4. Supplementary File

4.1. Proof of Lemma 1

Proof. Let $\mathbf{x} \in \mathbb{R}^{n N}$ and $g_{i} \in \partial \rho_{i}\left(x_{i}\right)$ for all $i \in \mathcal{N}$. From convexity of ρ_{i} and Cauchy-Schwarz, it follows that $\rho_{i}\left(x_{i}\right) \leq \rho\left(\bar{x}_{i}\right)+\left\|g_{i}\right\|_{2}\left\|x_{i}-\bar{x}_{i}\right\|_{2}$ for all $i \in \mathcal{N}$. Hence, we have

$$
\lambda \bar{\rho}(\mathbf{x})+f(\mathbf{x}) \leq \lambda \rho(\overline{\mathbf{x}})+f(\overline{\mathbf{x}})+\sum_{i \in \mathcal{N}}\left(\lambda B_{i}\left\|x_{i}-\bar{x}_{i}\right\|_{2}+\nabla_{x_{i}} f(\overline{\mathbf{x}})^{\top}\left(x_{i}-\bar{x}_{i}\right)+\frac{L_{i}}{2}\left\|x_{i}-\bar{x}_{i}\right\|_{2}^{2}\right)
$$

Minimizing on both sides and using the separability of the right side, we have $\min _{\mathbf{x} \in \mathbb{R}^{n N}} \lambda \bar{\rho}(\mathbf{x})+f(\mathbf{x}) \leq \lambda \bar{\rho}(\overline{\mathbf{x}})+$ $f(\overline{\mathbf{x}})+\sum_{i \in \mathcal{N}} \min _{x_{i} \in \mathbb{R}^{n}} h_{i}\left(x_{i}\right)$, where $h_{i}\left(x_{i}\right):=\nabla_{x_{i}} f(\overline{\mathbf{x}})^{\top}\left(x_{i}-\bar{x}_{i}\right)+\lambda B_{i}\left\|x_{i}-\bar{x}_{i}\right\|_{2}+\frac{L_{i}}{2}\left\|x_{i}-\bar{x}_{i}\right\|_{2}^{2}$. Let $\bar{x}_{i}^{*}:=$ $\operatorname{argmin}_{x_{i} \in \mathbb{R}^{n}} h_{i}\left(x_{i}\right)$. Then the first-order optimality conditions imply that $0 \in \nabla_{x_{i}} f(\overline{\mathbf{x}})+L_{i}\left(\bar{x}_{i}^{*}-\bar{x}_{i}\right)+\lambda B_{i} \partial \| x_{i}-$ $\bar{x}_{i} \|\left._{2}\right|_{x_{i}=\bar{x}_{i}^{*}}$ for all $i \in \mathcal{N}$.
Let $\mathcal{I}:=\left\{i \in \mathcal{N}:\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2} \leq \lambda B_{i}\right\}$. For each $i \in \mathcal{N}$, there are two possibilities.
Case 1: Suppose that $i \in \mathcal{I}$, i.e., $\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2} \leq \lambda B_{i}$. Since $\min _{x_{i} \in \mathbb{R}^{n}} h_{i}\left(x_{i}\right)$ has a unique solution, and $-\nabla_{x_{i}} f(\overline{\mathbf{x}}) \in$ $\left.\lambda B_{i} \partial\left\|x_{i}-\bar{x}_{i}\right\|_{2}\right|_{x_{i}=\bar{x}_{i}}$ when $\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2} \leq \lambda B_{i}$, it follows that $\bar{x}_{i}^{*}=\bar{x}_{i}$ if and only if $\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2} \leq \lambda B_{i}$. Hence, $h_{i}\left(\bar{x}_{i}^{*}\right)=0$.

Case 2: Suppose that $i \in \mathcal{I}^{c}:=\mathcal{N} \backslash \mathcal{I}$, i.e., $\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2}>\lambda B_{i}$. In this case, $\bar{x}_{i}^{*} \neq \bar{x}_{i}$. From the first-order optimality condition, we have $\nabla_{x_{i}} f(\overline{\mathbf{x}})+L_{i}\left(\bar{x}_{i}^{*}-\bar{x}_{i}\right)+\lambda B_{i} \frac{\bar{x}_{i}^{*}-\bar{x}_{i}}{\left\|\bar{x}_{i}^{*}-\bar{x}_{i}\right\|_{2}}=0$. Let $s_{i}:=\frac{\bar{x}_{i}^{*}-\bar{x}_{i}}{\left\|\bar{x}_{i}^{*}-\bar{x}_{i}\right\|_{2}}$ and $t_{i}:=\left\|\bar{x}_{i}^{*}-\bar{x}_{i}\right\|_{2}$, then $s_{i}=\frac{-\nabla_{x_{i}} f(\overline{\mathbf{x}})}{L_{i} t_{i}+\lambda B_{i}}$. Since $\left\|s_{i}\right\|_{2}=1$, it follows that $t_{i}=\frac{\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2}-\lambda B_{i}}{L_{i}}>0$, and $s_{i}=\frac{-\nabla_{x_{i}} f(\overline{\mathbf{x}})}{\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2}}$. Hence, $\bar{x}_{i}^{*}=$ $\bar{x}_{i}-\frac{\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2}-\lambda B_{i}}{L_{i}} \frac{\nabla_{x_{i}} f(\overline{\mathbf{x}})}{\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2}}$, and $h_{i}\left(\bar{x}_{i}^{*}\right)=-\frac{\left(\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2}-\lambda B_{i}\right)^{2}}{2 L_{i}}$.
From the α-optimality of $\overline{\mathbf{x}}$, it follows that

$$
\sum_{i \in \mathcal{I}} \frac{\left(\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2}-\lambda B_{i}\right)^{2}}{2 L_{i}}=-\sum_{i \in \mathcal{I}} h_{i}\left(\bar{x}_{i}^{*}\right) \leq \lambda \bar{\rho}(\overline{\mathbf{x}})+f(\overline{\mathbf{x}})-\min _{\mathbf{x} \in \mathbb{R}^{n N}} \lambda \bar{\rho}(\mathbf{x})+f(\mathbf{x}) \leq \alpha
$$

which implies that $\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2} \leq \sqrt{2 L_{i} \alpha}+\lambda B_{i}$ for all $i \in \mathcal{I}$. Moreover, $\left\|\nabla_{x_{i}} f(\overline{\mathbf{x}})\right\|_{2} \leq \lambda B_{i}$ for all $i \in \mathcal{I}^{c}$. Hence, the result follows from these two inequalities.

4.2. Proof of Lemma 2

Proof. For all $i \in \mathcal{N}$, since $\nabla \gamma_{i}$ is Lipschitz continuous with constant $L_{\gamma_{i}}$, for any $\mathbf{x}, \overline{\mathbf{x}} \in \mathbb{R}^{n N}$, we have $\gamma_{i}\left(x_{i}\right) \leq$ $\gamma_{i}\left(\bar{x}_{i}\right)+\nabla \gamma_{i}\left(\bar{x}_{i}\right)^{\top}\left(x_{i}-\bar{x}_{i}\right)+\frac{L_{\gamma_{i}}}{2}\left\|x_{i}-\bar{x}_{i}\right\|_{2}^{2}$. Then, it follows that

$$
\begin{align*}
\bar{\gamma}(\mathbf{x}) & \leq \sum_{i=1}^{N} \gamma_{i}\left(\bar{x}_{i}\right)+\nabla \gamma_{i}\left(\bar{x}_{i}\right)^{\top}\left(x_{i}-\bar{x}_{i}\right)+\frac{L_{\gamma_{i}}}{2}\left\|x_{i}-\bar{x}_{i}\right\|_{2}^{2} \\
& \leq \bar{\gamma}(\overline{\mathbf{x}})+\nabla \bar{\gamma}(\overline{\mathbf{x}})^{\top}(\mathbf{x}-\overline{\mathbf{x}})+\sum_{i=1}^{N} \frac{L_{\gamma_{i}}}{2}\left\|x_{i}-\bar{x}_{i}\right\|_{2}^{2} \tag{15}
\end{align*}
$$

Let $h^{(k)}(\mathbf{x})=\frac{1}{2}\left\|A \mathbf{x}-b-\lambda^{(k)} \theta^{(k)}\right\|_{2}^{2}$. It follows that $\nabla h^{(k)}$ is Lipschitz continuous with constant $\sigma_{\max }^{2}(A)$. Since $f^{(k)}=\lambda^{(k)} \bar{\gamma}+h^{(k)}$, the result follows from (15).

4.3. Proof of Lemma 3

Proof. Fix $k \geq 1$. Suppose that $\mathbf{x}^{(k)}$ satisfies (9)(a). Then Lemma 1 implies that for all $i \in \mathcal{N}$

$$
\left\|\nabla_{x_{i}} f^{(k)}\left(\mathbf{x}^{(k)}\right)\right\|_{2}=\left\|\lambda^{(k)} \nabla \gamma_{i}\left(x_{i}^{(k)}\right)+A_{i}^{\top}\left(A \mathbf{x}^{(k)}-b-\lambda^{(k)} \theta^{(k)}\right)\right\|_{2} \leq \sqrt{2 L_{i}^{(k)} \alpha^{(k)}}+\lambda^{(k)} B_{i}
$$

Now, suppose that $\mathbf{x}^{(k)}$ satisfies (9)(b). Then triangular inequality immediately implies that $\left\|\nabla_{x_{i}} f^{(k)}\left(\mathbf{x}^{(k)}\right)\right\|_{2} \leq$ $\xi^{(k)} / \sqrt{N}+\lambda^{(k)} B_{i}$ for all $i \in \mathcal{N}$. Combining the two inequalities, and further using triangular Cauchy-Schwarz inequalities, it follows for all $i \in \mathcal{N}$ that $\left\|A \mathbf{x}^{(k)}-b-\lambda^{(k)} \theta^{(k)}\right\|_{2} \leq \frac{\max \left\{\sqrt{2 L_{i}^{(k)} \alpha_{k}}, \xi^{(k)} / \sqrt{N}\right\}+\lambda^{(k)}\left(B_{i}+\left\|\nabla \gamma\left(x_{i}^{(k)}\right)\right\|_{2}\right)}{\sigma_{\min }\left(A_{i}\right)}$. Hence, we conclude by diving the above inequality by $\lambda^{(k)}$ and using the definition of $\theta^{(k+1)}$.

4.4. Proof of Theorem 1

Proof. Let $A=\left[A_{1}, A_{2}, \ldots, A_{N}\right] \in \mathbb{R}^{m \times n N}$ such that $A_{i} \in \mathbb{R}^{m \times n}$ for all $i \in \mathcal{N}$. Throughout the proof we assume that $\sigma_{\max }(A) \geq \sqrt{\max _{i \in \mathcal{N}} d_{i}+1}$, and $\sigma_{\min }\left(A_{i}\right)=\sqrt{d_{i}} \geq 1$ for all $i \in \mathcal{N}$, where $d_{i} \geq 1$ is the degree of $i \in \mathcal{N}$. Indeed, when A is chosen as described in Section 2.2 .3 corresponding to graph \mathcal{G}, recall that we showed $\sigma_{\max }^{2}(A)=\psi_{1}$, where ψ_{1} is the largest eigenvalue of the Laplacian Ω corresponding to \mathcal{G}. It is shown in (Grone \& Merris, 1994) that when \mathcal{G} is connected, one has $\psi_{1} \geq \max _{i \in \mathcal{N}} d_{i}+1>1$. Hence, $\sigma_{\max }(A) \geq \sqrt{\max _{i \in \mathcal{N}} d_{i}+1}>1$. Moreover, for A chosen as described in Section 2.2.3 corresponding to graph \mathcal{G}, again recall that $\sigma_{\min }\left(A_{i}\right)=\sqrt{d_{i}}$ for all $i \in \mathcal{N}$.
To keep notation simple, without loss of generality, we assume that $\underline{\gamma_{i}}=0$ for all $i \in \mathcal{N}$. Hence, $\bar{\gamma}(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n N}$. Let \mathbf{x}^{*} be a minimizer of (6). By Lipschitz continuity of $\nabla \gamma_{i}$, we have for all $i \in \mathcal{N}$

$$
\begin{equation*}
\left\|\nabla \gamma\left(x_{i}\right)\right\|_{2} \leq L_{\gamma_{i}}\left\|x_{i}-x_{i}^{*}\right\|_{2}+\left\|\nabla \gamma_{i}\left(x_{i}^{*}\right)\right\|_{2} \tag{16}
\end{equation*}
$$

We prove the theorem using induction. We show that, for an appropriately chosen bound $R,\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2} \leq R$ implies that $\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{*}\right\|_{2} \leq R$, for all $k \geq 1$. Fix $k \geq 1$. First, suppose that $\mathbf{x}^{(k+1)}$ satisfies (9)(a), i.e. $P^{(k+1)}\left(\mathbf{x}^{(k+1)}\right) \leq$ $P^{(k+1)}\left(\mathbf{x}^{*}\right)+\alpha^{(k+1)}$. By dividing both sides by $\lambda^{(k+1)}$, it follows from Assumption $1, A \mathbf{x}^{*}=b$, and $f^{(k+1)}(\cdot) \geq 0$ that

$$
\begin{equation*}
\bar{\tau}\left\|\mathbf{x}^{(k+1)}\right\|_{2} \leq \bar{\rho}\left(\mathbf{x}^{*}\right)+\bar{\gamma}\left(\mathbf{x}^{*}\right)+\frac{\lambda^{(k+1)}}{2}\left(\left\|\theta^{(k+1)}\right\|_{2}^{2}+\frac{\alpha^{(k+1)}}{\left(\lambda^{(k+1)}\right)^{2}}\right) \tag{17}
\end{equation*}
$$

Next, suppose $\mathbf{x}^{(k+1)}$ satisfies (9)(b). It follows from convexity of $P^{(k+1)}$ and Cauchy-Schwarz inequality that $P^{(k+1)}\left(\mathbf{x}^{(k+1)}\right) \leq P^{(k+1)}\left(\mathbf{x}^{*}\right)+\xi^{(k+1)}\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{*}\right\|_{2}$. Again, dividing both sides by $\lambda^{(k+1)}$, we get

$$
\begin{equation*}
\bar{\tau}\left\|\mathbf{x}^{(k+1)}\right\|_{2} \leq \bar{\rho}\left(\mathbf{x}^{*}\right)+\bar{\gamma}\left(\mathbf{x}^{*}\right)+\frac{\lambda^{(k+1)}}{2}\left\|\theta^{(k+1)}\right\|_{2}^{2}+\frac{\xi^{(k+1)}}{\lambda^{(k+1)}}\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{*}\right\|_{2} \tag{18}
\end{equation*}
$$

Combining the bounds for both cases, (17) and (18), and using triangular inequality, we have

$$
\begin{equation*}
\left(\bar{\tau}-\frac{\xi^{(k+1)}}{\lambda^{(k+1)}}\right)\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{*}\right\|_{2} \leq \bar{F}^{*}+\bar{\tau}\left\|\mathbf{x}^{*}\right\|_{2}+\frac{\lambda^{(k+1)}}{2}\left(\left\|\theta^{(k+1)}\right\|_{2}^{2}+\frac{\alpha^{(k+1)}}{\left(\lambda^{(k+1)}\right)^{2}}\right) \tag{19}
\end{equation*}
$$

for all $k \geq 0$. Note that $\left\{\lambda^{(k)}, \alpha^{(k)}, \xi^{(k)}\right\}$ is chosen in DFAL such that $\frac{\alpha^{(k)}}{\left(\lambda^{(k)}\right)^{2}}=\frac{\alpha^{(1)}}{\left(\lambda^{(1)}\right)^{2}}$ for all $k>1$, and both $\frac{\xi^{(k)}}{\lambda^{(k)}} \searrow 0$ and $\lambda^{(k)} \searrow 0$ monotonically. Since $\sigma_{\min }\left(A_{i}\right) \geq 1$ for all $i \in \mathcal{N}$, the inductive assumption $\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2} \leq R$, (16), and Lemma 3 together imply that

$$
\begin{equation*}
\left\|\theta^{(k+1)}\right\|_{2} \leq \min _{i \in \mathcal{N}}\left\{\max \left\{\sqrt{2 L_{i}^{(1)} \frac{\alpha^{(1)}}{\left(\lambda^{(1)}\right)^{2}}}, \frac{\xi^{(1)}}{\lambda^{(1)}}\right\}+B_{i}+\left\|\nabla \gamma_{i}\left(x_{i}^{*}\right)\right\|_{2}+L_{\gamma_{i}} R\right\} \tag{20}
\end{equation*}
$$

To simplify bounds further, choose $\alpha^{(1)}=\frac{1}{4 N}\left(\lambda^{(1)} \bar{\tau}\right)^{2}$, and $\xi^{(1)}=\frac{1}{2} \lambda^{(1)} \bar{\tau}$ for $\lambda^{(1)} \leq \sigma_{\max }^{2}(A) / \bar{L}$, where $\bar{L}=$ $\max _{i \in \mathcal{N}}\left\{L_{\gamma_{i}}\right\}$. Let $\bar{B}:=\max _{i \in \mathcal{N}} B_{i}$ and $\bar{G}:=\max \left\{\left\|\nabla \gamma_{i}\left(x_{i}^{*}\right)\right\|_{2}: i \in \mathcal{N}\right\}$. Together with (19), (20) and $\sigma_{\max }(A) \geq 1$, this choice of parameters implies that

$$
\frac{\bar{\tau}}{2}\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{*}\right\|_{2} \leq \bar{F}^{*}+\bar{\tau}\left\|\mathbf{x}^{*}\right\|_{2}+\frac{\lambda^{(1)}}{2}\left[\left(\frac{\bar{\tau} \sigma_{\max }(A)}{\sqrt{N}}+\bar{B}+\bar{G}+\bar{L} R\right)^{2}+\frac{\bar{\tau}^{2}}{4 N}\right]
$$

Define $\beta_{1}:=\frac{2}{\bar{\tau}}\left(\bar{F}^{*}+\bar{\tau}\left\|\mathbf{x}^{*}\right\|_{2}\right), \beta_{2}:=\frac{\bar{\tau} \sigma_{\max }(A) / \sqrt{N}+\bar{B}+\bar{G}}{\sqrt{\bar{\tau}}}, \beta_{3}:=\frac{\bar{L}}{\sqrt{\bar{\tau}}}$, and $\beta_{4}:=\frac{\bar{\tau}}{4 N}$. Then we have that $\| \mathbf{x}^{(k+1)}-$ $\mathbf{x}^{*} \|_{2} \leq \beta_{1}+\lambda^{(1)}\left[\left(\beta_{2}+\beta_{3} R\right)^{2}+\beta_{4}\right]$.

Note that we are free to choose any $\lambda^{(1)}>0$ satisfying $\lambda^{(1)} \leq \sigma_{\max }^{2}(A) / \bar{L}$. Our objective is to show that by appropriately choosing $\lambda^{(1)}$, we can guarantee that $\beta_{1}+\lambda^{(1)}\left[\left(\beta_{2}+\beta_{3} R\right)^{2}+\beta_{4}\right] \leq R$, which would then complete the inductive proof. This is indeed true if the above quadratic inequality in R, has a solution, or equivalently if the discriminant

$$
\Delta=\left(2 \lambda^{(1)} \beta_{2} \beta_{3}-1\right)^{2}-4 \lambda^{(1)} \beta_{3}^{2}\left[\lambda^{(1)}\left(\beta_{2}^{2}+\beta_{4}\right)+\beta_{1}\right]
$$

is non-negative. Note that Δ is continuous in $\lambda^{(1)}$, and $\lim _{\lambda^{(1)} \rightarrow 0} \Delta=1$. Thus, for all sufficiently small $\lambda^{(1)}>0$, we have $\Delta \geq 0$. Hence, we can set $R=\frac{1-2 \lambda^{(1)} \beta_{2} \beta_{3}-\sqrt{\Delta}}{2 \lambda^{(1)} \beta_{3}{ }^{2}}$ for some $\lambda^{(1)}>0$ such that $\Delta \geq 0$, and this will imply that $\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{*}\right\|_{2} \leq R$ whenever $\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2} \leq R$ for all $k \geq 1$.
The induction will be complete if we can show that $\left\|\mathbf{x}^{(1)}-\mathbf{x}^{*}\right\|_{2} \leq R$. Note that in DFAL we set $\theta^{(1)}=\mathbf{0}$. Hence, for $k=0$, (19) implies that $\left\|\mathbf{x}^{(1)}-\mathbf{x}^{*}\right\|_{2} \leq \beta_{1}+\lambda^{(1)} \beta_{4}$. Hence, our choice of R guarantees that $\left\|\mathbf{x}^{(1)}-\mathbf{x}^{*}\right\|_{2} \leq R$. This completes the induction.

Following the same arguments leading to (19), it can also be shown that for all $k \geq 0$

$$
\left(\bar{\tau}-\frac{\xi^{(k+1)}}{\lambda^{(k+1)}}\right)\left\|\mathbf{x}_{*}^{(k+1)}-\mathbf{x}^{*}\right\|_{2} \leq \bar{F}^{*}+\bar{\tau}\left\|\mathbf{x}^{*}\right\|_{2}+\frac{\lambda^{(k+1)}}{2}\left\|\theta^{(k+1)}\right\|_{2}^{2}
$$

Therefore, we can conclude that $\left\|\mathbf{x}_{*}^{(k)}-\mathbf{x}^{*}\right\| \leq R$ for all $k \geq 1$ holds for the same R we selected above.
Note that Δ is a concave quadratic of $\lambda^{(1)}$ such that $\Delta=1$ when $\lambda^{(1)}=0$; hence, one of its roots is positive and the other one is negative. Moreover, $R \leq \frac{1}{2 \lambda^{(1)} \beta_{3}{ }^{2}}-\frac{\beta_{2}}{\beta_{3}}$ and the bound on R is decreasing in $\lambda^{(1)}>0$. Hence, in order to get a smaller bound on R, we will choose $\lambda^{(1)}$ as the positive root of Δ. In particular, we set $\lambda^{(1)}=\frac{\sqrt{\left(\beta_{2}+\beta_{3} \beta_{1}\right)^{2}+\beta_{4}}-\left(\beta_{2}+\beta_{3} \beta_{1}\right)}{2 \beta_{3} \beta_{4}}$.

4.5. Proof of Theorem 2

Proof. The proof directly follows from Theorem 3.3 in (Aybat \& Iyengar, 2012). For the sake of completeness, we also provide the proof here. Let \mathbf{x}^{*} denote an optimal solution to (6).
Note that (a) follows immediately from Cauchy-Schwarz and the definition of $\theta^{(k+1)}$.

$$
\left\|A \mathbf{x}^{(k)}-b\right\|_{2} \leq\left\|A \mathbf{x}^{(k)}-b-\lambda^{(k)} \theta^{(k)}\right\|_{2}+\lambda^{(k)}\left\|\theta^{(k)}\right\|_{2}=\lambda^{(k)}\left(\left\|\theta^{(k+1)}\right\|_{2}+\left\|\theta^{(k)}\right\|_{2}\right) \leq 2 B_{\theta} \lambda^{(k)}
$$

First, we prove the second inequality in (b). Suppose that $\mathbf{x}^{(k)}$ satisfies (9)(a), which implies that $\bar{F}\left(\mathbf{x}^{(k)}\right)+$ $\frac{\lambda^{(k)}}{2}\left\|\theta^{(k+1)}\right\|_{2}^{2} \leq \bar{F}\left(\mathbf{x}^{*}\right)+\frac{\lambda^{(k)}}{2}\left\|\theta^{(k)}\right\|_{2}^{2}+\frac{\alpha^{(k)}}{\lambda^{(k)}}$. Now, suppose that $\mathbf{x}^{(k)}$ satisfies (9)(b). From the convexity of $P^{(k)}$ and Cauchy-Schwarz, it follows that $P^{(k)}\left(\mathbf{x}^{(k)}\right) \leq P^{(k)}\left(\mathbf{x}^{*}\right)+\xi^{(k)}\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2}$. Hence, dividing it by $\lambda^{(k)}$, we have $\bar{F}\left(\mathbf{x}^{(k)}\right)+\frac{\lambda^{(k)}}{2}\left\|\theta^{(k+1)}\right\|_{2}^{2} \leq \bar{F}\left(\mathbf{x}^{*}\right)+\frac{\lambda^{(k)}}{2}\left\|\theta^{(k)}\right\|_{2}^{2}+\frac{\xi^{(k)}}{\lambda^{(k)}}$. Therefore, for all $k \geq 1, \mathbf{x}^{(k)}$ satisfies the second inequality in (b) since it also satisfies

$$
\bar{F}\left(\mathbf{x}^{(k)}\right)-\bar{F}^{*} \leq \lambda^{(k)}\left(\frac{\left\|\theta^{(k)}\right\|_{2}^{2}-\left\|\theta^{(k+1)}\right\|_{2}^{2}}{2}+\frac{\max \left\{\alpha^{(k)}, \xi^{(k)}\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2}\right\}}{\left(\lambda^{(k)}\right)^{2}}\right)
$$

Now, in order to prove the first inequality in (b), we will exploit the primal-dual relations of the following two pairs of problems:

$$
\begin{array}{ll}
(\mathcal{P}): \min _{\mathbf{x} \in \mathbb{R}^{n N}}\{\bar{F}(\mathbf{x}): A \mathbf{x}=b\}, & (\mathcal{D}): \max _{\theta \in \mathbb{R}^{m}} b^{\top} \theta-\bar{F}^{*}\left(A^{\top} \theta\right), \\
\left(\mathcal{P}_{k}\right): \min _{\mathbf{x} \in \mathbb{R}^{n N}} \lambda^{(k)} \bar{F}(\mathbf{x})+\frac{1}{2}\left\|A \mathbf{x}-b_{k}\right\|_{2}^{2}, & \left(\mathcal{D}_{k}\right): \max _{\theta \in \mathbb{R}^{m}} \lambda^{(k)}\left(b^{\top} \theta-\bar{F}^{*}\left(A^{\top} \theta\right)\right)-\frac{\left(\lambda^{(k)}\right)^{2}}{2} h(\theta),
\end{array}
$$

where $b_{k}:=b+\lambda^{(k)} \theta^{(k)}, h(\theta):=\left\|\theta-\theta^{(k)}\right\|_{2}^{2}-\left\|\theta^{(k)}\right\|_{2}^{2}$, and \bar{F}^{*} denotes the convex conjugate of \bar{F}. Note that problem $\left(\mathcal{P}_{k}\right)$ is nothing but the subproblem in (7). Therefore, from weak-duality between $\left(\mathcal{P}_{k}\right)$ and $\left(\mathcal{D}_{k}\right)$, it follows that

$$
P^{(k)}\left(\mathbf{x}^{(k)}\right)=\lambda^{(k)} \bar{F}\left(\mathbf{x}^{(k)}\right)+\frac{1}{2}\left\|A \mathbf{x}^{(k)}-b_{k}\right\|_{2}^{2} \geq \lambda^{(k)}\left(b^{\top} \theta^{*}-\bar{F}^{*}\left(A^{\top} \theta^{*}\right)\right)-\frac{\left(\lambda^{(k)}\right)^{2}}{2} h\left(\theta^{*}\right)
$$

Note that from strong duality between (\mathcal{P}) and (\mathcal{D}), it follows that $\bar{F}^{*}=\bar{F}\left(\mathbf{x}^{*}\right)=b^{\top} \theta^{*}-\bar{F}^{*}\left(A^{\top} \theta^{*}\right)$. Therefore, dividing the above inequality by $\lambda^{(k)}$, we obtain

$$
\bar{F}\left(\mathbf{x}^{(k)}\right)-\bar{F}^{*} \geq-\frac{\lambda^{(k)}}{2}\left(\left\|\theta^{*}\right\|_{2}^{2}-2\left(\theta^{*}\right)^{\top} \theta^{(k)}+\left\|\theta^{(k+1)}\right\|_{2}^{2}\right) \geq-\frac{\lambda^{(k)}}{2}\left(\left\|\theta^{*}\right\|_{2}+B_{\theta}\right)^{2}
$$

4.6. Proof of Theorem 3

Proof. We assume that $\sigma_{\max }(A) \geq \sqrt{\max _{i \in \mathcal{N}} d_{i}+1}$, and $\sigma_{\min }\left(A_{i}\right)=\sqrt{d_{i}} \geq 1$ for all $i \in \mathcal{N}$, where d_{i} denotes the degree of $i \in \mathcal{N}$. As discussed in the proof of Theorem 1, this is a valid assumption for distributed optimization problem in (4). Let θ^{*} denote an optimal dual solution to (6). Note that from the first-order optimality conditions for (6), we have $\mathbf{0} \in \nabla \gamma_{i}\left(x_{i}^{*}\right)+A_{i}^{\top} \theta^{*}+\left.\partial \rho_{i}\left(x_{i}\right)\right|_{x_{i}=x_{i}^{*}} ;$ hence, $\left\|A_{i}^{\top} \theta^{*}\right\|_{2} \leq B_{i}+G_{i}$. Therefore, $\left\|\theta^{*}\right\|_{2} \leq \min _{i \in \mathcal{N}} \frac{B_{i}+G_{i}}{\sigma_{\min }\left(A_{i}\right)}$.

Given $0<\lambda^{(1)} \leq \sigma_{\text {max }}^{2}(A) / \bar{L}$, choose $\alpha^{(1)}, \xi^{(1)}>0$ such that $\alpha^{(1)}=\frac{1}{4 N}\left(\lambda^{(1)} \bar{\tau}\right)^{2}$, and $\xi^{(1)}=\frac{1}{2} \lambda^{(1)} \bar{\tau}$. Then Lemma 3 and $\sigma_{\max }(A) \geq 1$ together imply that for all $k \geq 1$

$$
\begin{equation*}
\left\|\theta^{(k)}\right\|_{2} \leq \min _{i \in \mathcal{N}}\left\{\frac{\bar{\tau} \sigma_{\max }(A) / \sqrt{N}+B_{i}+G_{i}}{\sigma_{\min }\left(A_{i}\right)}\right\}:=B_{\theta} . \tag{21}
\end{equation*}
$$

Hence, note that $\left\|\theta^{*}\right\|_{2} \leq B_{\theta}$.
To simplify notation, suppose that $\lambda^{(1)}=\min \left\{1, \sigma_{\max }^{2}(A) / \bar{L}\right\}=1$. (19) implies that for all $k \geq 1$

$$
\begin{equation*}
\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2} \leq \frac{2}{\bar{\tau}}\left[\bar{F}^{*}+\bar{\tau}\left\|x^{*}\right\|_{2}+\frac{1}{2}\left(B_{\theta}^{2}+\frac{\bar{\tau}^{2}}{4 N}\right)\right]:=B_{x} \tag{22}
\end{equation*}
$$

Note that (22) implies that $\frac{\xi^{(1)}}{\left(\lambda^{(1)}\right)^{2}} B_{x}=\frac{1}{\lambda^{(1)}} \frac{\bar{\tau}}{2} B_{x} \geq \frac{1}{2} B_{\theta}^{2}+\frac{\bar{\tau}^{2}}{8 N} \geq \frac{5}{8 N} \bar{\tau}^{2} \geq \frac{\alpha^{(1)}}{\left(\lambda^{(1)}\right)^{2}}$, where we used the fact $B_{\theta} \geq$ $\frac{\sigma_{\max }(A)}{\max _{i \in \mathcal{N}}\left\{\sigma_{\min }\left(A_{i}\right)\right\}} \frac{\bar{\tau}}{\sqrt{N}} \geq \frac{\bar{\tau}}{\sqrt{N}}$. Note that the last inequality follows from our assumption on A stated at the beginning of the proof, i.e. $\sigma_{\max }(A) \geq \sqrt{\max _{i \in \mathcal{N}} d_{i}+1}$ and $\sigma_{\min }\left(A_{i}\right)=d_{i}$ for all $i \in \mathcal{N}$. Hence, Theorem $2, \lambda^{(1)}=1$, and $\left\|\theta^{*}\right\|_{2} \leq B_{\theta}$ imply that

$$
\begin{align*}
N_{\text {DFAL }}^{f}(\epsilon) & \leq \log _{\frac{1}{c}}\left(\frac{2 B_{\theta}}{\epsilon}\right)=\log _{\frac{1}{c}}\left(2 \min _{i \in \mathcal{N}}\left\{\frac{\bar{\tau} \sigma_{\max }(A) / \sqrt{N}+B_{i}+G_{i}}{\sigma_{\min }\left(A_{i}\right) \epsilon}\right\}\right):=\bar{N}^{f} \tag{23}\\
N_{\text {DFAL }}^{o}(\epsilon) & \leq \log _{\frac{1}{c}}\left(\frac{1}{\epsilon} \max \left\{\frac{1}{2}\left(\left\|\theta^{*}\right\|_{2}+B_{\theta}\right)^{2}, B_{\theta}^{2}+\bar{F}^{*}+\bar{\tau}\left\|x^{*}\right\|_{2}+\frac{\bar{\tau}^{2}}{8 N}\right\}\right) \\
& =\log _{\frac{1}{c}}\left(\frac{2 B_{\theta}^{2}+\bar{F}^{*}+\bar{\tau}\left\|x^{*}\right\|_{2}+\frac{\bar{\tau}^{2}}{8 N}}{\epsilon}\right):=\bar{N}^{o} \tag{24}
\end{align*}
$$

Since $\alpha^{(1)}=\frac{1}{4 N}\left(\lambda^{(1)} \bar{\tau}\right)^{2}$, we have $\sqrt{\alpha^{(k)}}=\frac{\bar{\tau}}{\sqrt{4 N}} c^{k}$. Hence, Lemma 5 implies that

$$
\begin{equation*}
N^{(k)} \leq 2 B_{x} \sqrt{\frac{2\left(\lambda^{(k)} \bar{L}+\sigma_{\max }^{2}(A)\right)}{\alpha^{(k)}}} \leq \frac{8 B_{x} \sqrt{N}}{\bar{\tau}} \sigma_{\max }(A) c^{-k} \tag{25}
\end{equation*}
$$

Hence, (23) and (25) imply that the total number of MS-APG iterations to compute an ϵ-feasible solution can be bounded above:

$$
\begin{aligned}
\sum_{k=1}^{N_{\text {DFAL }}^{f}(\epsilon)} N^{(k)} & \leq \frac{8 B_{x} \sqrt{N}}{\bar{\tau}} \sigma_{\max }(A) \sum_{k=1}^{\bar{N}^{f}} c^{-k} \leq \frac{8 B_{x} \sqrt{N}}{c(1-c) \bar{\tau}} \sigma_{\max }(A)\left(\frac{1}{c}\right)^{\bar{N}^{f}} \\
& \leq \frac{16 B_{x} \sqrt{N}}{c(1-c) \bar{\tau}} \min _{i \in \mathcal{N}}\left\{\frac{\bar{\tau} \sigma_{\max }(A) / \sqrt{N}+B_{i}+G_{i}}{\sigma_{\min }\left(A_{i}\right) \epsilon}\right\} \frac{\sigma_{\max }(A)}{\epsilon}=\mathcal{O}\left(\frac{\sigma_{\max }^{2}(A)}{\min _{i \in \mathcal{N}} \sigma_{\min }\left(A_{i}\right)} \frac{1}{\epsilon}\right)
\end{aligned}
$$

Similarly, (24) and (25) imply that the total number of MS-APG iterations to compute an ϵ-optimal solution can be bounded above:

$$
\begin{equation*}
\sum_{k=1}^{N_{\mathrm{DFAL}}^{o}(\epsilon)} N^{(k)} \leq \frac{8 B_{x} \sqrt{N}}{c(1-c) \bar{\tau}} \sigma_{\max }(A)\left(\frac{1}{c}\right)^{\bar{N}^{0}}=\mathcal{O}\left(\frac{\sigma_{\max }^{3}(A)}{\min _{i \in \mathcal{N}} \sigma_{\min }^{2}\left(A_{i}\right)} \frac{1}{\epsilon}\right) \tag{26}
\end{equation*}
$$

4.7. Proof of Lemma 6

Proof. Given any convex function $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\bar{x} \in \mathbb{R}^{n}$, in order to simplify the notation throughout the proof, $\left.\partial \rho(x)\right|_{x=\bar{x}} \subset \mathbb{R}^{n}$, the subdifferential of ρ at \bar{x}, will be written as $\partial \rho(\bar{x})$. Given $\bar{x} \in \mathbb{R}^{n}$, there exists $\nu \in \partial P(\bar{x})$ such that $\|\nu\|_{2} \leq \xi$, if and only if $\left\|\nu^{*}\right\| \leq \xi$, where $\nu^{*}=\operatorname{argmin}\left\{\|\nu\|_{2}: \nu \in \partial P(\bar{x})\right\}$. Note that $\partial P(\bar{x})=\lambda \partial \rho(\bar{x})+\nabla f(\bar{x})$, and

$$
\begin{equation*}
\partial \rho(\bar{x})=\beta_{1} \prod_{k=1}^{K} \partial\left\|\bar{x}_{g(k)}\right\|_{1}+\beta_{2} \prod_{k=1}^{K} \partial\left\|\bar{x}_{g(k)}\right\|_{2} \tag{27}
\end{equation*}
$$

where \prod denotes the Cartesian product. Since the groups $\{g(k)\}_{k=1}^{K}$ are not overlapping with each other, the minimization problem is separable in groups. Hence, for all $k \in[1, K]$, we have $\nu_{g(k)}^{*}=\pi_{g(k)}^{*}+\omega_{g(k)}^{*}+\nabla_{x_{g(k)}} f(\bar{x})$ such that

$$
\begin{align*}
\left(\pi_{g(k)}^{*}, \omega_{g(k)}^{*}\right) & =\operatorname{argmin}\left\|\pi_{g(k)}+\omega_{g(k)}+\nabla_{x_{g(k)}} f(\bar{x})\right\|_{2}^{2} \tag{28}\\
& \text { s.t. } \quad \pi_{g(k)} \in \lambda \beta_{1} \partial\left\|\bar{x}_{g(k)}\right\|_{1}, \quad \omega_{g(k)} \in \lambda \beta_{2} \partial\left\|\bar{x}_{g(k)}\right\|_{2} .
\end{align*}
$$

Fix $k \in[1, K]$. We will consider the solution to above problem in two cases. Suppose that $\bar{x}_{g(k)}=\mathbf{0}$. Since $\partial\|\mathbf{0}\|_{1}$ is the unit ℓ_{∞}-ball, and $\partial\|\mathbf{0}\|_{2}$ is the unit ℓ_{2}-ball, (28) can be equivalently written as

$$
\begin{align*}
\left(\pi_{g(k)}^{*}, \omega_{g(k)}^{*}\right) & =\operatorname{argmin}\left\|\pi_{g(k)}+\omega_{g(k)}+\nabla_{x_{g(k)}} f(\bar{x})\right\|_{2}^{2} \tag{29}\\
& \text { s.t. } \quad\left\|\pi_{g(k)}\right\|_{\infty} \leq \lambda \beta_{1}, \quad\left\|\omega_{g(k)}\right\|_{2} \leq \lambda \beta_{2}
\end{align*}
$$

Clearly, it follows from Euclidean projection on to ℓ_{2}-ball that

$$
\omega_{g(k)}^{*}=-\left(\pi_{g(k)}^{*}+\nabla_{x_{g(k)}} f(\bar{x})\right) \min \left\{1, \frac{\lambda \beta_{2}}{\left\|\pi_{g(k)}^{*}+\nabla_{x_{g(k)}} f(\bar{x})\right\|_{2}}\right\}
$$

Hence, $\left\|\pi_{g(k)}^{*}+\omega_{g(k)}^{*}+\nabla_{x_{g(k)}} f(\bar{x})\right\|_{2}=\max \left\{0,\left\|\pi_{g(k)}^{*}+\nabla_{x_{g(k)}} f(\bar{x})\right\|_{2}-\lambda \beta_{2}\right\}$. Therefore,

$$
\pi_{g(k)}^{*}=\operatorname{argmin}\left\{\left\|\pi_{g(k)}+\nabla_{x_{g(k)}} f(\bar{x})\right\|_{2}:\left\|\pi_{g(k)}\right\|_{\infty} \leq \lambda \beta_{1}\right\}=-\operatorname{sgn}\left(\nabla_{x_{g(k)}} f(\bar{x})\right) \odot \min \left\{\left|\nabla_{x_{g(k)}} f(\bar{x})\right|, \lambda \beta_{1}\right\}
$$

Now, suppose that $\bar{x}_{g(k)} \neq \mathbf{0}$. This implies that $\partial\left\|\bar{x}_{g(k)}\right\|_{2}=\left\{\bar{x}_{g(k)} /\left\|\bar{x}_{g(k)}\right\|_{2}\right\}$. Hence, when $\bar{x}_{g(k)} \neq \mathbf{0}$, we have $\omega_{g(k)}^{*}=\lambda \beta_{2} \bar{x}_{g(k)} /\left\|\bar{x}_{g(k)}\right\|_{2}$, and the structure of $\partial\|\cdot\|_{1}$ implies that $\pi_{j}^{*}=\lambda \beta_{1} \operatorname{sgn}\left(\bar{x}_{j}\right)$ for all $j \in g(k)$ such that $\left|\bar{x}_{j}\right|>0$; and it follows from (28) that for all $j \in g(k)$ such that $\bar{x}_{j}=0$, we have

$$
\pi_{j}^{*}=\operatorname{argmin}\left\{\left(\pi_{j}+\frac{\partial}{\partial x_{j}} f(\bar{x})\right)^{2}:\left|\pi_{j}\right| \leq \lambda \beta_{1}\right\}=-\operatorname{sgn}\left(\frac{\partial}{\partial x_{j}} f(\bar{x})\right) \min \left\{\left|\frac{\partial}{\partial x_{j}} f(\bar{x})\right|, \lambda \beta_{1}\right\} .
$$

4.8. Proof of Lemma 7

Proof. Since the groups are not overlapping with each other, the proximal problem becomes separable in groups. Let $n_{k}:=|g(k)|$ for all k. Thus, it suffices to show that $\min _{x_{g(k)} \in \mathbb{R}^{n_{k}}}\left\{\beta_{1}\|x\|_{1}+\beta_{2}\left\|x_{g(k)}\right\|_{2}+\frac{1}{2 t}\left\|x_{g(k)}-\bar{x}_{g(k)}\right\|_{2}^{2}\right\}$ has a closed form solution as shown in the statement for some fixed k. By the definition of dual norm, we have

$$
\begin{align*}
& \min _{x_{g(k)} \in \mathbb{R}^{n_{k}}} \beta_{1}\left\|x_{g(k)}\right\|_{1}+\beta_{2}\left\|x_{g(k)}\right\|_{2}+\frac{1}{2 t}\left\|x_{g(k)}-\bar{x}_{g(k)}\right\|_{2}^{2}, \tag{30}\\
= & \min _{x_{g(k)} \in \mathbb{R}^{n_{k}}} \max _{\left\|u_{1}\right\|_{\infty} \leq \beta_{1}} u_{1}^{\top} x_{g(k)}+\max _{\left\|u_{2}\right\|_{2} \leq \beta_{2}} u_{2}^{\top} x_{g(k)}+\frac{1}{2 t}\left\|x_{g(k)}-\bar{x}_{g(k)}\right\|_{2}^{2}, \\
= & \max _{\substack{\left\|u_{1}\right\|_{\infty} \leq \beta_{1} \\
\left\|u_{2}\right\|_{2} \leq \beta_{2}}} \min _{x \in \mathbb{R}^{n}}\left(u_{1}+u_{2}\right)^{\top} x_{g(k)}+\frac{1}{2 t}\left\|x_{g(k)}-\bar{x}_{g(k)}\right\|_{2}^{2}, \tag{31}\\
= & \max _{\substack{\left\|u_{1}\right\|_{\infty} \leq \beta_{1} \\
\left\|u_{2}\right\|_{2} \leq \beta_{2}}}\left(u_{1}+u_{2}\right)^{\top} \bar{x}_{g(k)}-\frac{t}{2}\left\|u_{1}+u_{2}\right\|_{2}^{2} . \tag{32}
\end{align*}
$$

Let $\left(u_{1}^{*}, u_{2}^{*}\right)$ be the optimal solution of (32). Since $x_{g(k)}^{p}$ is the optimal solution to (30), it follows from (31) that

$$
\begin{equation*}
x_{g(k)}^{p}=\bar{x}_{g(k)}-t\left(u_{1}^{*}+u_{2}^{*}\right) . \tag{33}
\end{equation*}
$$

Note that (32) can be equivalently written as $\min \left\{\left\|u_{1}+u_{2}-\frac{1}{t} \bar{x}_{g(k)}\right\|_{2}^{2}:\left\|u_{1}\right\|_{\infty} \leq \beta_{1},\left\|u_{2}\right\|_{2} \leq \beta_{2}\right\}$. Minimizing over u_{2}, we have

$$
\begin{equation*}
u_{2}^{*}\left(u_{1}\right)=\left(\frac{1}{t} \bar{x}_{g(k)}-u_{1}\right) \min \left\{\frac{\beta_{2}}{\left\|\frac{1}{t} \bar{x}_{g(k)}-u_{1}\right\|_{2}}, 1\right\} \tag{34}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Hence, we have } \\
& \qquad u_{1}^{*}=\underset{\left\|u_{1}\right\|_{\infty} \leq \beta_{1}}{\operatorname{argmin}}\left\|\left(u_{1}-\frac{1}{t} \bar{x}_{g(k)}\right) \max \left\{1-\frac{\beta_{2}}{\left\|u_{1}-\frac{1}{t} \bar{x}_{g(k)}\right\|_{2}}, 0\right\}\right\|_{2}=\underset{\left\|u_{1}\right\|_{\infty} \leq \beta_{1}}{\operatorname{argmin}} \max \left\{\left\|u_{1}-\frac{1}{t} \bar{x}_{g(k)}\right\|_{2}-\beta_{2}, 0\right\}
\end{aligned}
$$

Clearly, $u_{1}^{*}=\operatorname{argmin}_{\left\|u_{1}\right\|_{\infty} \leq \beta_{1}}\left\|\left(u_{1}-\frac{1}{t} \bar{x}_{g(k)}\right)\right\|_{2}=\operatorname{sgn}\left(\bar{x}_{g(k)}\right) \min \left\{\frac{1}{t}\left|\bar{x}_{g(k)}\right|, \beta_{1}\right\}$. The final result follows from combining (33) and (34).

4.9. Improved rate for asynchronous DFAL

Let \mathcal{R} denote a discrete random variable uniformly distributed over the set \mathcal{N}. Let $\left[U_{1}, U_{2}, \ldots, U_{N}\right]$ denote a partition of the $n N$-dimensional identity matrix where $U_{i} \in \mathbb{R}^{n N \times n}, i=1, \ldots, N$. In the rest, given $\mathbf{h} \in \mathbb{R}^{n N}$, we denote $\mathbf{h}_{[\mathcal{R}]}:=U_{\mathcal{R}} U_{\mathcal{R}}^{\top} \mathbf{h}$. Consider the composite convex optimization problem

$$
\begin{equation*}
\Phi^{*}:=\min _{\mathbf{y} \in \mathbb{R}^{n N}} \Phi(\mathbf{y}):=\sum_{i=1}^{N} \rho_{i}\left(y_{i}\right)+f(\mathbf{y}) \tag{35}
\end{equation*}
$$

where $\rho_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a closed convex function for all $i \in \mathcal{N}$ such that $\operatorname{prox}_{t \rho_{i}}$ can be computed efficiently for all $t>0$ and $i \in \mathcal{N}$, and $f: \mathbb{R}^{n N} \rightarrow \mathbb{R}$ is a differentiable convex function such that for some $\left\{L_{i}\right\}_{i \in \mathcal{N}} \subset \mathbb{R}_{++}, f$ satisfies

$$
\begin{equation*}
\mathbb{E}\left[f\left(\mathbf{y}+\mathbf{h}_{[\mathcal{R}]}\right)\right] \leq f(\mathbf{y})+\frac{1}{N}\left(\langle\nabla f(\mathbf{y}), \mathbf{h}\rangle+\frac{1}{2} \sum_{i \in \mathcal{N}} L_{i}\left\|h_{i}\right\|_{2}^{2}\right) \tag{36}
\end{equation*}
$$

for all $\mathbf{y}, \mathbf{h} \in \mathbb{R}^{n N}$. Fercoq \& Richtárik (2013) proposed the accelerated proximal coordinate descent algorithm ARBCD (see Figure 6) to solve (35). They showed that for a given $\alpha>0$, the iterate sequence $\left\{\mathbf{z}^{(\ell)}, \mathbf{u}^{(\ell)}\right\}$ computed by ARBCD satisfies

$$
\begin{equation*}
\mathbb{E}\left[\Phi\left(\left(\frac{1}{N t^{(\ell)}}\right)^{2} \mathbf{u}^{(\ell+1)}+\mathbf{z}^{(\ell+1)}\right)-\Phi^{*}\right] \leq \alpha, \quad \forall \ell \geq 2 N \sqrt{\frac{C}{\alpha}} \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
C:=\min _{\mathbf{y}^{*} \in \mathcal{Y}^{*}}\left(1-\frac{1}{N}\right)\left(\Phi\left(\mathbf{z}^{(0)}\right)-\Phi^{*}\right)+\frac{1}{2} \sum_{i \in \mathcal{N}} L_{i}\left\|z_{i}^{(0)}-y_{i}^{*}\right\|_{2}^{2} \tag{38}
\end{equation*}
$$

and \mathcal{Y}^{*} denotes the set of optimal solutions.

```
Algorithm ARBCD \(\left(\mathbf{z}^{(0)}\right)\)
    \(\ell \leftarrow 0, \quad t^{(0)} \leftarrow 1, \quad u_{i}^{(1)} \leftarrow \mathbf{0}, \quad \forall i \in \mathcal{N}\)
    while \(\ell \geq 0\) do
        \(i\) is a sample of \(\mathcal{R}\)
        \(z_{i}^{(\ell+1)} \leftarrow \operatorname{prox}_{t^{(\ell)} \rho_{i} / L_{i}}\left(z_{i}^{(\ell)}-\frac{t^{(\ell)}}{L_{i}} \nabla_{y_{i}} f\left(\left(\frac{1}{N t^{(\ell)}}\right)^{2} \mathbf{u}^{(\ell)}+\mathbf{z}^{(\ell)}\right)\right)\)
        \(u_{i}^{(\ell+1)} \leftarrow u_{i}^{(\ell)}+N^{2} t^{(\ell)}\left(1-t^{(\ell)}\right)\left(z_{i}^{(\ell+1)}-z_{i}^{(\ell)}\right)\)
        \(z_{-i}^{(\ell+1)} \leftarrow z_{-i}^{(\ell)}, \quad u_{-i}^{(\ell+1)} \leftarrow u_{-i}^{(\ell)}\)
        \(t^{(\ell+1)} \leftarrow \frac{1+\sqrt{1+\left(2 N t^{(\ell)}\right)^{2}}}{2 N}\)
    end while
```

Figure 6. Accelerated Randomized Proximal Block Coordinate Descent (ARBCD) algorithm
In the following result, we establish that the bound (36) can be exploited for designing an accelerated version of asynchronous DFAL.

Lemma 8. Fix $\alpha>0$, and $p \in(0,1)$. Let $\left\{\mathbf{z}_{k}^{(\ell)}, \mathbf{u}_{k}^{(\ell)}\right\}_{\ell \in \mathbb{Z}_{+}}, k=1, \ldots, K$, denote the iterate sequence corresponding to $K:=\log (1 / p)$ independent calls to $\boldsymbol{A R B C D}\left(\mathbf{y}^{(0)}\right)$. Define $\mathbf{y}_{k}:=\left(\frac{1}{N t^{(T)}}\right)^{2} \mathbf{u}_{k}^{(T+1)}+\mathbf{z}_{k}^{(T+1)}$ for $k=1, \ldots, K$, and $T:=2 N \sqrt{\frac{2 \mathcal{C}}{\alpha}}$. Then

$$
\mathbb{P}\left(\min _{k=1, \ldots, K} \Phi\left(\mathbf{y}_{k}\right)-\Phi^{*} \leq \alpha\right) \geq 1-p
$$

Proof. Since the sequence $\left\{\mathbf{y}_{k}\right\}_{k=1}^{K}$ is i.i.d., and each \mathbf{y}_{k} satisfies $\mathbb{E}\left[\Phi\left(\mathbf{y}_{k}\right)-\Phi^{*}\right] \leq \frac{\alpha}{2}$, Markov's inequality implies that $\mathbb{P}\left(\Phi\left(\mathbf{y}_{k}\right)-\Phi^{*}>\alpha\right) \leq \mathbf{E}\left[\Phi\left(\mathbf{y}_{k}\right)-\Phi^{*}\right] / \alpha \leq \frac{1}{2}$ for $1 \leq k \leq K$. Therefore, we have

$$
\mathbb{P}\left(\min _{k=1, \ldots, K} \Phi\left(\mathbf{y}_{k}\right)-\Phi^{*} \leq \alpha\right)=1-\prod_{k=1}^{K} \mathbb{P}\left(\Phi\left(\mathbf{y}_{k}\right)-\Phi^{*}>\alpha\right) \leq\left(\frac{1}{2}\right)^{K}=1-p
$$

From Lemma 8 it follows that we can compute \mathbf{y}_{α} such that $\mathbb{P}\left(\Phi\left(\mathbf{y}_{\alpha}\right)-\Phi^{*} \leq \alpha\right) \geq 1-p$ in at most $2 N \sqrt{\frac{2 C}{\alpha}} \log \left(\frac{1}{p}\right)$ ARBCD iterations. This new oracle can be used to construct an asynchronous version of DFAL algorithm with $\mathcal{O}(1 / \epsilon)$ complexity.
Theorem 4. Fix $\epsilon>0$ and $p \in(0,1)$. Consider a asynchronous variant of DFAL where (9)(a) in Figure 1 is replaced by

$$
\begin{equation*}
\mathbb{P}\left(P^{(k)}\left(\mathbf{x}^{(k)}\right)-P^{(k)}\left(\mathbf{x}_{*}^{(k)}\right) \leq \alpha^{(k)}\right) \geq(1-p)^{\frac{1}{N(\epsilon)}} \tag{39}
\end{equation*}
$$

where $N(\epsilon)=\log _{\frac{1}{c}}\left(\frac{\bar{C}}{\epsilon}\right)$ is defined in Corollary 1. Then $\left\{x_{i}^{(N(\epsilon))}\right\}_{i \in \mathcal{N}}$, satisfies

$$
\mathbf{P}(\epsilon):=\mathbb{P}\left(\left|\sum_{i \in \mathcal{N}} F_{i}\left(x_{i}^{(N(\epsilon))}\right)-F^{*}\right| \leq \epsilon, \text { and } \max _{(i, j) \in \mathcal{E}}\left\{\left\|x_{i}^{(N(\epsilon))}-x_{j}^{(N(\epsilon))}\right\|_{2}\right\} \leq \epsilon\right) \geq 1-p
$$

and $\mathcal{O}\left(\frac{1}{\epsilon} \log \left(\frac{1}{p}\right)\right) \boldsymbol{A R B C D}$ iterations are required to compute $\left\{x_{i}^{(N(\epsilon))}\right\}_{i \in \mathcal{N}}$.
Proof. Consider the k-th DFAL subproblem $\min P^{(k)}(\mathbf{x}):=\lambda^{(k)} \sum_{i \in \mathcal{N}} \rho_{i}\left(x_{i}\right)+f^{(k)}(\mathbf{x})$, where $f^{(k)}$ is defined in (8). Let $\tilde{L}_{i}^{(k)}:=\lambda^{(k)} L_{\gamma_{i}}+d_{i}$ for all $i \in \mathcal{N}$. Then it can be easily shown that $f^{(k)}$ satisfies (36) with constants $\left\{\tilde{L}_{i}^{(k)}\right\}_{i \in \mathcal{N}}$ for all $1 \leq k \leq N(\epsilon)$. Hence, ARBCD algorithm can be used to solve $\min P^{(k)}(\mathbf{x})$ with the iteration complexity given in Lemma 8. Consider the random event

$$
\begin{equation*}
\Delta:=\bigcap_{k=1}^{N(\epsilon)}\left\{P^{(k)}\left(\mathbf{x}^{(k)}\right)-P^{(k)}\left(\mathbf{x}_{*}^{(k)}\right) \leq \alpha^{(k)} \quad \text { or }\left.\quad \exists g_{i}^{(k)} \in \partial_{x_{i}} P^{(k)}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{x}^{(k)}} \text { s.t. } \max _{i \in \mathcal{N}}\left\|g_{i}^{(k)}\right\|_{2} \leq \frac{\xi^{(k)}}{\sqrt{N}}\right\} \tag{40}
\end{equation*}
$$

Clearly, for all random sequences $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{N(\epsilon)}$ satisfying random event Δ, Corollary 1 implies that $\mid \sum_{i \in \mathcal{N}} F_{i}\left(x_{i}^{(N(\epsilon))}\right)-$ $F^{*} \mid \leq \epsilon$ and $\max _{(i, j) \in \mathcal{E}}\left\{\left\|x_{i}^{(N(\epsilon))}-x_{j}^{(N(\epsilon))}\right\|_{2}\right\} \leq \epsilon$. Hence, we have

$$
\mathbf{P}(\epsilon) \geq \mathbb{P}(\Delta) \geq \prod_{k=1}^{N(\epsilon)} \mathbb{P}\left(P^{(k)}\left(\mathbf{x}^{(k)}\right)-P^{(k)}\left(\mathbf{x}_{*}^{(k)}\right) \leq \alpha^{(k)}\right) \geq 1-p
$$

In the rest, we bound the total number of ARBCD iterations required by asynchronous variant of DFAL to compute $\mathbf{x}^{(N(\epsilon))}$. Note that $(1-p)^{\frac{1}{N(\epsilon)}}$ is a concave function for $p \in(0,1)$, and we have $(1-p)^{\frac{1}{N(\epsilon)}} \leq 1-\frac{p}{N(\epsilon)}$. Therefore, Lemma 8 and the discussion after Lemma 8 together imply that the number of ARBCD iterations, $N^{(k)}$, to compute $\mathbf{x}^{(k)}$ satisfying either (39) or (9)(b) is bounded above for $1 \leq k \leq N(\epsilon)$ as follows

$$
\begin{equation*}
N^{(k)} \leq 2 N \sqrt{\frac{2 C^{(k)}}{\alpha^{(k)}}} \log \left(\frac{N(\epsilon)}{p}\right)=2 N\left(\log \left(\frac{1}{p}\right)+\log \log _{\frac{1}{c}}\left(\frac{\bar{C}}{\epsilon}\right)\right) \sqrt{\frac{2 C^{(k)}}{\alpha^{(k)}}} \tag{41}
\end{equation*}
$$

with $C^{(k)}=P^{(k)}\left(\mathbf{x}^{(k-1)}\right)-P^{(k)}\left(\mathbf{x}_{*}^{(k)}\right)+\sum_{i \in \mathcal{N}} \frac{\tilde{L}_{i}^{(k)}}{2}\left\|x_{i}^{(k-1)}-x_{* i}^{(k)}\right\|_{2}^{2}$.
Convexity of $\left\{\rho_{i}\right\}_{i \in \mathcal{N}}$, and Lemma 2 imply that

$$
P^{(k)}\left(\mathbf{x}^{(k-1)}\right)-P^{(k)}\left(\mathbf{x}_{*}^{(k)}\right) \leq\left\langle\lambda^{(k)} s^{(k)}+\nabla f^{(k)}\left(\mathbf{x}_{*}^{(k)}\right), \mathbf{x}^{(k-1)}-\mathbf{x}_{*}^{(k)}\right\rangle+\sum_{i \in \mathcal{N}} \frac{L_{i}^{(k)}}{2}\left\|x_{i}^{(k-1)}-x_{* i}^{(k)}\right\|_{2}^{2},
$$

where $\left.s^{(k)} \in \partial \lambda^{(k)} \bar{\rho}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{x}^{(k-1)}}$, and $\bar{\rho}(\mathbf{x})=\sum_{i \in \mathcal{N}} \rho_{i}\left(x_{i}\right)$. Note that optimality conditions imply that $-\nabla f^{(k)}\left(\mathbf{x}_{*}^{(k)}\right) \in$ $\left.\partial \lambda^{(k)} \bar{\rho}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{x}_{*}^{(k)}}$. Assumption 1 implies that $\left\|\nabla_{x_{i}} f^{(k)}\left(\mathbf{x}_{*}^{(k)}\right)\right\|_{2} \leq \lambda^{(k)} B_{i}$ and $\left\|s_{i}^{(k)}\right\|_{2} \leq \lambda^{(k)} B_{i}$ for all $i \in \mathcal{N}$. Hence, for some $\tilde{C}>0$, we have $C^{(k)} \leq \sum_{i \in \mathcal{N}}\left(\frac{L_{i}^{(k)}+\tilde{L}_{i}^{(k)}}{2}+2 \lambda^{(k)} B_{i}\right)\left\|x_{i}^{(k-1)}-x_{* i}^{(k)}\right\|_{2}^{2} \leq \tilde{C} B_{x}^{2}$ for all $k \geq 1$. Consequently, we can bound the total number of ARBCD iterations to compute $\mathbf{x}^{(N(\epsilon))}$ as follows:

$$
\sum_{k=1}^{N(\epsilon)} N^{(k)} \leq 2 N B_{x} \sqrt{\frac{2 \tilde{C}}{\alpha^{(0)}}}\left(\log \left(\frac{1}{p}\right)+\log \log _{\frac{1}{\epsilon}}\left(\frac{\bar{C}}{\epsilon}\right)\right) \sum_{k=1}^{N(\epsilon)} c^{-k} .
$$

Since $N(\epsilon)=\log _{\frac{1}{c}}(\bar{C} / \epsilon)$, and $\sum_{k=1}^{N(\epsilon)} c^{-k}=\frac{\left(\frac{1}{c}\right)^{N(\epsilon)}-1}{1-c}=\bar{C} \epsilon^{-1} /(1-c)$. Hence, we can conclude that $\sum_{k=1}^{N(\epsilon)} N^{(k)}=$ $\mathcal{O}\left(\frac{1}{\epsilon}\left(\log \left(\frac{1}{p}\right)+\log \log \left(\frac{1}{\epsilon}\right)\right)\right)$

