
The Power of Randomization: Distributed Submodular Maximization on Massive Datasets

A. Improved analysis for the GreeDI
algorithm with an arbitrary partition

Let OPT be an arbitrary collection of k elements from V ,
and let M be the set of machines that have some element of
OPT placed on them. For each j 2 M let Oj be the set of
elements of OPT placed on machine j, and let rj = |Oj |
(note that

P
j2M rj = k). Similarly, let Sj be the set of

elements returned by the greedy algorithm on machine j.
Let eij 2 Sj denote the element chosen in the ith round of
the greedy algorithm on machine j, and let Si

j denote the
set of all elements chosen in rounds 1 through i. Finally,
let S = [j2MSj and Si = [jS

i
j .

In the following, we use fA(B) to denote f(A[B)�f(A).
We consider the marginal values:

xi
j = fSi�1

j
(eij) = f(Si

j)� f(Si�1
j)

yij = fSi�1
j

(Oj) = f(Si�1
j [Oj)� f(Oj),

for each 1 i k. Additionally, it will be convenient to
define xk+1

j = yk+1
j = 0 and Sk+1

j = Sk
j for all j 2 M .

Because the elements eij are selected greedily on each ma-
chine, the sequence x1

j , . . . , x
k
j is non-increasing for all

j 2 M . Furthermore, we note that because each element
eij was selected by in the ith round of the greedy algorithm
on machine j, we must have

xi
j � max

o2Oj\Si�1
j

fSi�1
j

(o)

for all j 2 M and i 2 [k]. Additionally, by submodularity,
we have:

yij = f(Si�1
j [Oj)� f(Oj)

X

o2Oj\Si�1
j

fSi�1
j

(o)

 rj · max
o2Oj\Si�1

j

f i�1
Sj

(o).

Therefore,
yij rj · xi

j (10)

for all j 2 M and i 2 [k].

We want to show that the set of elements S placed on the
final machine contain a solution that is relatively good com-
pared to OPT. We begin by proving the following lemma,
which relates the value of f(OPT) to the total value of the
elements from the ith partial solutions produced on each of
the machines.
Lemma 11. For every i 2 [k] and every machine j 2 M ,

f(OPT) f(Si) +
X

j2M

fSi
j
(Oj).

Proof. We have

f(OPT) f(OPT [Si)

= f(Si) + fSi(OPT)

 f(Si) +
X

j2M

fSi(Oj)

 f(Si) +
X

j2M

fSi
j
(Oj),

where the first inequality follows from monotonicity of f ,
and the last two from submodularity of f .

In order to obtain a bound on f(OPT), it suffices to upper
bound each term on the right hand side of the inequality
from Lemma 11. We proceed step by step, according to
the following intuition: if in all steps i the gain f(Si) �
f(Si�1) is small compared to

P
j2M xi

j , then we can use
Lemma 11 and (10) to argue that f(OPT) must also be
relatively small. On the other hand, if f(Si) � f(Si�1) is
large compared to

P
j2M xi

j , then Si\Si�1 is a reasonably
good solution that is available on the final machine.

We proceed by balancing these two cases for a particular
critical step i. Specifically, fix i k be the smallest value
such that:

X

j2M

rj · xi+1
j

p
k ·

⇥
f(Si+1)� f(Si)

⇤
. (11)

Note that some such value i must exist, since for i = k,
both sides of (11) are equal to zero. We now derive a bound
on each term on the right of Lemma 11. Let ˜OPT ✓ S be
a set of k elements from S that maximizes f .

Lemma 12. f(Si)
p
k · f(˜OPT).

Proof. Because i is the smallest value for which (11) holds,
we must have
X

j2M

rj · x`
j >

p
k ·

⇥
f(S`)� f(S`�1)

⇤
, for all ` i.

Therefore,

X

j2M

rj · f(Si
j) =

X

j2M

iX

`=1

rj ·
⇥
f(S`

j)� f(S`�1
j)

⇤

=
X

j2M

iX

`=1

rj · x`
j

=

iX

`=1

X

j2M

rj · x`
j

>

iX

`=1

p
k ·

⇥
f(S`)� f(S`�1)

⇤

The Power of Randomization: Distributed Submodular Maximization on Massive Datasets

=
p
k · f(Si),

and so,

f(Si) <
1p
k

X

j2M

rj · f(Si
j)

 1p
k

X

j2M

rj · f(Sj) (By monotonicity)

 1p
k

X

j2M

rj · f(˜OPT) (Sj ✓ S is feasible)

=
p
k · f(˜OPT).

Lemma 13.
P

j2M fSi
j
(Oj)

p
k · f(˜OPT).

Proof. We consider two cases:

Case: i < k. We have i + 1 k, and by (10) we have
fSi

j
(Oj) = yi+1

j rj · xi+1
j for every machine j. There-

fore:
X

j2M

fSi
j
(Oj)

X

j2M

rj · xi+1
j

p
k · (f(Si+1)� f(Si))

(By definition of i)

p
k · f(Si+1 \ Si) (By submodularity)

p
k · f(˜OPT),

where the final line follows from the fact that |Si+1 \Si|
k and so Si+1 \ Si is a feasible solution.

Case: i = k. By submodularity of f and (10), we have

fSi
j
(Oj) = fSk

j
(Oj) fSk�1

j
(Oj) = ykj rj · xk

j .

Moreover, since the sequence x1
j , . . . , x

k
j is non-increasing

for all j,

xk
j 1

k

kX

`=1

x`
j =

1

k
· f(Sj).

Therefore,
X

j2M

fSi
j
(Oj)

X

j2M

rj · xk
j

X

j2M

rj
k

· f(Sj)

X

j2M

rj
k

· f(˜OPT) (Sj ✓ S is feasible)

= f(˜OPT).

Thus, in both cases, we have
P

j2M fSi
j
(Oj)

p
k ·

f(˜OPT) as required.

Our main theorem then follows directly from Lemmas 11,
12, and 13:
Theorem 14. f(OPT) 2

p
kf(˜OPT).

Because the standard greedy algorithm executed on the last
machine is a (1�1/e)-approximation, we have the follow-
ing corollary.
Corollary 15. The distributed greedy algorithm gives a
(1�1/e)

2
p
k

approximation for maximizing a monotone sub-
modular function subject to a cardinality constraint k, re-
gardless of how the elements are distributed.

B. A tight example for the GreeDI algorithm
with an arbitrary partition

Here we give a family of examples that show that the
GreeDI algorithm of Mirzasoleiman et al. cannot achieve
an approximation better than 1/

p
k if the partition of the

elements onto the machines is arbitrary.

Consider the following instance of Max k-Coverage. We
have `2 + 1 machines and k = ` + `2. Let N be a ground
set with `2 + `3 elements, N =

�
1, 2, . . . , `2 + `3

. We

define a coverage function on a collection S of subsets of
N as follows. In the following, we define how the sets of
S are partitioned on the machines.

On machine 1, we have the following ` sets from OPT:
O1 = {1, 2, . . . , `}, O2 = {`+ 1, . . . , 2`}, . . . , O` =�
`2 � `+ 1, . . . , `2

. We also pad the machine with copies

of the empty set.

On machine i > 1, we have the following sets. There is a
single set from OPT, namely

O0
i =

�
`2 + (i� 1)`+ 1, `2 + (i� 1)`+ 2, . . . , `2 + i`

.

Additionally, we have ` sets that are designed to
fool the greedy algorithm; the j-th such set is Oj [�
`2 + (i� 1)`+ j

. As before, we pad the machine with

copies of the empty set.

The optimal solution is O1, . . . , O`, O0
1, . . . , O

0
`2 and it has

a total coverage of `2 + `3.

On the first machine, Greedy picks the ` sets O1, . . . , Om

from OPT and `2 copies of the empty set. On each
machine i > 1, Greedy first picks the ` sets Aj =
Oj [

�
`2 + (i� 1)`+ j

, since each of them has marginal

value greater than O0
i. Once Greedy has picked all of the

Aj’s, the marginal value of O0
i becomes zero and we may

assume that Greedy always picks the empty sets instead of
O0

i.

Now consider the final round of the algorithm where we
run Greedy on the union of the solutions from each of
the machines. In this round, regardless of the algorithm,

The Power of Randomization: Distributed Submodular Maximization on Massive Datasets

the sets picked can only cover
�
1, . . . , `2

(using the set

O1, . . . , O`) and one additional item per set for a total of
2`2 elements. Thus the total coverage of the final solu-
tion is at most 2`2. Hence the approximation is at most
2`2

`2+`3 = 2
1+` ⇡ 1p

k
.

C. The algorithm of Wolsey for
non-monotone functions

In this section, we consider the algorithm of Wolsey (1982)
for submodular maximization subject to a knapsack con-
straint. Let V denote the set of items. Let wi 2 Z�0 denote
the weight of item i. Let b 2 Z�0 be the capacity of the
knapsack and f : 2V ! R�0 be a submodular function
satisfying f(;) = 0. We wish to solve the problem:

max{f(S) : S ✓ V,w(S) b},

where w(S) =
P

i2S wi is the total weight of the items
in S. We emphasize that the function f is not necessarily
monotone.

Wolsey’s algorithm works exactly as the standard greedy
algorithm shown in Algorithm 1, with two modifications:
(1) at each step it takes the element i with highest non-
negative marginal profit density ✓S(i) = f(S[{i})�f(S)

wi
,

and (2) it returns either the greedy solution S or the best
singleton solution {e}, whichever has the higher function
value.

It is easily verified that the Lemma 2 holds for the resulting
algorithm. In the following, we show that the algorithm
satisfies the property (GP) with � = 1

3 . More precisely, we
will show that

f(T) � 1

3
f(T [O),

where T is the solution constructed by Wolsey’s algorithm,
and O ✓ V is any feasible solution.

Let S denote the Greedy solution, let {e} denote the best
singleton solution; the solution T is the better of the two
solutions S and {e}. Let

j = argmax
i2O\S

✓S(i).

We have

f(S [O) f(S) +
X

i2O\S

(f(S [{i})� f(S))

= f(S) +
X

i2O\S

wi✓S(i)

 f(S) +
X

i2O\S

wi✓S(j)

 f(S) + b · ✓S(j),

where the inequality on the first line follows from submod-
ularity of f , the inequality on the third line from the defi-
nition of j, and the inequality on the last line from the fact
that O (and hence O \ S) is feasible.

Thus, in order to complete the proof, it suffices to show that
b · ✓S(j) 2max {f(S), f({e})}. We consider two cases
based on the weight of j.

Suppose that wj > b/2. We have

b · ✓S(j) < 2wj · ✓S(j)
= 2(f(S [{j})� f(S))

 2f({j}) 2f({e}),

as desired.

Therefore we may assume that wj b/2. Let ei denote the
i-th element selected by the Greedy algorithm and let Si =
{e1, e2, . . . , ei}. Note that we may assume that ✓S(j) � 0,
since otherwise we would be done. Thus ✓Si(j) � ✓S(j) �
0 for all i.

Let t be the largest index such that w(St) b � wj ; note
that t < |S|, since otherwise S [{j} is a feasible solution
with value greater than f(S), which is a contradiction. We
have w(St+1) > b� wj � b/2.

In each iteration i t, it was feasible to add j to the current
solution; since the Greedy algorithm did not pick j, we
must have ✓Si�1(ei) � ✓Si�1(j).

Finally, f(S) � f(St+1), since the Greedy algorithm only
adds elements with non-negative marginal value. Therefore
we have

f(S) � f(St+1)

=

t+1X

i=1

(f(Si)� f(Si�1))

=

t+1X

i=1

wei✓Si�1(ei)

�
t+1X

i=1

wei✓Si�1(j)

�
t+1X

i=1

wei✓S(j)

= w(St+1) · ✓S(j)

� b

2
· ✓S(j).

Thus b · ✓S(j) 2f(S), as desired.

	Introduction
	Background and Related Work
	Our Contribution
	Preliminaries

	The Standard Greedy Algorithm
	A Randomized, Distributed Greedy Algorithm for Monotone Submodular Maximization
	Non-Monotone Submodular Functions
	Experiments
	Improved analysis for the GreeDI algorithm with an arbitrary partition
	A tight example for the GreeDI algorithm with an arbitrary partition
	The algorithm of Wolsey for non-monotone functions

