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Abstract
We introduce a variant of (sparse) PCA in which
the set of feasible support sets is determined by
a graph. In particular, we consider the following
setting: given a directed acyclic graph G on p
vertices corresponding to variables, the non-zero
entries of the extracted principal component must
coincide with vertices lying along a path in G.

From a statistical perspective, information on the
underlying network may potentially reduce the
number of observations required to recover the
population principal component. We consider
the canonical estimator which optimally exploits
the prior knowledge by solving a non-convex
quadratic maximization on the empirical covari-
ance. We introduce a simple network and analyze
the estimator under the spiked covariance model.
We show that side information potentially im-
proves the statistical complexity.

We propose two algorithms to approximate the
solution of the constrained quadratic maximiza-
tion, and recover a component with the desired
properties. We empirically evaluate our schemes
on synthetic and real datasets.

1. Introduction
Principal Component Analysis (PCA) is an invaluable tool
in data analysis and machine learning. Given a set of
n centered p-dimensional datapoints Y ∈ Rp×n, the first
principal component is

arg max
‖x‖2=1

x>Σ̂x, (1)
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where Σ̂ = 1/n ·YY> is the empirical covariance matrix.
The principal component spans the direction of maximum
data variability. This direction usually involves all p vari-
ables of the ambient space, in other words the PC vectors
are typically non-sparse. However, it is often desirable to
obtain a principal component with specific structure, for
example limiting the support of non-zero entries. From
a statistical viewpoint, in the high dimensional regime
n = O(p), the recovery of the true (population) principal
component is only possible if additional structure infor-
mation, like sparsity, is available for the former (Amini &
Wainwright, 2009; Vu & Lei, 2012).

There are several approaches for extracting a sparse princi-
pal component. Many rely on approximating the solution to

max
x∈Rp

x>Σ̂x, subject to ‖x‖2 = 1, ‖x‖0 ≤ k. (2)

The non-convex quadratic optimization is NP hard (by a
reduction from maximum clique problem), but optimally
exploits the side information on the sparsity.

Graph Path PCA. In this paper we enforce additional
structure on the support of principal components. Consider
a directed acyclic graph (DAG) G = (V,E) on p vertices.
Let S and T be two additional special vertices and consider
all simple paths from S to T on the graph G. Ignoring the
order of vertices along a path, let P(G) denote the collec-
tion of all S-T paths in G. We seek the principal compo-
nent supported on a path of G, i.e., the solution to

max
x∈X (G)

x>Σ̂x, (3)

where

X (G) ,
{
x∈Rp : ‖x‖2 = 1, supp(x) ∈ P(G)

}
. (4)

We will argue that this formulation can be used to impose
several types of structure on the support of principal com-
ponents. Note that the covariance matrix Σ̂ and the graph
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can be arbitrary: the matrix is capturing data correlations
while the graph is a mathematical tool to efficiently de-
scribe the possible supports of interest. We illustrate this
through a few applications.

Financial model selection: Consider the problem of iden-
tifying which companies out of the S&P500 index capture
most data variability. Running Sparse PCA with a spar-
sity parameter k will select k companies that maximize
explained variance. However, it may be useful to enforce
more structure: If we must select one company from each
business sector (e.g., Energy, Health Care,etc.) how could
we identify these representative variables?

In Section 4, we show that this additional requirement can
be encoded using our graph path framework. We compare
our variable selection with Sparse PCA and show that it
leads to interpretable results.

Biological and fMRI networks: Several problems involve
variables that are naturally connected in a network. In
these cases our Graph Path PCA can enforce interpretable
sparsity structure, especially when the starting and ending
points are manually selected by domain experts. In sec-
tion 4, we apply our algorithm on fMRI data using a graph
on regions of interest (ROIs) based on the Harvard-Oxford
brain structural atlas (Desikan et al., 2006).

We emphasize that our applications to brain data is prelimi-
nary: the directional graphs we extract are simply based on
distance and should not be interpreted as causality, simply
as a way of encoding desired supports.

What can we say about the tractability of (3)? We note that
despite the additional constraints on the sparsity patterns,
the number of admissible support sets (i.e. S-T paths) can
be exponential in p, the number of variables. For example,
consider a graph G as follows: S connected to two nodes
who are then both connected to two nodes, etc. for k levels
and finally connected to T . Clearly there are 2k S-T paths
and therefore a direct search is not tractable.

Our Contributions:

1. From a statistical viewpoint, we show that side in-
formation on the underlying graph G can reduce the
number of observations required to recover the popu-
lation principal component x? ∈ X (G) via (3). For
our analysis, we introduce a simple, sparsity-inducing
network model on p vertices partitioned into k lay-
ers, with edges from one layer to the next, and max-
imum out-degree d (Fig. 1). We show that n =
O(log p/k + k log d) observations yi ∼ N(0,Σ), suf-
fice to obtain an arbitrarily good estimate via (3). Our
proof follows the steps of (Vu & Lei, 2012).

2. We complement this with an information-theoretic
lower bound on the minimax estimation error, un-
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Figure 1. A (p, k, d)-layer graph G = (V,E): a DAG on p ver-
tices, partitioned into k disjoint sets (layers) L1, . . . ,Lk. The
highlighted vertices form an S-T path.

der the spiked covariance model with latent signal
x? ∈ X (G), which matches the upper bound.

3. We propose two algorithms for approximating the so-
lution of (3), based on those of (Yuan & Zhang, 2013)
and (Papailiopoulos et al., 2013; Asteris et al., 2014)
for the sparse PCA problem. We empirically evaluate
our algorithms on synthetic and real datasets.

Related Work There is a large volume of work on al-
gorithms and the statistical analysis of sparse PCA (John-
stone & Lu, 2004; Zou et al., 2006; d’Aspremont et al.,
2008; 2007; Johnstone & Lu, 2004; Vu & Lei, 2012; Amini
& Wainwright, 2009). On the contrary, there is limited
work that considers additional structure on the sparsity pat-
terns. Motivated by a face recognition application, (Jenat-
ton et al., 2010) introduce structured sparse PCA using a
regularization that encodes higher-order information about
the data. The authors design sparsity inducing norms that
further promote a pre-specified set of sparsity patterns.

Finally, we note that the idea of pursuing additional struc-
ture on top of sparsity is not limited to PCA: Model-
based compressive sensing seeks sparse solutions under
a restricted family of sparsity patterns (Baldassarre et al.,
2013; Baraniuk et al., 2010; Kyrillidis & Cevher, 2012),
while structure induced by an underlying network is found
in (Mairal & Yu, 2011) for sparse linear regression.

2. A Data Model – Sample Complexity
The layer graph. Consider a directed acyclic graph
G = (V,E) on p vertices, with the following properties:

• V = {S, T} ∪ V̂ , where S is a source vertex, T is a ter-
minal one, and V̂ is the set of remaining p− 2 vertices.

• V̂ can be partitioned into k disjoint subsets (layers)
L1, . . . ,Lk, i.e.,

⋃
i Li = V̂ , and Li ∩ Lj = ∅, ∀i, j ∈

[k], i 6= j, such that:
– Γout(v) ⊂ Li+1, ∀v ∈ Li, for i = 1, . . . , k − 1,

where Γout(v) denotes the out-neighborhood of v.
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– Γout(S) = L1, and Γout(v) = {T}, ∀v ∈ Lk.

In the sequel, for simplicity, we will further assume
that p− 2 is a multiple of k and |Li|= (p− 2)/k, ∀i ∈ [k].
Further, |Γout(v)| = d, ∀v ∈ Li, i = 1, . . . , k − 1, and
|Γin(v)| = d, ∀v ∈ Li, i = 2, . . . , k, where Γin(v) denotes
the in-neighborhood of v. In words, the edges from one
layer are maximally spread accross the vertices of the next.
We refer to G as a (p, k, d)-layer graph.

Fig. 1 illustrates a (p, k, d)-layer graph G. The highlighted
vertices form an S-T path π: a set of vertices forming a trail
from S to T . Let P(G) denote the collection of S-T paths
in a graphG for a given pair of source and terminal vertices.
For the (p, k, d)-layer graph, |π| = k, ∀π ∈ P(G), and

|P(G)| = |L1| · dk−1 = p−2
k · d

k−1 ≤
(
p−2
k

)
,

since d ∈ {1, . . . , (p−2)/k}.

Spike along a path. We consider the spiked covariance
model, as in the sparse PCA literature (Johnstone & Lu,
2004; Amini & Wainwright, 2008). Besides sparsity, we
impose additional structure on the latent signal; structure
induced by a (known) underlying graph G.

Consider a p-dimensional signal x? and a bijective map-
ping between the p variables in x? and the vertices of G.
For simplicity, assume that the vertices of G are labeled so
that xi is associated with vertex i ∈ V . We restrict x? in

X (G) ,
{
x∈Rp : ‖x‖2 = 1, supp(x) ∈ P(G)

}
,

that is, x? is a unit-norm vector whose active (nonzero)
entries correspond to vertices along a path in P(G).

We observe n points (samples) {yi}ni=1 ∈ Rp, generated
randomly and independently as follows:

yi =
√
β · ui · x? + zi, (5)

where the scaling coefficient ui ∼ N (0, 1) and the additive
noise zi ∼ N (0, Ip) are independent. Equivalently, yis are
i.i.d. samples, distributed according to N (0,Σ), where

Σ = Ip + β · x?x>? . (6)

2.1. Lower bound

Theorem 1 (Lower Bound). Consider a (p, k, d)-layer
graph G on p vertices, with k ≥ 4, and log d ≥ 4H(3/4).
(Note that p− 2 ≥ k · d), and a signal x? ∈ X (G). Let
{yi}ni=1 be a sequence of n random observations, inde-
pendently drawn according to probability density function

Dp(x?) = N
(
0, Ip + β · x?x>?

)
,

for some β > 0. Let D(n)
p (x?) denote the product measure

over the n independent draws. Consider the problem of es-
timating x? from the n observations, given G. There exists
x? ∈ X (G) such that for every estimator x̂,

ED(n)
p (x?)

[
‖x̂x̂> − x?x

>
? ‖F

]
≥

1
2
√

2
·
√

min
{

1, C
′·(1+β)
β2 · 1

n

(
log p−2

k + k
4 log d

)}
. (7)

Theorem 1 effectively states that for some latent sig-
nal x? ∈ X (G), and observations generated according to
the spiked covariance model, the minimax error is bounded
away from zero, unless n = Ω (log p/k + k log d). In the
sequel, we provide a sketch proof of Theorem 1, following
the steps of (Vu & Lei, 2012).

The key idea is to discretize the space X (G) in order to
utilize the Generalized Fano Inequality (Yu, 1997). The
next lemma summarizes Fano’s Inequality for the special
case in which the n observations are distibuted according
to the n-fold product measure D(n)

p (x?):
Lemma 2.1 (Generalized Fano (Yu, 1997)). Let
Xε ⊂ X (G) be a finite set of points x1, . . . ,x|Xε| ∈ X (G),
each yielding a probability measure D(n)

p (xi) on the n
observations. If d(xi,xj) ≥ α, for some pseudo-metric1

d(·, ·) and the Kullback-Leibler divergences satisfy

KL
(
D(n)

p (xi) ‖ D(n)

p (xj)
)
≤ γ,

for all i 6= j, then for any estimator x̂

max
xi∈Xε

ED(n)
p (xi)

[d(x̂,xi)] ≥
α

2
·
(

1− γ + log 2

log |Xε|

)
. (8)

Inequality (8), using the pseudo-metric

d (x̂,x) , ‖x̂x̂> − xx>‖F,

will yield the desired lower bound of Theorem 1 on the
minimax estimation error (Eq. (7)). To that end, we need to
show the existence of a sufficiently large set Xε ⊆ X (G)
such that (i) the points inXε are well separated under d(·, ·),
while (ii) the KL divergence of the induced probability
measures is upper appropriately bounded.
Lemma 2.2. (Local Packing) Consider a (p, k, d)-layer
graph G on p vertices with k ≥ 4 and log d ≥ 4 ·H(3/4).
For any ε ∈ (0, 1], there exists a set Xε ⊂ X (G) such that

ε/
√

2 < ‖xi − xj‖2 ≤
√

2 · ε,

for all xi,xj ∈ Xε, xi 6= xj , and

log |Xε| ≥ log
p− 2

k
+ 1/4 · k · log d.

1A pseudometric on a setX is a function d : Q2 → R that sat-
isfies all properties of a distance (non-negativity, symmetry, trian-
gle inequality) except the identity of indiscernibles: d(q,q) = 0,
∀q ∈ Q but possibly d(q1,q2) = 0 for some q1 6= q2 ∈ Q.
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Proof. (See Appendix 7).

For a set Xε with the properties of Lemma 2.2, taking into
account the fact that ‖xix>i − xjx

>
j ‖F ≥ ‖xi − xj‖2

(Lemma A.1.2 of (Vu & Lei, 2012)), we have

d2(xi,xj) = ‖xix>i − xjx
>
j ‖2F >

ε2

2
, α2. (9)

∀xi,xj ∈ Xε, xi 6= xj . Moreover,

KL(Dp(xi) ‖ Dp(xj)) = β
2(1+β)

·
[
(1 + β)×

Tr
((

I− xjx
>
j

)
xix
>
i

)
−Tr

(
xjx

>
j (I− xix

>
i )
)]

= β2

4(1+β)
· ‖xix>i − xjx

>
j ‖2F ≤ β2

(1+β)
· ‖xi − xj‖22.

In turn, for the n-fold product distribution, and taking into
account that ‖xi − xj‖2 ≤

√
2 · ε,

KL
(
D(n)

p (xi) ‖ D(n)

p (xj)
)
≤ 2nβ2ε2

(1 + β)
, γ. (10)

Eq. (9) and (10) establish the parameters α and γ required
by Lemma 2.1. Substituting those into (8), along with the
lower bound of Lemma 2.2 on |Xε|, we obtain

max
xi∈Xε

ED(n)
p (xi)[d(x̂,xi)] ≥

ε

2
√

2

1−
n 2ε2β2

(1+β)
+ log 2

log |Xε|

. (11)

The final step towards establishing the desired lower bound
in (7) is to appropriately choose ε. One can verify that if

ε2 = min
{

1, C
′·(1+β)
β2 · 1

n

(
log p−2

k + k
4 · log d

)}
, (12)

where C ′ > 0 is a constant to be determined, then

n · 2ε2β2

(1 + β)

1

log |Xε|
≤ 1

4
and log |Xε| ≥ 4 log 2, (13)

(see Appendix 8 for details). Under the conditions in (13),
the inequality in (11) implies that

max
xi∈Xε

ED(n)
p (xi)[d(x̂,xi)] ≥ 1

2
√

2
· ε. (14)

Substituting ε according to (12), yields the desired result
in (7), completing the proof of Theorem 1.

2.2. Upper bound

Our upper bound is based on the estimator obtained via the
constrained quadratic maximizaton in (3). We note that the
analysis is not restricted to the spiked covariance model; it
applies to a broader class of distributions (see Assum. 1).

Theorem 2 (Upper bound). Consider a (p, k, d)-layer
graph G and x? ∈ X (G). Let {yi}ni=1 be a sequence of n
i.i.d. N (0,Σ) samples, where Σ � 0 with eigenvalues

λ1 > λ2 ≥ . . ., and principal eigenvector x?. Let Σ̂ be
the empirical covariance of the n samples, x̂ the estimate
of x? obtained via (3), and ε , ‖x̂x̂> − x?x

>
? ‖F. Then,

E[ε] ≤ C · λ1

λ1 − λ2
· 1

n
·max

{√
nA, A

}
,

where A = O
(
log p−2

k + k log d
)
.

In the sequel, we provide a sketch proof of Theorem 2. The
proof closely follows the steps of (Vu & Lei, 2012) in de-
veloping their upper bound for the the sparse PCA problem.

Lemma 2.3 (Lemma 3.2.1 (Vu & Lei, 2012)). Consider
Σ ∈ Sp×p+ , with principal eigenvector x? and λgap,λ1 −
λ2(Σ). For any x̃ ∈ Rp with ‖x̃‖2 = 1,

λ1−λ2

2 · ‖x̃x̃> − x?x
>
? ‖2F ≤

〈
Σ, x?x

>
? − x̃x̃>

〉
.

Let x̂ be an estimate of x? via (3), and ε,‖x̂x̂>−x?x
>
? ‖F.

From Lemma 2.3, it follows (see (Vu & Lei, 2012)) that

λ1−λ2

2 · ε2 ≤
〈
Σ̂−Σ, x̂x̂> − x?x

>
?

〉
. (15)

Both x? and x̂ belong to X (G): unit-norm vectors, with
support of cardinality k+2 coinciding with a path inP(G).
Their difference is supported in P2(G): the collection of
sets formed by the union of two sets in P(G). Let X 2(G)
denote the set of unit norm vectors supported in P2(G).
Via an appropriate upper bounding of the right-hand side
of (15), (Vu & Lei, 2012) show that

E[ε] ≤ Ĉ
λ1−λ2

· E
[
sup

θ∈X 2

∣∣θ>(Σ̂−Σ
)
θ
∣∣] ,

for an appropriate constant Ĉ > 0. Further, under the as-
sumptions on the data distribution, and utilizing a result due
to (Mendelson, 2010),

E

[
sup
θ∈X 2

∣∣θ>(Σ̂−Σ
)
θ
∣∣] ≤ C ′K2λ1

n
max

{√
nA, A2

}
,

for C ′ and K constants depending on the distribution, and

A , EY∼N(0,Ip)

[
sup

θ∈X 2〈Y,θ〉
]
. (16)

This reduces the problem of bounding E[ε] to bounding the
supremum of a Gaussian process. Let Nδ ⊂ X 2(G) be
a minimal δ-covering of X 2(G) in the Euclidean metric
with the property that ∀x ∈ X 2(G), ∃y ∈ Nδ such that
‖x− y‖2 ≤ δ and supp(x− y) ∈ P2(G). Then,

sup
θ∈X 2〈Y,θ〉 ≤ (1− δ)−1 · max

θ∈Nδ
〈Y,θ〉. (17)

Taking expectation w.r.t. Y and applying a union bound on
the right hand side, we conclude

A ≤ C̃ · (1− δ)−1 ·
√

log |Nδ|. (18)
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It remains to construct a δ-covering Nδ with the desired
properties. To this end, we associate isometric copies of
S2k+1

2 with each support set in P2(G). It is known that
there exists a minimal δ-covering for S2k+1

2 with cardinal-
ity at most (1 + 2/δ)2k+2. The union of the local δ-nets
forms a set Nδ with the desired properties. Then,

log |Nδ| ≤ log |P2(G)|+ 2(k + 1) log(1 + 2/δ)

= O
(
log p−2

k + k log d
)
,

for any constant δ. Substituting in (18), implies the desired
bound on E[ε], completing the proof of Theorem 2.

3. Algorithmic approaches
We propose two algorithms for approximating the solution
of the constrained quadratic maximization in (3):

1. The first is an adaptation of the truncated power itera-
tion method of (Yuan & Zhang, 2013) for the problem
of computing sparse eigenvectors.

2. The second relies on approximately solving (3) on a
low rank approximation of Σ̂, similar to (Papailiopoulos
et al., 2013; Asteris et al., 2014).

Both algorithms rely on a projection operation from Rp
onto the feasible set X (G), for a given graph G = (V,E).
Besides the projection step, the algorithms are oblivious to
the specifics of the constraint set,2 and can adapt to differ-
ent constraints by modifying the projection operation.

3.1. Graph-Truncated Power Method

Algorithm 1 Graph-Truncated Power Method

input Σ̂ ∈ Rp×p, G = (V,E), x0 ∈ Rp
1: i← 0
2: repeat
3: wi ← Σ̂xi
4: xi+1 ← ProjX (G)(wi)
5: i← i+ 1
6: until Convergence/Stop Criterion

output xi

We consider a simple iterative procedure, similar to the
truncated power method of (Yuan & Zhang, 2013) for the
problem of computing sparse eigenvectors. Our algorithm
produces sequence of vectors xi ∈ X (G), i ≥ 0, that serve
as intermediate estimates of the desired solution of (3).

The procedure is summarized in Algorithm 1. In the ith it-
eration, the current estimate xi is multiplied by the empir-
ical covariance Σ̂, The product wi ∈ Rp is projected back
to the feasible set X (G), yielding the next estimate xi+1.

2For Alg. 2, the observation holds under mild assumptions:
X (G) must be such that ‖x‖2 = Θ(1), while ±x ∈ X (G)
should both achieve the same objective value.

The core of Algorithm 1 lies in the projection operation,

ProjX (G)(w) , arg min
x∈X (G)

1

2
‖x−w‖22, (19)

which is analyzed separately in Section 3.3. The initial
estimate x0 can be selected randomly or based on simple
heuristics, e.g., the projection on X (G) of the column of Σ̂
corresponding to the largest diagonal entry. The algorithm
terminates when some convergence criterion is satisfied.

The computational complexity (per iteration) of Algo-
rithm 1 is dominated by the cost of matrix-vector multi-
plication and the projection step. The former is O(k · p),
where k is cardinality of the largest support in X (G).
The projection operation for the particular set X (G), boils
down to solving the longest path problem on a weighted
variant of the DAG G (see Section 3.3), which can be
solved in time O(|V |+ |E|), i.e., linear in the size of G.

3.2. Low-Dimensional Sample and Project

The second algorithm outputs an estimate of the desired
solution of (3) by (approximately) solving the constrained
quadratic maximization not on the original matrix Σ̂, but
on a low rank approximation Σ̂r of Σ̂, instead:

Σ̂r =

r∑
i=1

λiqiq
>
i =

r∑
i=1

viv
>
i = VV>, (20)

where λi is the ith largest eigenvalue of Σ̂, qi is the cor-
responding eigenvector, vi,

√
λi · qi, and V is the p × r

matrix whose ith column is equal to vi. The approximation
rank r is an accuracy parameter; typically, r � p.

Our algorithm operates3 on Σ̂r and seeks

xr , arg max
x∈X (G)

x> Σ̂r x. (21)

The motivation is that an (approximate) solution for the
low-rank problem in (21) can be efficiently computed. In-
tuitively, if Σ̂r is a sufficiently good approximation of the
original matrix Σ̂, then xr would perform similarly to the
solution x? of the original problem (3).

The Algorithm. Our algorithm samples points from
the low-dimensional principal subspace of Σ̂, and projects
them on the feasible set X (G), producing a set of candi-
date estimates for xr. It outputs the candidate that maxi-
mizes the objective in (21). The exact steps are formally
presented in Algorithm 2. The following paragraphs delve
into the details of Algorithm 2.

3Under the spiked covariance model, this approach may be
asymptotically unsuitable; as the ambient dimension increases, it
with fail to recover the latent signal. Empirically, however, if the
spectral decay of Σ̂ is sharp, it yields very competitive results.
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Algorithm 2 Low-Dimensional Sample and Project

input Σ̂ ∈ Rp×p, G = (V,E), r ∈ [p], ε > 0

1: [Q,Λ]← svd(Σ̂, r)

2: V← QΛ
1/2 {Σ̂r,VV>}

3: C ← ∅ {Candidate solutions}
4: for i = 1 : O(ε−r · log p) do
5: ci ← uniformly sampled from Sr−1

6: wi ← Vci
7: xi ← ProjX (G)(wi)

8: C = C ∪ {xi}
9: end for

output x̂r ← arg maxx∈C ‖V>x‖22

3.2.1. THE LOW RANK PROBLEM

The rank-r maximization in (21) can be written as

max
x∈X (G)

x>Σ̂rx = max
x∈X (G)

‖V>x‖22, (22)

and in turn (see (Asteris et al., 2014) for details), as a dou-
ble maximization over the variables c ∈ Sr−1 and x ∈ Rp:

max
x∈X (G)

‖V>x‖22 = max
c∈Sr−1

max
x∈X (G)

(
(Vc)

>
x
)2
. (23)

The rank-1 case. Let w,Vc; w is only a vector in Rp.
For given c and w, the x that maximizes the objective in
(23) (as a function of c) is

x(c) ∈ arg max
x∈X (G)

(
w>x

)2
. (24)

The maximization in (24) is nothing but a rank-1 instance
of the maximization in (22). Observe that if x ∈ X (G),
then −x ∈ X (G), and the two vectors attain the same ob-
jective value. Hence, (24) can be simplified:

x(c) ∈ arg max
x∈X (G)

w>x. (25)

Further, since ‖x‖2 = 1, ∀x ∈ X (G), the maximization
in (25) is equivalent to minimizing 1

2‖w − x‖22. In other
words, x(c) is just the projection of w ∈ Rp onto X (G):

x(c) ∈ ProjX (G)(w). (26)

The projection operator is described in Section 3.3.

Multiple rank-1 instances. Let
(
cr,xr

)
denote a pair that

attains the maximum value in (23). If cr was known, then
xr would coincide with the projection x(cr) of w = Vcr
on the feasible set, according to (26).

Of course, the optimal value cr of the auxiliary variable
is not known. Recall, however, that cr lies on the low di-
mensional manifold Sr−1. Consider an ε-net Nε covering
the r-dimensional unit sphere Sr−1; Algorithm 2 constructs

such a net by random sampling. By definition,Nε contains
at least one point, call it ĉr, in the vicinity of cr. It can be
shown that the corresponding solution x(ĉr) in (24) will
perform approximately as well as the optimal solution xr,
in terms of the quadratic objective in (23), for a large, but
tractable, number of points in the ε-net of Sr−1.

3.3. The Projection Operator

Algorithms 1, and 2 rely on a projection operation from
Rp onto the feasible set X (G) (Eq. (4)). We show that the
projection effectively reduces to solving the longest path
problem on (a weighted variant of) G.

The projection operation, defined in Eq. (19), can be equiv-
alently4 written as

ProjX (G)(w) , arg max
x∈X (G)

w>x.

For any x ∈ X (G), supp(x) ∈ P(G). For a given set π, by
the Cauchy-Schwarz inequality,

w>x =
∑
i∈π wixi ≤

∑
i∈π w

2
i = ŵ>1π, (27)

where ŵ ∈ Rp is the vector obtained by squaring the en-
tries of w, i.e., ŵi = w2

i , ∀i ∈ [n], and 1π ∈ {0, 1}p de-
notes the characteristic of π. Letting x[π] denote the sub-
vector of x supported on π, equality in (27) can be achieved
by x such that x[π] = w[π]/‖w[π]‖2, and x[πc] = 0.

Hence, the problem in (27) reduces to determining

π(w) ∈ arg max
π∈P(G)

ŵ>1π. (28)

Consider a weighted graphGw, obtained fromG = (V,E)
by assigning weight ŵv = w2

v on vertex v ∈ V . The objec-
tive function in (28) equals the weight of the path π in Gw,
i.e., the sum of weights of the vertices along π. Determin-
ing the optimal support π(w) for a given w, is equivalent
to solving the longest (weighted) path problem5 on Gw.

The longest (weighted) path problem is NP-hard on arbi-
trary graphs. In the case of DAGs, however, it can be solved
using standard algorithms relying on topological sorting in
time O(|V |+ |E|) (Cormen et al., 2001), i.e., linear in the
size of the graph. Hence, the projection x can be deter-
mined in time O(p+ |E|).

4It follows from expanding the quadratic 1
2
‖x−w‖22 and the

fact that ‖x‖2 = 1, ∀x ∈ X (G).
5The longest path problem is commonly defined on graphs

with weighted edges instead of vertices. The latter is trivially
transformed to the former: set w(u, v)← w(v), ∀(u, v) ∈ E,
where w(u, v) denotes the weight of edge (u, v), and w(v) that
of vertex v. Auxiliary edges can be introduced for source vertices.
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4. Experiments
4.1. Synthetic Data.

We evaluate Alg. 1 and 2 on synthetic data, generated ac-
cording to the model of Sec. 2. We consider two metrics:
the loss function ‖x̂x̂> − x?x?‖F and the Support Jaccard
distance between the true signal x? and the estimate x̂.

For dimension p, we generate a (p, k, d)-layer graph G,
with k = log p and out-degree d = p/k, i.e., each vertex is
connected to all vertices in the following layer. We aug-
ment the graph with auxiliary source and terminal vertices
S and T with edges to the original vertices as in Fig. 1.

Per random realization, we first construct a signal x? ∈
X (G) as follows: we randomly select an S-T path π in G,
and assign random zero-mean Gaussian values to the en-
tries of x? indexed by π. The signal is scaled to unit length.
Given x?, we generate n independent samples according to
the spiked covariance model in (5).

Fig. 2 depicts the aforementioned distance metrics as a
function of the number n of observations. Results are the
average of 100 independent realizations. We repeat the pro-
cedure for multiple values of the ambient dimension p.
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Figure 2. Metrics on the estimate x̂ produced by Alg. 1 (Alg. 2 is
similar) as a function of the sample number (average of 100 real-
izations). Samples are generated according to the spiked covari-
ance model with signal x? ∈ X (G) for a (p, k, d)-layer graph G.
Here, k = log p and d = p/k. We repeat for multiple values of p.

Comparison with Sparse PCA. We compare the perfor-
mance of Alg. 1 and Alg. 2 with their sparse PCA coun-
terparts: the Truncated Power Method of (Yuan & Zhang,
2013) and the Spannogram Alg. of (Papailiopoulos et al.,
2013), respectively.

Fig. 3 depicts the metrics of interest as a function of the
number of samples, for all four algorithms. Here, sam-
ples are drawn i.i.d from N(0,Σ), where Σ has princi-
pal eigenvector equal to x?, and power law spectral decay:
λi = i−1/4. Results are an average of 100 realizations.

The side information on the structure of x? assists the re-
covery: both algorithms achieve improved performance
compared to their sparse PCA counterparts. Here, the
power method based algorithms exhibit inferior perfor-
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Figure 3. Estimation error between true signal x? and estimate x̂
from n samples. (average of 100 realizations). Samples generated
i.i.d. ∼ N(0,Σ), where Σ has eigenvalues λi = i−1/4 and
principal eigenvector x? ∈ X (G), for a (p, k, d)-layer graph G.
(p = 103, k = 50, d = 10).

mance, which may be attributed to poor initialization. We
note, though, that at least for the size of these experiments,
the power method algorithms are significantly faster.

4.2. Finance Data.

This dataset contains daily closing prices for 425 stocks
of the S&P 500 Index, over a period of 1259 days (5-
years): 02.01.2010 – 01.28.2015, collected from Yahoo!
Finance6. Stocks are classified, according to the Global
Industry Classification Standard7 (GICS), into 10 business
sectors e.g., Energy, Health Care, Information Technology,
etc (see Fig. 4 for the complete list).

We seek a set of stocks comprising a single representative
from each GICS sector, which captures most of the vari-
ance in the dataset. Equivalently, we want to compute a
structured principal component constrained to have exactly
10 nonzero entries; one for each GICS sector.

Consider a layer graph G = (V,E) (similar to the one
depicted in Fig. 1) on p = 425 vertices corresponding to
the 425 stocks, partitioned into k = 10 groups (layers)
L1, . . . ,L10 ⊆ V , corresponding to the GICS sectors.
Each vertex in layer Li has outgoing edges towards all (and
only the) vertices in layer Li+1. Note that (unlike Fig. 1)
layers do not have equal sizes, and the vertex out-degree
varies across layers. Finally, we introduce auxiliary ver-
tices S and T connected with the original graph as in Fig. 1.

Observe that any set of sector-representatives corresponds
to an S-T path in G, and vice versa. Hence, the desired set
of stocks can be obtained by finding a structured principal
component constrained to be supported along an S-T path
in G. Note that the order of layers in G is irrelevant.

Fig. 4 depicts the subset of stocks selected by the proposed
structure PCA algorithms (Alg. 1, 2). A single representa-
tive is selected from each sector. For comparison, we also
run two corresponding algorithms for sparse PCA, with

6
http://finance.yahoo.com

7
http://www.msci.com/products/indexes/sector/gics/

gics_structure.html

http://finance.yahoo.com
http://www.msci.com/products/indexes/sector/gics/gics_structure.html
http://www.msci.com/products/indexes/sector/gics/gics_structure.html
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sparsity parameter k = 10, equal to the number of sectors.
As expected, the latter yield components achieving higher
values of explained variance, but the selected stocks origi-
nate from only 5 out of the 10 sectors.
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10 Energy
15 Materials
20 Industrials
25 Consumer Discretionary
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Figure 4. The figure depicts the sets of 10 stocks extracted by
sparse PCA and our structure PCA approach. Sparse PCA (k =
10), selects 10 stocks from 5 GICS sectors (above). On the con-
trary, our structured PCA algorithms yield a set of 10 stocks con-
taining a representative from each sector (below) as desired.

4.3. Neuroscience Data.

We use a single-session/single-participant resting state
functional magnetic resonance imaging (resting state
fMRI) dataset. The participant was not instructed
to perform any explicit cognitive task throughout the
scan (Van Essen et al., 2013). Data was provided by the
Human Connectome Project, WU-Minn Consortium.8

Mean timeseries of n = 1200 points for p = 111 regions-
of-interest (ROIs) are extracted based on the Harvard-
Oxford Atlas (Desikan et al., 2006). The timescale of anal-
ysis is restricted to 0.01–0.1Hz. Based on recent results
on resting state fMRI neural networks, we set the posterior
cingulate cortex as a source node S, and the prefrontal cor-
tex as a target node T (Greicius et al., 2009). Starting from
S, we construct a layered graph with k = 4, based on the
physical (Euclidean) distances between the center of mass
of the ROIs: i.e., given layer Li, we construct Li+1 from
non-selected nodes that are close in the Euclidean sense.
Here, |L1| = 34 and |Li| = 25 for i = 2, 3, 4. Each
layer is fully connected with its previous one. No further
assumptions are derived from neurobiology.

The extracted component suggests a directed pathway from
the posterior cingulate cortex (S) to the prefrontal cor-
tex (T ), through the hippocampus (1), nucleus accum-
bens (2), parahippocampal gyrus (3), and frontal opercu-

8(Principal Investigators: David Van Essen and Kamil Ugur-
bil; 1U54MH091657) funded by the 16 NIH Institutes and Cen-
ters that support the NIH Blueprint for Neuroscience Research;
and by the McDonnell Center for Systems Neuroscience at Wash-
ington University.

lum (4) (Fig. 5). Hippocampus and the parahippocam-
pal gyrus are critical in memory encoding, and have been
found to be structurally connected to the posterior cingu-
late cortex and the prefrontal cortex (Greicius et al., 2009).
The nucleus accumbens receives input from the hippocam-
pus, and plays an important role in memory consolida-
tion (Wittmann et al., 2005). It is noteworthy that our ap-
proach has pinpointed the core neural components of the
memory network, given minimal information.

Figure 5. We highlight the nodes extracted for the neuroscience
example. Source node set to the posterior cingulate cortex (S:
PCC), and target to the prefrontal cortex (T: Prefrontal). The di-
rected path proceeded from the nucleus accumbens (1: NAcc),
hippocampus (2: Hipp), parahippocampal gyrus (3: Parahipp),
and to the frontal operculum (4: Operculum). Here, X coordi-
nates (in mm) denote how far from the midline the cuts are.

5. Conclusions
We introduced a new problem: sparse PCA where the set of
feasible support sets is determined by a graph on the vari-
ables. We focused on the special case where feasible spar-
sity patterns coincide with paths on the underlying graph.
We provided an upper bound on the statistical complexity
of the constrained quadratic maximization estimator (3),
under a simple graph model, complemented with a lower
bound on the minimax error. Finally, we proposed two al-
gorithms to extract a component accommodating the graph
constraints and applied them on real data from finance and
neuroscience.

A potential future direction is to expand the set of graph-
induced sparsity patterns (beyond paths) that can lead to
interpretable solutions and are computationally tractable.
We hope this work triggers future efforts to introduce and
exploit such underlying structure in diverse research fields.
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fMRI activation of dopaminergic midbrain is associated with
enhanced hippocampus-dependent long-term memory forma-
tion. Neuron, 45(3):459–467, 2005.

Yu, Bin. Assouad, Fano, and Le Cam. In Festschrift for Lucien
Le Cam, pp. 423–435. Springer, 1997.

Yuan, Xiao-Tong and Zhang, Tong. Truncated power method for
sparse eigenvalue problems. The Journal of Machine Learning
Research, 14(1):899–925, 2013.

Zou, Hui, Hastie, Trevor, and Tibshirani, Robert. Sparse principal
component analysis. Journal of computational and graphical
statistics, 15(2):265–286, 2006.


