7. Proof of Lemma 2.2- Local Packing Set

Towards the proof of Lemma 2.2, we develop a modified version of the Varshamov-Gilbert Lemma adapted to our specific model: the set of characteristic vectors of the $S-T$ paths of a (p, k, d)-layer graph G.
Let $\delta_{H}(\mathbf{x}, \mathbf{y})$ denote the Hamming distance between two points $\mathbf{x}, \mathbf{y} \in\{0,1\}^{p}$:

$$
\delta_{H}(\mathbf{x}, \mathbf{y}) \triangleq\left|\left\{i: x_{i} \neq y_{i}\right\}\right| .
$$

Lemma 7.4. Consider $a(p, k, d)$-layer graph G on p vertices and the collection $\mathcal{P}(G)$ of $S-T$ paths in G. Let

$$
\Omega \triangleq\left\{\mathbf{x} \in\{0,1\}^{p}: \operatorname{supp}(\mathbf{x}) \in \mathcal{P}(G)\right\}
$$

i.e., the set of characteristic vectors of all S-T paths in G. For every $\xi \in(0,1)$, there exists a set, $\Omega_{\xi} \subset \Omega$ such that

$$
\begin{equation*}
\delta_{H}(\mathbf{x}, \mathbf{y})>2(1-\xi) \cdot k, \quad \forall \mathbf{x}, \mathbf{y} \in \Omega_{\xi}, \mathbf{x} \neq \mathbf{y} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \left|\Omega_{\xi}\right| \geq \log \frac{p-2}{k}+(\xi \cdot k-1) \cdot \log d-k \cdot H(\xi) \tag{30}
\end{equation*}
$$

where $H(\cdot)$ is the binary entropy function.

Proof. Consider a labeling $1, \ldots, p$ of the p vertices in G, such that variable ω_{i} is associated with vertex i. Each point $\boldsymbol{\omega} \in \Omega$ is the characteristic vector of a set in $\mathcal{P}(G)$; nonzero entries of ω correspond to vertices along an $S-T$ path in G. With a slight abuse of notation, we refer to $\boldsymbol{\omega}$ as a path in G. Due to the structure of the (p, k, d)-layer graph G, all points in Ω have exactly $k+2$ nonzero entries, i.e.,

$$
\delta_{H}(\boldsymbol{\omega}, \mathbf{0})=k+2, \quad \forall \boldsymbol{\omega} \in \Omega
$$

Each vertex in $\boldsymbol{\omega}$ lies in a distinct layer of G. In turn, for any pair of points $\boldsymbol{\omega}, \boldsymbol{\omega}^{\prime} \in \Omega$,

$$
\begin{equation*}
\delta_{H}\left(\boldsymbol{\omega}, \boldsymbol{\omega}^{\prime}\right)=2 \cdot\left(k-\left|\left\{i: \omega_{i}=\omega_{i}^{\prime}=1\right\}\right|-2\right) \tag{31}
\end{equation*}
$$

Note that the Hamming distance between the two points is a linear function of the number of their common nonzero entries, while it can take only even values with a maximum value of $2 k$.

Without loss of generality, let S and T corresponding to vertices 1 and p, respectively. Then, the above imply that

$$
\omega_{1}=\omega_{p}=1, \quad \forall \boldsymbol{\omega} \in \Omega
$$

Consider a fixed point $\widehat{\boldsymbol{\omega}} \in \Omega$, and let $\mathcal{B}(\widehat{\boldsymbol{\omega}}, r)$ denote the Hamming ball of radius r centered at $\widehat{\omega}$, i.e.,

$$
\mathcal{B}(\widehat{\boldsymbol{\omega}}, r) \triangleq\left\{\boldsymbol{\omega} \in\{0,1\}^{p}: \delta_{H}(\widehat{\boldsymbol{\omega}}, \boldsymbol{\omega}) \leq r\right\}
$$

The intersection $\mathcal{B}(\widehat{\boldsymbol{\omega}}, r) \cap \Omega$ corresponds to S - T paths in G that have at least $k-r / 2$ additional vertices in common with $\widehat{\boldsymbol{\omega}}$ besides vertices 1 and p that are common to all paths in Ω :

$$
\begin{aligned}
& \mathcal{B}(\widehat{\boldsymbol{\omega}}, r) \cap \Omega \\
& =\left\{\boldsymbol{\omega} \in \Omega: \delta_{H}(\widehat{\boldsymbol{\omega}}, \boldsymbol{\omega}) \leq r\right\} \\
& =\left\{\boldsymbol{\omega} \in \Omega:\left|\left\{i: \widehat{\omega}_{i}=\omega_{i}=1\right\}\right| \geq k-\frac{r}{2}+2\right\}
\end{aligned}
$$

where the last equality is due to 31. In fact, due to the structure of G, the set $\mathcal{B}(\widehat{\omega}, r) \cap \Omega$ corresponds to the $S-T$ paths that meet $\widehat{\omega}$ in at least $k-r / 2$ intermediate layers. Taking into account that $\left|\Gamma_{\text {in }}(v)\right|=\left|\Gamma_{\text {out }}(v)\right|=d$, for all vertices v in $V(G)$ (except those in the first and last layer),

$$
|\mathcal{B}(\widehat{\boldsymbol{\omega}}, r) \cap \Omega| \leq\binom{ k}{k-\frac{r}{2}} \cdot d^{k-\left(k-\frac{r}{2}\right)}=\binom{k}{k-\frac{r}{2}} \cdot d^{\frac{r}{2}} .
$$

Now, consider a maximal set $\Omega_{\xi} \subset \Omega$ satisfying (29), i.e., a set that cannot be augmented by any other point in Ω. The union of balls $\mathcal{B}(\boldsymbol{\omega}, 2(1-\xi) \cdot(k-1))$ over all $\boldsymbol{\omega} \in \Omega_{\xi}$ covers Ω. To verify that, note that if there exists $\omega^{\prime} \in \Omega \backslash \Omega_{\xi}$ such that $\delta_{H}\left(\boldsymbol{\omega}, \boldsymbol{\omega}^{\prime}\right)>2(1-\xi) \cdot(k-1), \forall \boldsymbol{\omega} \in \Omega_{\xi}$, then $\Omega_{\xi} \cup\left\{\boldsymbol{\omega}^{\prime}\right\}$ satisfies 29\} contradicting the maximality of Ω_{ξ}. Based on the above,

$$
\begin{aligned}
|\Omega| & \leq \sum_{\boldsymbol{\omega} \in \Omega_{\xi}}|\mathcal{B}(\boldsymbol{\omega}, 2(1-\xi) \cdot k) \cap \Omega| \\
& \leq \sum_{\mathbf{x} \in \Omega_{\xi}}\binom{k}{k-(1-\xi) k} \cdot d^{(1-\xi) \cdot k} \\
& \leq \sum_{\mathbf{x} \in \Omega_{\xi}}\binom{k}{\xi k} \cdot d^{(1-\xi) \cdot k} \\
& \leq\left|\Omega_{\xi}\right| \cdot 2^{k \cdot H(\xi)} \cdot d^{(1-\xi) \cdot k} .
\end{aligned}
$$

Taking into account that

$$
|\Omega|=|\mathcal{P}(G)|=\frac{p-2}{k} \cdot d^{k-1}
$$

we conclude that

$$
\frac{p-2}{k} \cdot d^{k-1} \leq\left|\Omega_{\xi}\right| \cdot 2^{k \cdot H(\xi)} \cdot d^{(1-\xi) \cdot k},
$$

from which the desired result follows.
Lemma 2.2. (Local Packing) Consider a (p, k, d)-layer graph G on p vertices with $k \geq 4$ and $\log d \geq 4 \cdot H(3 / 4)$. For any $\epsilon \in(0,1]$, there exists a set $\mathcal{X}_{\epsilon} \subset \mathcal{X}(G)$ such that

$$
\epsilon / \sqrt{2}<\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2} \leq \sqrt{2} \cdot \epsilon
$$

for all $\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{X}_{\epsilon}, \mathbf{x}_{i} \neq \mathbf{x}_{j}$, and

$$
\log \left|\mathcal{X}_{\epsilon}\right| \geq \log \frac{p-2}{k}+\frac{1}{4} \cdot k \log d
$$

Proof. Without loss of generality, consider a labeling $1, \ldots, p$ of the p vertices in G, such that S and T correspond to vertices 1 and p, respectively. Let

$$
\Omega \triangleq\left\{\mathbf{x} \in\{0,1\}^{p}: \operatorname{supp}(\mathbf{x}) \in \mathcal{P}(G)\right\}
$$

where $\mathcal{P}(G)$ is the collection of $S-T$ paths in G. By Lemma 7.4, and for $\xi=3 / 4$, there exists a set $\Omega_{\xi} \subseteq \Omega$ such that

$$
\begin{equation*}
\delta_{H}\left(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{j}\right)>\frac{1}{2} \cdot k, \tag{32}
\end{equation*}
$$

$\forall \boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{j} \in \Omega_{\xi}, \boldsymbol{\omega}_{i} \neq \boldsymbol{\omega}_{j}$, and,

$$
\begin{align*}
\log \left|\Omega_{\xi}\right| & \geq \log \frac{p-2}{k}+\left(\frac{3}{4} \cdot k-1\right) \log d-k \cdot H\left(\frac{3}{4}\right) \\
& \geq \log \frac{p-2}{k}+\frac{2}{4} \cdot k \cdot \log d-k \cdot H\left(\frac{3}{4}\right) \\
& \geq \log \frac{p-2}{k}+\frac{1}{4} \cdot k \cdot \log d \tag{33}
\end{align*}
$$

where the second and third inequalites hold under the assumptions of the lemma; $k \geq 4$ and $\log d \geq 4 \cdot H(3 / 4)$.
Consider the bijective mapping $\psi: \Omega_{\xi} \rightarrow \mathbb{R}^{p}$ defined as

$$
\psi(\boldsymbol{\omega})=\left[\sqrt{\frac{\left(1-\epsilon^{2}\right)}{2}} \cdot \omega_{1}, \frac{\epsilon}{\sqrt{k}} \cdot \boldsymbol{\omega}_{2: p-1}, \sqrt{\frac{\left(1-\epsilon^{2}\right)}{2}} \cdot \omega_{p}\right]
$$

We show that the set

$$
\mathcal{X}_{\epsilon} \triangleq\left\{\psi(\boldsymbol{\omega}): \boldsymbol{\omega} \in \Omega_{\xi}\right\}
$$

has the desired properties. First, to verify that \mathcal{X}_{ϵ} is a subset of $\mathcal{X}(G)$, note that $\forall \omega \in \Omega_{\xi} \subset \Omega$,

$$
\begin{equation*}
\operatorname{supp}(\psi(\boldsymbol{\omega}))=\operatorname{supp}(\boldsymbol{\omega}) \in \mathcal{P}(G) \tag{34}
\end{equation*}
$$

and

$$
\|\psi(\boldsymbol{\omega})\|_{2}^{2}=2 \cdot \frac{\left(1-\epsilon^{2}\right)}{2}+\frac{\epsilon^{2}}{k} \cdot \sum_{i=2}^{p-1} \omega_{i}=1
$$

Second, for all pairs of points $\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{X}_{\epsilon}$,

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}=\delta_{H}\left(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{j}\right) \cdot \frac{\epsilon^{2}}{k} \leq 2 \cdot k \cdot \frac{\epsilon^{2}}{k}=2 \cdot \epsilon^{2}
$$

The inequality follows from the fact that $\delta_{H}(\boldsymbol{\omega}, \mathbf{0})=k+2$ $\omega_{1}=1$ and $\omega_{p}=1, \forall \boldsymbol{\omega} \in \Omega_{\xi}$, and in turn

$$
\delta_{H}\left(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{j}\right) \leq 2 \cdot k
$$

Similarly, for all pairs $\mathbf{x}_{i}, \mathbf{x}_{j} \in \mathcal{X}_{\epsilon}, \mathbf{x}_{i} \neq \mathbf{x}_{j}$,

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}=\delta_{H}\left(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{j}\right) \cdot \frac{\epsilon^{2}}{k} \geq \frac{1}{2} \cdot k \cdot \frac{\epsilon^{2}}{k}=\frac{\epsilon^{2}}{2}
$$

where the inequality is due to 32 . Finally, the lower bound on the cardinality of \mathcal{X}_{ϵ} follows immediately from (33) and the fact that $\left|\mathcal{X}_{\epsilon}\right|=\left|\Omega_{\xi}\right|$, which completes the proof.

8. Details in proof of Lemma 1

We want to show that if

$$
\epsilon^{2}=\min \left\{1, \frac{C^{\prime} \cdot(1+\beta)}{\beta^{2}} \cdot \frac{\log \frac{p-2}{k}+\frac{k}{4} \cdot \log d}{n}\right\}
$$

for an appropriate choice of $C^{\prime}>0$, then the following two conditions (Eq. 13) are satisfied:

$$
n \cdot \frac{2 \epsilon^{2} \beta^{2}}{(1+\beta)} \frac{1}{\log \left|\mathcal{X}_{\epsilon}\right|} \leq \frac{1}{4} \text { and } \log \left|\mathcal{X}_{\epsilon}\right| \geq 4 \log 2
$$

For the second inequality, recall that by Lemma 2.2 .

$$
\begin{equation*}
\log \left|\mathcal{X}_{\epsilon}\right| \geq \log \frac{p-2}{k}+\frac{1}{4} \cdot k \log d>0 \tag{35}
\end{equation*}
$$

Under the assumptions of Thm. 1 on the parameters k and d (note that $p-2 \geq k \cdot d$ by the structure of G),

$$
\log \left|\mathcal{X}_{\epsilon}\right| \geq \log \frac{p-2}{k}+\frac{k}{4} \cdot \log d \geq 4 \cdot H(3 / 4) \geq 4 \log 2
$$

which is the desired result.
For the first inequality, we consider two cases:

- First, we consider the case where $\epsilon^{2}=1$, i.e.,

$$
\epsilon^{2}=1 \leq \frac{C^{\prime} \cdot(1+\beta)}{\beta^{2}} \cdot \frac{\log \frac{p-2}{k}+\frac{k}{4} \cdot \log d}{n}
$$

Equivalently,

$$
\begin{equation*}
n \cdot \frac{2 \epsilon^{2} \beta^{2}}{(1+\beta)} \leq 2 \cdot C^{\prime} \cdot\left(\log \frac{p-2}{k}+\frac{k}{4} \cdot \log d\right) \tag{36}
\end{equation*}
$$

- In the second case,

$$
\epsilon^{2}=\frac{C^{\prime} \cdot(1+\beta)}{\beta^{2}} \cdot \frac{\log \frac{p-2}{k}+\frac{k}{4} \cdot \log d}{n}
$$

which implies that

$$
\begin{equation*}
n \cdot \frac{2 \epsilon^{2} \beta^{2}}{(1+\beta)}=2 \cdot C^{\prime} \cdot\left(\log \frac{p-2}{k}+\frac{k}{4} \cdot \log d\right) \tag{37}
\end{equation*}
$$

Combining (36) or 37), with (35), we obtain

$$
n \cdot \frac{2 \epsilon^{2} \beta^{2}}{(1+\beta)} \frac{1}{\log \left|\mathcal{X}_{\epsilon}\right|} \leq 2 \cdot C^{\prime} \leq \frac{1}{4}
$$

for $C^{\prime} \leq 1 / 8$.
We conclude that for ϵ chosen as in (12), the conditions in (13) hold.

9. Other

Assumption 1. There exist i.i.d. random vectors $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n} \in \mathbb{R}^{p}$, such that $\mathbb{E} \mathbf{z}_{i}=\mathbf{0}$ and $\mathbb{E} \mathbf{z}_{i} \mathbf{z}_{i}^{\top}=\mathbb{I}_{p}$,

$$
\begin{equation*}
\mathbf{y}=\mu+\boldsymbol{\Sigma}^{1 / 2} \mathbf{z}_{i} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\mathbf{x} \in \mathbb{S}_{2}^{p-1}}\left\|\mathbf{z}_{i}^{\top} \mathbf{x}\right\|_{\psi_{2}} \leq K \tag{39}
\end{equation*}
$$

where $\mu \in \mathbb{R}^{p}$ and $K>0$ is a constant depending on the distribution of \mathbf{z}_{i} s.

