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A. Probabilistic Soft Logic
In this supplement, we describe the models used in our ex-
periments using probabilistic soft logic (PSL) (Bach et al.,
2015), a language for defining hinge-loss potential tem-
plates. PSL’s variables are logical atoms, and its rules
use logical operators such as conjunction and implication
to define dependencies between these variables. All vari-
ables are continuous in the [0, 1] interval. Conjunction of
Boolean variablesX∧Y are generalized to continuous vari-
ables using the hinge function max{X + Y − 1, 0}, which
is known as the Lukasiewicz t-norm. Disjunction X ∨ Y
is relaxed to min{X + Y, 1}, and negation ¬X is relaxed
to 1 − X . To define a model, PSL rules are grounded
out with all possible substitutions for logical terms. The
groundings define hinge-loss potentials that share the same
weight, and whose values are the ground rule’s distance to
satisfaction, e.g., for X ⇒ Y the distance to satisfaction is
max{X − Y, 0}. In PSL, rules consist of a conjunction of
literals in the body and a disjunction of literals in the head
of the rule. The continuous interpretation of the rule be-
comes a hinge-loss function for the rule’s distance to satis-
faction. Finally, each rule is annotated with a non-negative
weight, which is the parameter shared across all potentials
templated by that rule.

B. Discovering Latent Groups in Social Media
Data set The data set from Bach et al. (2013a) is roughly
4.275M tweets collected from about 1.350M Twitter users
via a query that focuses on South American users. The
tweets were collected from Oct. 6 to Oct. 8, 2012, a 48-
hour window around the Venezuelan presidential election
on Oct. 7. The two major candidates were Hugo Chávez,
the incumbent, and Henrique Capriles. Chávez won with
55% of the vote.

The goal is to learn a model that relates language usage
and social interactions to latent group membership. We
first identify 20 users as top users based on being the
most retweeted or, in the case of the state-owned television
network’s account, being of particular interest. Recorded
Twitter interactions form the features in this model. We
identify all other users that either retweeted or mentioned
at least one of the top users and used at least one hashtag
in a tweet that was not a mention or a retweet of a top user.
Filtering by these criteria, the set contains 1,678 regular

users (i.e., users that are not top users).

We organize the variables in our model using PSL predi-
cates. Whether each regular user tweeted a hashtag is rep-
resented with the PSL predicate USEDHASHTAG. Tweets
that mention or retweet a top user are not counted, since
they are too closely related to the target interaction. For
example, if User 1 tweets the hashtag #hayuncamino
then USEDHASHTAG(1,#hayuncamino) has an ob-
served truth value of 1.0. The PSL predicate
REGULARUSERLINK represents whether a regular user
retweeted or mentioned any user in the full data set that
is not a top user, regardless of whether that mentioned or
retweeted user is a regular user. Whether a regular user
retweeted or mentioned a top user is represented with the
PSL predicate TOPUSERLINK. Finally, the latent group
membership of each regular user is represented with the
PSL predicate INGROUP.

Latent group model We construct a HL-MRF model
for predicting interactions of regular users with top users
via latent group membership. We treat atoms with
the USEDHASHTAG or REGULARUSERLINK predicate
as the set of conditioning variables x, atoms with the
TOPUSERLINK predicate as the set of target variables y,
and atoms with the INGROUP predicate as the set of latent
variables z.

When defining our model, letH be the set of hashtags used
by at least 15 different regular users (|H| = 33), let T be
the set of top users (|T | = 20), and let G = {g0, g1} be the
set of latent groups.

We first include rules that relate hashtag usage to group
membership. For each hashtag in H and each latent group,
we include a rule of the form

wh,g : USEDHASHTAG(U, h)→ INGROUP(U, g)

∀h ∈ H,∀g ∈ G

so that there is a different rule weight governing how
strongly each commonly used hashtag is associated with
each latent group. Second, we include a rule associating
social interactions with group commonality:

wsocial : REGULARUSERLINK(U1, U3)

∧ REGULARUSERLINK(U2, U3) ∧ U1 6= U2

∧ INGROUP(U1, G)→ INGROUP(U2, G).
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This rule encodes the intuition that regular users who in-
teract with the same people on Twitter are more likely to
belong to the same latent group. Adding this rule leverages
one the advantages of general log-linear models with latent
variables: the ability to easily include dependencies among
latent variables. Third, we include rules of the form

wg,t : INGROUP(U, g)→ TOPUSERLINK(U, t)

∀g ∈ G,∀t ∈ T

for each latent group and each top user so that there is a
parameter governing how strongly each latent group tends
to interact with each top user. Last, we constrain the
INGROUP atoms for each regular user to sum to 1.0, mak-
ing INGROUP a mixed-membership assignment.

We specify initial parameters w by initializing wh,g to 2.0
for all hashtags and groups, wsocial to 2.0, and wg,t to 5.0
for all top users and groups, except two hashtags and two
top users which we assign as seeds. We initially associate
the top user hayuncamino (Henrique Capriles’s cam-
paign account) and the hashtag for Capriles’s campaign slo-
gan #hayuncamino with Group 0 by initializing the pa-
rameters associating them with Group 0 to 10.0 and those
associating them with Group 1 to 0.0. We initially as-
sociate the top user chavezcandanga (Hugo Chávez’s
account) and the hashtag for Chávez’s campaign slogan
#elmundoconchávez with Group 1 in the same way.

For entropy surrogates we add the following rules, all with
fixed weights of 10.0:

wentropy : ¬INGROUP(U, g) ∀g ∈ G,
wentropy : ¬TOPUSERLINK(U1, U2).

The full results for all ten folds are presented in Figures 1,
2, 3, and 4.

C. Modeling Latent User Features in Trust
Networks

We build our model based on that of Huang et al. (2013),
which encodes rules consistent with triadic closure in so-
cial networks. Instead, we include rules for all possible
configurations of directed triads, including those that do not
imply balanced behavior, so the learning algorithm can at-
tribute weight to any configuration if it helps optimize its
objective. Removing symmetries, there are 12 distinct log-
ical formulas. Four are for a cyclic structure:

w1
cyc :TRUSTS(A,B) ∧ TRUSTS(B,C)→ TRUSTS(C,A),

w2
cyc :TRUSTS(A,B) ∧ ¬TRUSTS(B,C)→ TRUSTS(C,A),

w3
cyc :¬TRUSTS(A,B) ∧ ¬TRUSTS(B,C)→ TRUSTS(C,A),

w4
cyc :¬TRUSTS(A,B) ∧ ¬TRUSTS(B,C)→ TRUSTS(C,A).

And eight are for a non-cyclic “v” structure:

w1
v :TRUSTS(A,B) ∧ TRUSTS(B,C)→ TRUSTS(C,B),

w2
v :TRUSTS(A,B) ∧ ¬TRUSTS(B,C)→ ¬TRUSTS(C,B),

w3
v :¬TRUSTS(A,B) ∧ TRUSTS(B,C)→ ¬TRUSTS(C,B),

w4
v :¬TRUSTS(A,B) ∧ ¬TRUSTS(B,C)→ TRUSTS(C,B),

w5
v :TRUSTS(A,B) ∧ TRUSTS(B,C)→ ¬TRUSTS(C,B),

w6
v :TRUSTS(A,B) ∧ ¬TRUSTS(B,C)→ TRUSTS(C,B),

w7
v :¬TRUSTS(A,B) ∧ TRUSTS(B,C)→ TRUSTS(C,B),

w8
v :¬TRUSTS(A,B) ∧ ¬TRUSTS(B,C)→ ¬TRUSTS(C,B).

We also include pairwise interactions:

w+
pair :TRUSTS(A,B)→ TRUSTS(B,A),

w−pair :¬TRUSTS(A,B)→ ¬TRUSTS(B,A).

To add latent variable reasoning, we add predicates TRUST-
ING and TRUSTWORTHY that take a single actor as input.
The rules

w1
latent :TRUSTING(A)→ TRUSTS(A,B),

w2
latent :TRUSTWORTHY(B)→ TRUSTS(A,B),

w3
latent :TRUSTING(A) ∧ TRUSTWORTHY(B)

→ TRUSTS(A,B)

infer trust from these latent predicates, and the rules

w4
latent :TRUSTS(A,B)→ TRUSTING(A),

w5
latent :TRUSTS(A,B)→ TRUSTWORTHY(B)

infer the latent values from other trust predictions and ob-
servations. All rules are initialized to weights of 1.0. Note
that in this problem the structure of the social network is
observed, so these rules are grounded for TRUSTS(A,B)
atoms where A and B are observed to know each other.
For entropy surrogates, we use the following rules, all with
fixed weights of 10.0:

wentropy : TRUSTS(A,B),

wentropy : ¬TRUSTS(A,B),

wentropy : TRUSTING(A,B),

wentropy : ¬TRUSTING(A,B),

wentropy : TRUSTWORTHY(A,B),

wentropy : ¬TRUSTWORTHY(A,B).

The full results for all eight folds are presented in Figures
5, 6, and 7.
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D. Image Reconstruction
The latent HL-MRF model we use for image reconstruc-
tion reasons over variables representing the brightness of
pixel values BRIGHT, a binary, thresholded brightness of
observed pixels (i.e., an indicator of whether have intensity
greater than 0.5) BINARY, and a set of six latent states LAT-
STATE. The intuition behind the model is that the observed
pixel intensities and the thresholded intensities provide ev-
idence about which latent states are active for a particular
image, and these latent states imply patterns in the output
pixels. For each latent state Sk, and each pixel Pij , whether
observed or not, we include the rules

w++
bright((i, j), k) : LATSTATE(I, Sk)→ BRIGHT(I, Pij)

w+−
bright((i, j), k) : LATSTATE(I, Sk)→ ¬BRIGHT(I, Pij)

w−+bright((i, j), k) : ¬LATSTATE(I, Sk)→ BRIGHT(I, Pij)

w−−bright((i, j), k) : ¬LATSTATE(I, Sk)→ ¬BRIGHT(I, Pij).

For observed pixels, we encode analogous rules for thresh-
olded pixel intensities to provide more information to the
model:

w++
binary((i, j), k) : LATSTATE(I, Sk)→ BINARY(I, Pij)

w+−
binary((i, j), k) : LATSTATE(I, Sk)→ ¬BINARY(I, Pij)

w−+binary((i, j), k) : ¬LATSTATE(I, Sk)→ BINARY(I, Pij)

w−−binary((i, j), k) : ¬LATSTATE(I, Sk)→ ¬BINARY(I, Pij).

For every pair of latent states Si and Sj , we include rules
to encode their tendency or aversion to co-occur:

w+
state(i, j) : LATSTATE(I, Si)→ LATSTATE(I, Sj)

w−state(i, j) : LATSTATE(I, Si)→ ¬LATSTATE(I, Sj)

Finally, we use fixed-weight priors on the free variables:

1.0 : LATSTATE(I, S)

1.0 : ¬LATSTATE(I, S)

1.0 : BRIGHT(I, P )

1.0 : ¬BRIGHT(I, P )

which serve as surrogate entropies.

We initialize weights using a heuristic to fit the latent states
to individual training images. We first compute the aver-
age pixel intensities among all training images, then for
each latent state Sk, we randomly choose a seed image.
We set the positively correlated binary pixel rule weights
w++

binary and wbinary−− to 1.0 if the seed image pixel intensity
is higher than the average, and the negatively correlated bi-
nary pixel rules w+−

binary and w−+binary to 1.0 if the seed image
pixel is dimmer than the average. This scheme makes the
initial model assign corresponding latent features to images

that share bright and dark pixel locations with the seed im-
ages. Starting with this initialization, which includes no
information about the unthresholded pixel intensities, the
learning algorithms fit the models to also predict pixel in-
tensity. Figure 8 shows details of the learned model and
example reconstructions.

E. Learner Settings
During learning, the regularization parameter λ is 0.01, and
the ADMM parameter η is 1.0. These parameters were se-
lected with some light tuning on development sets. The
differences among the performances of the learners were
not sensitive to changes. For EM, during each M step, we
fit the parameters by taking ten subgradient steps, using the
MPE state of P (y, z|x;w) to estimate E [φ(y, z|x;w)] in
the maximum likelihood gradient, as is standard for super-
vised learning for HL-MRFs (Bach et al., 2013b).

F. Convergence of ADMM
We determine whether Lw(v,α, v̄) or L′w(v′,α′, v̄′) has
converged by examining the primal and dual residuals at
iteration t:

‖rt‖ := ‖c(vt, v̄t)‖

and

‖st‖ ≡ η

(
n∑

i=1

Ki

(
v̄ti − v̄t−1i

)2)1/2

where n is the number of components of v̄ and Ki is the
number of local copies of the consensus variable v̄i (Boyd
et al., 2011).

We use the convergence criteria suggested by Boyd et al.
(2011):

‖rt‖ ≤ εabs

√√√√ n∑
i=1

Ki

+ εrel max

‖vt‖,
(

n∑
i=1

Ki

(
v̄ti
)2)1/2


‖st‖ ≤ εabs

√√√√ n∑
i=1

Ki + εrel‖αt‖

where εabs, εrel > 0 are parameters and, again, n is the num-
ber of components of v̄ andKi is the number of local copies
of the consensus variable v̄i. We set εabs to 10−6 and εrel

to 10−4, which Boyd et al. (2011) suggest as a reasonable
choice.
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Figure 1. Results for interaction prediction on Twitter data set, folds 1-3.



Paired-Dual Learning for Fast Training of Latent Variable Hinge-Loss MRFs: Appendices

0 500 1000 1500 2000 2500

2

3

4

5

x 10
4

ADMM iterations

O
bj

ec
tiv

e
Twitter Fold 4

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

ADMM iterations

A
uP

R

Twitter Fold 4

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 500 1000 1500 2000 2500

2

3

4

5

x 10
4

ADMM iterations

O
bj

ec
tiv

e

Twitter Fold 5

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

ADMM iterations

A
uP

R

Twitter Fold 5

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 500 1000 1500 2000 2500

2

3

4

5

x 10
4

ADMM iterations

O
bj

ec
tiv

e

Twitter Fold 6

 

 

PDL, N=1
PDL, N=10
EM
Primal

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

ADMM iterations

A
uP

R

Twitter Fold 6

 

 

PDL, N=1
PDL, N=10
EM
Primal

Figure 2. Results for interaction prediction on Twitter data set, folds 4-6.
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Figure 3. Results for interaction prediction on Twitter data set, folds 7-9.
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Figure 4. Results for interaction prediction on Twitter data set, fold 10.
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Figure 5. Results for social-trust prediction on Epinions data set, folds 1-2.
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Figure 6. Results for social-trust prediction on Epinions data set, folds 3-5.
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Figure 7. Results for social-trust prediction on Epinions data set, folds 6-8.
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(a) Bottom-half model

Example reconstructions

Figure 8. Visual representation of learned face models and outputs. In (a), we visualize the six latent states learned by the model. The
images plot the quad root (to enhance contrast at low values) of learned weights for the six latent states. The top row depicts the
weights of potentials preferring bright pixels and the bottom row depicts the weights of potentials preferring dim pixel intensities. In
(b), we compare the reconstructions of bottom-half faces. The left column is the original, and the middle and right are the latent and flat
HL-MRF, respectively.
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