVM) for them.

3. From Linear Inseparability to Linear
Separability: The Roles of the Rectifier

In this section, we investigate how RLTs can transform lin-
early inseparable pattern sets to be linearly separable.

3.1. From Convex Separability to Linear Separability

Theorem 2 Let X1 and X2 be two convexly separable pat-
tern sets with a finite number of points in Rn, CH(X1) ∩

X2 = ∅, X2 =

L2⋃
j=1

X j
2 with CH(X j

2 ) ∩ CH(X1) = ∅, and

let wT
j x + bj be the linear classifiers of X j

2 and X1 such
that, for any j ∈ [L2],

wT
j x + bj ≤ 0, ∀ x ∈ X1

wT
j x + bj > 0, ∀ x ∈ X j

2 .
(5)

Denote

W , [w1,w2, · · · ,wL2
]

b , [b1, b2, · · · , bL2
]T

Zk , {z = max(0,WTx + b) : x ∈ Xk}, k = 1, 2.
(6)

Then Z1 and Z2 are linearly separable.

Proof: From the definition of Z1 in (6) and(5), we have
Z1 = {0}. Next we show that 0 6∈ CH(Z2). Let z be any
vector in Z2. From the definition of Z2 in (6) and(5), it
follows that z 6= 0, all the entries of z are non-negative and
at least one of them is strictly positive. Note that Z2 is a
finite set, we have 0 6∈ CH(Z2), and therefore, CH(Z1) ∩
CH(Z2) = ∅. That is, Z1 and Z2 are linearly separable
and the proof is completed.

�

From Theorem 2, we can see that two convexly separable
pattern sets can be transformed to be linearly separable by
squeezing one pattern set into one point while keeping this
point away from the convex hull of the other class patterns.
The minimal number of required rectified linear units is no
larger than the minimal number of subsets into which X2

can be decomposed so that each subset is linearly separable
from X1.

3.2. From Convex Inseparability to Convex
Separability

Theorem 3 Let X1 and X2 be two convexly inseparable
pattern sets, and

X1 =

L1⋃
i=1

X i
1, X2 =

L2⋃
j=1

X j
2 (7)

be one of their disjoint convex hull decompositions (L1 >
1, L2 > 1), and let wT

ijx + bij be the linear classifiers of
X j

2 and X i
1 such that, for any i ∈ [L1] and j ∈ [L2],

wT
ijx + bij ≤ 0, ∀ x ∈ X i

1

wT
ijx + bij > 0, ∀ x ∈ X j

2 .
(8)



Denote

Wi , [wi1,wi2, · · · ,wiL2
]

bi , [bi1, bi2, · · · , biL2
]T

W , [W1,W2, · · · ,WL1
]

b , [bT
1 ,b

T
2 , · · · ,bT

L1
]T

Zk , {z = max(0,WTx + b) : x ∈ Xk}, k = 1, 2.

Zi
1 , {z = max(0,WTx + b) : x ∈ X i

1}, i ∈ [L1].
(9)

Then

CH(Z2)
⋂(

L1⋃
i=1

CH(Zi
1)

)
= ∅ (10)

which implies that Z1,Z2 are convexly separable.

Proof: Denote, for i ∈ [L1] and t ∈ [L1],

Z2t , {z = max(0,WT
t x + bt) : x ∈ X2}

Zi
1t , {z = max(0,WT

t x + bt) : x ∈ X i
1}.

(11)

Note that CH(X i
1) ∩ X2 = ∅. Apply Theorem 2 on X i

1,X2

and their images, Zi
1i and Z2i respectively, under the trans-

formation max(0,WT
i + bi). Then we have

CH(Zi
1i) ∩ CH(Z2i) = ∅, i ∈ [L1] (12)

which implies that

CH(Zi
1) ∩ CH(Z2) = ∅, i ∈ [L1]. (13)

This implication is due to the fact that, according to the
definitions in (9),Wi is a submatrix ofW , bi is a subvector
of b and therefore the points in the sets Zi

1i and Z2i are
the projections, into a lower dimensional subspace, of the
points in the sets Zi

1 and Z2 respectively.

Note that Z1 ⊂ ∪L1
i=1CH(Zi

1), we have Z1 ∩ CH(Z2) = ∅
and thus, Z1 and Z2 are convexly separable.

�

Theorem 3 shows that any two disjoint subsets X1,X2 in
Rn can be transformed convexly separable through an RLT.
The minimal number of required rectified linear units is no
larger than the minimal value of L1L2 such that a disjoint
convex hull decomposition ofX1,X2 exists withL1 subsets
of X1 and L2 subsets of X2.

3.3. From Convex Inseparability to Linear Separability

Let W,b,Wi,bi,Z1,Z2,Zi
1, i ∈ [L1], be defined as in

Theorem 3, and z = max(0,WTx + b) be the RLT. From
(10), Z2 and Zi

1 are linearly separable. Let vT
i z+ ci be the

linear classifiers of Z2 and Zi
1 such that

vT
i z + ci ≤ 0, ∀ z ∈ Z2

vT
i z + ci > 0, ∀ z ∈ Z1i.

(14)

Now let V = [v1,v2, · · · ,vL1
], c = [c1, c2, · · · , cL1

]T ,
y = max(0, V T z + c) and define

Yk , {y = max(0, V T z+ c) : z ∈ Zk}
=

{
y = max

(
0, V T max{0,WTx+ b}+ c

)
: x ∈ Xk

}
(15)

for k = 1, 2. Then from Theorem 2, we have CH(Y1) ∩
CH(Y2) = ∅ and thus Y1,Y2 are linearly separable.

Hence, any two disjoint subsets, namely X1 and X2, can be
transformed to be linearly separable through a cascade of
two RLTs, which require L1(L2 +1) or less rectified linear
units if X1 and X2 have a disjoint convex hull decomposi-
tion withL1 subsets ofX1 andL2 subsets ofX2. The above
results can be summarised by the following Theorem:

Theorem 4 Any two disjoint subsets in Rn can be trans-
formed to be linearly separable through a cascade of two
RLTs.

3.4. Multiple Sets with Pairwise Linear Separability

Given m pattern sets Xi in Rn, they are said to be linearly
separable if each set, namely Xi, is linearly separable from
the union of the other sets. They are said to be pairwise
linearly separable if every pair of them, namely Xi and Xj ,
are linearly separable. Linear separability is much stronger
than pairwise linear separability for multiple sets. Next, we
will show that any multiple sets with pairwise linear sepa-
rability can be transformed to be linearly separable through
an RLT, and Section 3.5 will show that any disjoint mul-
tiple sets can be transformed to be linearly separable by a
cascade of two RLTs.

Let Xk be m pattern sets with pairwise linear separability,
i.e., CH(Xi) ∩ CH(Xj) = ∅, ∀ i 6= j, and let wT

i,jx + bi,j
be the linear classifiers of Xi and Xj , satisfying wj,i =
−wi,j , bj,i = −bi,j and

wT
i,jx + bi,j ≤ 0, ∀ x ∈ Xi,

wT
i,jx + bi,j > 0, ∀ x ∈ Xj .

(16)

Denote

Wi , [wi,1, · · · ,wi,i−1,wi,i+1, · · · ,wi,m]

bi , [bi,1, · · · , bi,i−1, bi,i+1, · · · , bi,m]

W , [W1,W2, · · · ,Wm]

b , [bT
1 ,b

T
2 , · · · ,bT

m]T

Zi
j , {max(0,WT

i x + bi) : x ∈ Xj}
Zi , {max(0,WTx + b) : x ∈ Xi}.

(17)

for i ∈ [m] and j ∈ [m]. Apply Theorem 2 on Xi,∪j 6=iXj

(as two convexly separable sets in Theorem 2) with the RLT
z = max(0,WT

i x + bi). Then we have

CH
(
Zi

i

)
∩ CH

(
∪j 6=iZi

j

)
= ∅ (18)



which, similar to the implication from (12) to (13), implies
that

CH (Zi) ∩ CH (∪j 6=iZj) = ∅. (19)

Hence, the multiple sets Zi, transformed from Xi, are lin-
early separable and we have the following Theorem

Theorem 5 Any m subsets in Rn with pairwise linear
separability can be transformed to be linearly separable
through an m(m− 1) dimensional RLT.

3.5. Multiple Disjoint Sets

Let Xk be m disjoint subsets, X̂k ,
⋃m

l=1,l 6=k Xl, and

Xk =
⋃Lk

i=1 X i
k, X̂k =

⋃L̂k

j=1 X̂
j
k

(20)

be a disjoint convex hull decomposition ofXk and X̂k. That
is, CH(X i

k)∩CH(X̂ j
k ) = ∅ and there exist linear classifiers

wT
kijx + bkij such that

wT
kijx + bkij ≤ 0, ∀ x ∈ X i

k

wT
kijx + bkij > 0, ∀ x ∈ X̂ j

k .
(21)

Denote

Wki , [wki1,wki2, · · · ,wkiL̂k
]

bki , [bki1, bki2, · · · , bkiL̂k
]T

Wk , [Wk1,Wk2, · · · ,WkLk
]

bk , [bT
k1,b

T
k2, · · · ,bT

kLk
]T

W , [W1,W2, · · · ,Wm]

b , [bT
1 ,b

T
2 , · · · ,bT

m]T

(22)

and define the following sets, for i ∈ [Lk], k ∈ [m],

Zk
k , {z = max(0,WT

k x + bk) : x ∈ Xk}
Zki

k , {z = max(0,WT
k x + bk) : x ∈ X i

k}
Ẑk

k , {z = max(0,WT
k x + bk) : x ∈ X̂k}

Zk , {z = max(0,WTx + b) : x ∈ Xk}
Zi

k , {z = max(0,WTx + b) : x ∈ X i
k}

Ẑk , {z = max(0,WTx + b) : x ∈ X̂k}.

(23)

By applying Theorem 3 on Xk and X̂k (correspond-
ing to X1 and X2 respectively) with the transformation
max(0,WT

k x + bk), we have

CH(Ẑk
k )
⋂(

L1⋃
i=1

CH(Zki
k )

)
= ∅ (24)

which, similar to the implication from (12) to (13), implies
that

CH(Ẑk)
⋂(

L1⋃
i=1

CH(Zi
k)

)
= ∅. (25)

Therefore, Ẑk is linearly separable from Zi
k for each i ∈

[Lk], and thus convexly separable from Zk.

Next, we construct another RLT on the sets Zk and Ẑk to
transform the pattern sets linearly separable. Let vT

kiz+cki
be the linear separator of Ẑk and Zi

k such that

vT
kiz + cki ≤ 0, ∀ z ∈ Ẑk

vT
kiz + cki > 0, ∀ z ∈ Zi

k

(26)

and define

Vk , [vk1,vk2, · · · ,vkLk
]

ck , [ck1, ck2, · · · , ckLk
]T

V , [V1, V2, · · · , Vm]

c , [cT1 , c
T
2 , · · · , cTm]T

Yk
k , {y = max(0, V T

k z + ck) : z ∈ Zk}
Ŷk
k , {y = max(0, V T

k z + ck) : z ∈ Ẑk}
Yk , {y = max(0, V T z + c) : z ∈ Zk}
Ŷk , {y = max(0, V T z + c) : z ∈ Ẑk}.

(27)

Then from Theorem 2, we have

CH(Yk
k ) ∩ CH(Ŷk

k ) = ∅ (28)

which implies that

CH(Yk) ∩ CH(Ŷk) = ∅. (29)

By the definitions of Yk, Ŷk in (27) and the definitions of
Zk, Ẑk in (23), we know that the points of Yk, Ŷk corre-
spond to those ofXk and X̂k through the following transfor-
mation: y = max

(
0, V T max(0,WTx + b) + c

)
. Thus,

we have the following Theorem:

Theorem 6 Any multiple disjoint sets can be transformed
to be linearly separable through a cascade of two RLTs.

4. Bidirectional RLTs and Their Distance
Preserving Properties

Since the rectifier of a vector discards the information of
the negative elements, it does not preserve distances and
can transform two very different vectors into an identical
vector. For sake of distance preservation, we introduce a
new type of rectifier, which keeps both the information of
the positive and the negative elements.

Definition 7 The bidirectional rectifier of a vector x ∈ Rn

is defined by

z =

[
max(0,x)

max(0,−x)

]
. (30)



Unlike the rectifier, the bidirectional rectifier can preserve
distances with guaranteed degrees. Let x1,x2 be any
two vectors in Rn and z1, z2 be their bidirectional recti-
fications. For brevity of notations, hereafter, we denote
x+ = max(0,x),x− = max(0,−x), and denote the kth

element of x by x(k). Then x+,x− are non-negative vec-
tors, x = x+ − x−, (x+)Tx− = 0, and therefore

‖z1 − z2‖2 = ‖x+
1 − x+

2 ‖2 + ‖x−1 − x−2 ‖2
‖x1 − x2‖2 = ‖(x+

1 − x−1 )− (x+
2 − x−2 )‖2

= ‖x+
1 − x+

2 ‖2 + ‖x−1 − x−2 )‖2
−2(x+

1 − x+
2 )T (x−1 − x−2 )

= ‖z1 − z2‖2 + 2(x+
1 )Tx−2 + 2(x−1 )Tx+

2

≥ ‖z1 − z2‖2.
(31)

The equality ‖z1 − z2‖ = ‖x1 − x2‖ holds if and only
if (x+

1 )Tx−2 = 0 and (x−1 )Tx+
2 = 0, or equivalently

x1(k)x2(k) ≥ 0, k ∈ [n], that is, the kth elements of x1

and x2 have the same sign for all k ∈ [n]. Only the ele-
ments of x1,x2 with different signs contribute to the loss
of the Euclidean distance in bidirectional rectification.

Now we derive the upper bound of ‖x1 − x2‖.

‖x1 − x2‖2 = ‖(x+
1 − x−1 )− (x+

2 − x−2 )‖2
= ‖(x+

1 − x+
2 )− (x−1 − x−2 )‖2

= ‖(x+
1 − x+

2 )‖2 + ‖(x−1 − x−2 )‖2
−2(x+

1 − x+
2 )T (x−1 − x−2 )

= 2‖(x+
1 − x+

2 )‖2 + 2‖(x−1 − x−2 )‖2
−‖(x+

1 − x+
2 ) + (x−1 − x−2 )‖2

≤ 2‖x+
1 − x+

2 ‖2 + 2‖x−1 − x−2 ‖2
= 2‖z1 − z2‖2.

(32)
Furthermore, the equality 2‖z1−z2‖2 = ‖x1−x2‖2 holds
if and only if (x+

1 +x−1 )− (x+
2 +x−2 ) = 0, or equivalently

|x1(k)| = |x2(k)| for all k ∈ [n].

The distance preserving properties of the bidirectional rec-
tifier can be summarised as below.

Proposition 8 Let x1 6= x2 be any two different vectors in
Rn and z1, z2 be their corresponding bidirectional rectifi-
cations. Then we have

√
2
2 ‖x1 − x2‖ ≤ ‖z1 − z2‖ ≤ ‖x1 − x2‖. (33)

That is, the bidirectional rectifier is a contract mapping and
preserves at least

√
2
2 ≈ 70.7% of the Euclidean distance

of any two different vectors.

Next, we define the bidirectional rectified linear transfor-
mation and investigate its distance preserving properties.

Definition 9 A bidirectional RLT is a mapping from Rn to
R2d and is defined as

z =

[
max(0,WTx + b)

max(0,−WTx− b)

]
(34)

where W ∈ Rn×d and b ∈ Rd.

A bidirectional RLT is called singular, nonsingular, or or-
thogonal if Q = WWT is singular, nonsingular and or-
thogonal respectively.

Note that

‖WTx1 −WTx2‖2 = (x1 − x2)TQ(x1 − x2) (35)

where Q = WWT . Then ‖WTx1−WTx2‖ = ‖x1−x2‖
if Q is orthogonal (i.e., QTQ = I); and WTx1 6=
WTx2 ⇔ x1 6= x2 if Q is nonsingular. Then, from Propo-
sition 8, we have

Proposition 10 Let the bidirectional RLT be defined as in
(34), x1,x2 be any two different vectors in Rn and z1, z2 be
their responses of the transform. Then the following state-
ments are correct:

1). Orthogonal bidirectional RLT is a contract mapping
and preserves at least

√
2
2 ≈ 70.7% of the Euclidean dis-

tance of any two different vectors, more precisely, the in-
equalities

√
2

2
‖x1 − x2‖ ≤ ‖z1 − z2‖ ≤ ‖x1 − x2‖ (36)

hold if Q = WWT is orthogonal.

2). Nonsingular bidirectional RLT preserves the disjoint-
ness of any two disjoint points, i.e.,

x1 6= x2 ⇔ z1 6= z2, if Q = WWT is nonsingular.
(37)

5. Universal Classification Power of Distance
Preserving Rectifier Networks

In Section 3, we have shown that a cascade of two RLTs
are capable of transforming any disjoint pattern sets to be
linearly separable. Next, we show that a cascade of two or-
thogonal bidirectional RLTs are also capable of achieving
linear separability for any two or multiple disjoint pattern
sets, with additional distance preserving property due to the
bidirectional rectifier and the orthogonality constraint on
the weight matrix.

Theorem 11 The following three statements are true for
orthogonal bidirectional RLTs:

1). Any two convexly separable sets can be transformed to
be linearly separable through an orthogonal bidirectional
RLT.

2). Any multiple disjoint sets with pairwise linear separa-
bility can be transformed to be linearly separable through
an orthogonal bidirectional RLT.



3). Any two or more disjoint sets can be transformed to
be linearly separable through a cascade of two orthogonal
bidirectional RLTs.

To prove Theorem 11, it suffices to prove the following
Lemma 12, because Theorem 11 follows from Theorem 2,
Theorem 4, Theorem 5, Theorem 6, and Lemma 12.

Lemma 12 Let X1 and X2 be any two disjoint subsets in
Rn. The following statements are true:

1). If X1 and X2 can be transformed to be linearly separa-
ble by an RLT, then an orthogonal bidirectional RLT exists
to transform them to be linear separable.

2). If X1 and X2 can be transformed to be linearly sepa-
rable by a cascade of RLTs, then a cascade of orthogonal
bidirectional RLTs exist to transform them to be linear sep-
arable.

Proof: The proofs of 1) and 2) are proceeded as follows:
first, we scale the RLTs, which are assumed to transform
the two pattern sets to be linearly separable, so that the re-
sulted RLTs are contract mappings; then we add some more
linear units so that the resulted bidirectional RLTs are or-
thogonal. Note that these operations do not change the lin-
ear separability of pattern sets, the constructed orthogonal
bidirectional RLTs are capable of transforming the data to
be linearly separable.

1). Assume that the transformation z = max(0,WTx+b)
transforms X1 and X2 to be linearly separable and wT z+b
be the linear classifier such that

wT max(0,WTx + b) + b ≤ 0; ∀ x ∈ X1

wT max(0,WTx + b) + b > 0; ∀ x ∈ X2.
(38)

Let Σ be a diagonal matrix with positive diagonals such that
the largest eigenvalue of WΣ2WT be less than 1. Denote
Ŵ = WΣ, b̂ = Σb and ŵ = Σ−1w. Then it follows
that wT max(0,WTx + b) = ŵT max(0, ŴTx + b̂) and
therefore

ŵT max(0, ŴTx + b̂) + b ≤ 0; ∀ x ∈ X1

ŵT max(0, ŴTx + b̂) + b > 0; ∀ x ∈ X2
(39)

which imply that the transformation z = ŴTx + b̂ turns
the pattern sets linearly separable.

Since the largest eigenvalue of ŴŴT is less than 1, I −
ŴŴT is positive definite and there exists U ∈ Rn×n such
that UUT = I − ŴŴT . Denote W̄ = [Ŵ , U ], b̄ =

[b̂T ,0T
n ]T and define the following bidirectional RLT

z =

[
max(0, W̄Tx + b̄)

max(0,−W̄Tx− b̄)

]
=


max(0, ŴTx + b̂)

max(0, UTx)

max(0,−ŴTx− b̂)
max(0,−UTx)

 .
(40)

Note that W̄W̄T = I and max(0, ŴTx + b̂) is a sub-
vector of z, the bidirectional RLT (40) is orthogonal and
transforms the data to be linearly separable.

2). Let y = max{0, V T max(0,WTx + b) + c} be a
cascade of RLTs, which transform the disjoint sets Xk(k ∈
[m]) to be linearly separable. Assume thatW ∈ Rn×d1 and
V ∈ Rd1×d2 . Let Σ1 be a diagonal matrix with positive di-
agonals such that I−WΣ2

1W
T is positive definite and there

exists U ∈ Rn×n such that WΣ2
1W

T +UUT = I . Denote
Ŵ = WΣ1, b̂ = Σ1b, W̄ = [Ŵ , U ] ∈ Rn×(d1+n). Then
W̄W̄T = I and the following bidirectional RLT

z =


z1
z2
z3
z4

 =


max(0, ŴTx + b̂)

max(0, UTx)

max(0,−ŴTx− b̂)
max(0,−UTx)

 (41)

is orthogonal. Let Zk denote the response sets of
Xk by the orthogonal bidirectional RLT (41). Note
that y = max{0, V T max(0,WTx + b) + c} =

max{0, V̂ T max(0, ŴTx + b̂) + c}, where V̂ = Σ−11 V ,
is a cascade of two RLTs, which transform the sets Xk

to be linearly separable. Consequently, the transformation
y = max(0, V̂ T z1 + c) = max(0, V̄ T z + c) transforms
the sets Zk to be linearly separable, where z, z1 are defined
in (41) and V̄ = [V̂ T ,0T ,0T ,0T ]. Then from statement 1)
(already proved), Zk can be transformed to be linearly sep-
arable by an orthogonal bidirectional RLT and therefore,
Xk, k ∈ [m] can be transformed to be linearly separable
by a cascade of two orthogonal bidirectional RLTs and the
proof is completed.

�

Distance Preserving Rectifier Networks. An orthogonal
bidirectional RLT is related to a hidden layer with a weight
matrix Ŵ = [W,−W ], satisfying WWT = I , and a bias
vector b̂ = [bT ,−bT ]T . Such hidden layers are referred
to as distance preserving hidden layers since they have the
same distance preserving property as the orthogonal bidi-
rectional RLTs. One can formulate rectifier networks by
using one or more distance preserving hidden layers, and
these rectifier networks are referred to as distance preserv-
ing rectifier networks. From Theorem 11, we know that
two-hidden-layer distance preserving rectifier neural net-
works are capable of separating any disjoint pattern sets
and thus are universal classifiers. From Proposition 10, we
know that each hidden layer preserves at least

√
2
2 of the

distances and therefore two hidden layers preserve at least
half of the distances in the original data space. That is, for
any two vectors, namely x1 and x2, and their outputs z1
and z2 in the second hidden layer, we have

1

2
‖x1 − x2‖ ≤ ‖z1 − z2‖ ≤ ‖x1 − x2‖. (42)



Remarks. 1). It is worth noting that the orthogonality of
the weight matrices W in the hidden layers is not the or-
thogonality of the linear units (i.e., WTW = I), but the
orthogonality of the weight matrix across data dimensions
(i.e., WWT = I). While there are at most n orthogo-
nal linear units for n dimensional input data, one can have
any large number of linear units which satisfy the orthog-
onality constraint WWT = I . Moreover, for a randomly
selected matrix W , the more columns (corresponding to
linear units) it has, the closer it is to satisfy WWT = I . 2).
Motivated by the fact that the large distances of patterns
in the input data space may not worth perfect preservation,
and for sake of computational efficiency, one may conduct
locality preserving projection (Niyogi, 2004) on the input
data and/or the hidden layer outputs so that the number of
hidden nodes can be significantly reduced while preserv-
ing the most important distances of the nearby points and
ensuring that the hidden layers can still be able to trans-
form the data to be linearly separable. To achieve the dis-
tance preservation in a certain subspace spanned byH with
HTH = Ir, where r < n and n is the number of rows of
W , one can choose the weight matrix W = HV such that
V V T = Ir. By this selection of W , only the distances in
the space spanned by H will be preserved.

6. Discussion
This paper has shown how two hidden layers of rectifier
networks can transform any two or more disjoint pattern
sets to be linearly separable while preserving the distance
of any two vectors in the data space with a factor ranging
from 0.5 to 1. This nearly isometric property makes the
maximum margins achieved by the linear classifiers in the
output layer closely related to the separating margins in the
original data space, and makes the generalization perfor-
mance of such rectifier networks well justified.

Related Work. Our work on the universal classification
power of deep rectifier networks is related to the works
on the universal approximation powers of deep neural net-
works (Hornik et al., 1989; Le Roux & Bengio, 2010;
Montufar & Ay, 2011). These works consider the universal
approximation power of arbitrary neural networks with one
or more hidden layers. In particular, (Hornik et al., 1989)
proves that any Borel measurable function can be approx-
imated by a single hidden layer neural network. However,
this proof only show the existence of such approximations
for classifiers. In fact, it is not yet clear whether any disjoint
pattern sets can be perfectly separated by a single hidden
layer neural network. In contrast, our proof is construc-
tive and this paper identifies a special type of two-hidden-
layer deep rectifier networks which can serve as universal
classifiers and whose generalization performance can also
be well justified by the distance preserving property of the

hidden layers and the maximum margin property of the lin-
ear classifiers in the output layer. Our effort to provide
theoretical justifications for deep rectifier network’s gen-
eralization performance is related to several recent publi-
cations (Delalleau & Bengio, 2011; Pascanu et al., 2014;
Montúfar et al., 2014) on the superior expressive powers of
deep networks against shallow networks (i.e., with a sin-
gle hidden layer). These works apply the Occam’s razor
rule, which favours simple solutions over complex ones,
and use the smaller number of required hidden units to
justify the superior performance of deep rectifier networks
against their shallow counterpart. However, this cannot ex-
plain why many practical deep neural networks have thou-
sands of hidden units, with millions of parameters, but ex-
hibit excellent generalization performance. Our work is the
first to justify the generalization performance by exploring
the distance preserving properties of hidden layers and es-
tablishing the link between the separating boundary mar-
gins in the output layer and those in the input data space.
Although the state-of-the-art learnt deep rectifier networks
may not preserve the distances as the proposed distance
preserving rectifier network does, they usually have a large
number of hidden units and the weight matrices are likely
to be approximately orthogonal so that the hidden layers
are capable of preserving the distances in certain degrees.
The way of the splitting in bidirectional rectifiers was used
in (Coates & Ng, 2011) to split the positive and negative
components of the sparse codes into separate features and
allow classifiers to weigh positive and negative responses
differently.

Implications to Practical Training of Rectified Net-
works. Our analysis suggests that the distance preserv-
ing rectifier networks’ generalization performance can be
well justified even though they may have a large number
of hidden units. In practical training of rectifier networks,
one may add constraints on the weight matrix or add a cost
function for each hidden layer to promote distance preser-
vations.

Limitations and Future Directions. This work has fo-
cused on theoretically analysing the universal classifica-
tion power and the distance preserving properties of rec-
tifier networks, and providing an insightful explanation for
the recent successes of rectifier networks in practice. How-
ever, there are other factors involved in their generaliza-
tion performance. Further work is needed to investigate the
properties of convolutional neural networks, as well as the
training of distance preserving deep rectifier networks.
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