Active Nearest Neighbors in Changing Environments: Supplementary Material

Christopher Berlind

Georgia Institute of Technology, Atlanta, GA, USA

Ruth Urner

Max Planck Institute for Intelligent Systems, Tübingen, Germany

1. Proof of Theorem 1

We adapt the proof (guided exercise) of Theorem 19.5 in (Shalev-Shwartz & Ben-David, 2014) to our setting. As is done there, we use the notation $y \sim p$ to denote drawing from a Bernoulli random variable with mean p. We will employ the following lemmas:

Lemma 1 (Lemma 19.6 in (Shalev-Shwartz & Ben-David, 2014)). Let C_1, \ldots, C_r be a collection of subsets of some domain set, \mathcal{X} . Let S be a sequence of m points sampled *i.i.d.* according to some probability distribution, D over \mathcal{X} . Then, for every $k \geq 2$,

$$\mathbb{E}_{S \sim D^m} \left[\sum_{i: |C_i \cap S| < k} \mathbb{P}[C_i] \right] \leq \frac{2rk}{m} \,.$$

Lemma 2 (Lemma 19.7 in (Shalev-Shwartz & Ben-David, 2014)). Let $k \ge 10$ and let Z_1, \ldots, Z_k be independent Bernoulli random variables with $\mathbb{P}[Z_i = 1] = p_i$. Denote $p = \frac{1}{k} \sum_i p_i$ and $p' = \frac{1}{k} \sum_{i=1}^{k} Z_i$. Then

$$\mathbb{E}_{Z_1,\dots,Z_k} \mathbb{P}_{p}[y \neq \mathbf{1}[p' > 1/2]]$$

$$\leq \left(1 + \sqrt{\frac{8}{k}}\right) \mathbb{P}_{y \sim p}[y \neq \mathbf{1}[p > 1/2]]$$

Before we prove the theorem, we show the following:

Claim 1 (Ex. 3 of Chapter 19 in (Shalev-Shwartz & Ben-David, 2014)). Fix some $p, p' \in [0, 1]$ and $y' \in \{0, 1\}$. Then

$$\mathbb{P}_{y \sim p}[y \neq y'] \le \mathbb{P}_{y \sim p'}[y \neq y'] + |p - p'|.$$

Proof. If y' = 0, we have

$$\mathbb{P}_{y \sim p}[y \neq y'] = p = p - p' + p' \\
= \mathbb{P}_{y \sim p'}[y \neq y'] + p - p' \\
\leq \mathbb{P}_{y \sim p'}[y \neq y'] + |p - p'|.$$

CBERLIND@GATECH.EDU

RUTH.URNER@TUEBINGEN.MPG.DE

If y' = 1, we have

$$\mathbb{P}_{y \sim p}[y \neq y'] = 1 - p = 1 - p - p' + p' \\
= \mathbb{P}_{y \sim p'}[y \neq y'] - p + p' \\
\leq \mathbb{P}_{y \sim p'}[y \neq y'] + |p - p'|.$$

Proof of Theorem 1. Let h_{ST} denote the output classifier of Algorithm 1. Let $\mathcal{C} = \{C_1, \ldots, C_r\}$ denote an ϵ -cover of the target support (\mathcal{X}_T, ρ) , that is, $\bigcup_i C_i = \mathcal{X}_T$ and each C_i has diameter at most ϵ . Without loss of generality, we assume that the C_i are disjoint and for a domain point $x \in$ \mathcal{X} we let C(x) denote the element of \mathcal{C} that contains x. Let $L = T^l \cup S$ denote the (k, k')-NN-cover of T that ANDA uses (that is, the set of labeled points that h_{ST} uses for prediction). We bound its expected loss as follows:

$$\begin{split} & \underset{T \sim D_T}{\mathbb{E}} \left[\mathcal{L}_{P_T}(h_{ST}) \right] \\ &= \underset{T \sim D_T}{\mathbb{E}} \left[\underset{(x,y) \sim P_T}{\mathbb{P}} [h_{ST}(x) \neq y] \right] \\ &\leq \underset{T \sim D_T}{\mathbb{E}} \left[\underset{(x,y) \sim P_T}{\mathbb{P}} [h_{ST}(x) \neq y \land \rho(x, x_{k'}(x, T)) > \epsilon] \\ &+ \underset{(x,y) \sim P_T}{\mathbb{P}} [h_{ST}(x) \neq y \land \rho(x, x_{k'}(x, T)) \leq \epsilon] \right] \\ &= \underset{T \sim D_T}{\mathbb{E}} \left[\underset{(x,y) \sim P_T}{\mathbb{P}} [\rho(x, x_{k'}(x, T)) > \epsilon] \right] \\ &+ \underset{T \sim D_T}{\mathbb{E}} \left[\underset{(x,y) \sim P_T}{\mathbb{P}} [h_{ST}(x) \neq y \land \rho(x, x_{k'}(x, T)) \leq \epsilon] \right] \\ &+ \underset{T \sim D_T}{\mathbb{E}} \left[\underset{(x,y) \sim P_T}{\mathbb{P}} [h_{ST}(x) \neq y \land \rho(x, x_{k'}(x, T)) \leq \epsilon] \right] \\ &+ \underset{x \sim D_T}{\mathbb{E}} \left[\underset{T \sim D_T}{\mathbb{P}} [h_{ST}(x) \neq y \land \rho(x, x_{k'}(x, T)) \leq \epsilon] \right] , \end{split}$$

where the last equality holds by Fubini's theorem. Then we

have

$$\mathbb{E}_{T \sim D_T^{m_T}} [\mathcal{L}_{P_T}(h_{ST})]$$

$$\leq \mathbb{E}_{T \sim D_T^{m_T}} \left[\mathbb{P}_{(x,y) \sim P_T} [\rho(x, x_{k'}(x,T)) > \epsilon] \right]$$

$$+ \mathbb{E}_{x \sim D_T} \left[\mathbb{P}_{T \sim D_T^{m_T}} [h_{ST}(x) \neq y \mid \rho(x, x_{k'}(x,T)) \leq \epsilon] \right]$$

$$\leq \mathbb{E}_{T \sim D_T^{m_T}} \left[\mathbb{P}_{(x,y) \sim P_T} [|T \cap C(x)| < k'] \right]$$

$$+ \mathbb{E}_{x \sim D_T} \left[\mathbb{P}_{(x,y) \sim P_T} [h_{ST}(x) \neq y \mid \rho(x, x_{k'}(x,T)) \leq \epsilon] \right],$$

where for the first summand of the last inequality, we used that a point x can only have distance more than ϵ to its k'th nearest neighbor in T if C(x) is hit less than k' times by T. Lemma 1 implies that this first summand is bounded in expectation by $\frac{2 N_{\epsilon}(\mathcal{X}_{T}, \rho) k'}{m_{T}}$.

To bound the second summand, we now first fix a sample Tand a point x such that $\rho(x, x_{k'}(x, T)) \leq \epsilon$ (and condition on these). Since the set of labeled points $L = T^l \cup S$ used for prediction is an (k, k')-NN-cover of T, Lemma 1 implies that there are at least k labeled points in L at distance at most 3ϵ from x. Let $k(x, L) = \{x_1, \ldots, x_k\}$ be the k nearest neighbors of x in L, let $p_i = \eta(x_i)$ and set $p = \frac{1}{k} \sum_i p_i$. Now we get

$$\mathbb{P}_{y_1 \sim p_1, \dots, y_k \sim p_k, y \sim \eta(x)} [h_{ST}(x) \neq y]$$

$$= \mathbb{E}_{y_1 \sim p_1, \dots, y_k \sim p_k} \left[\mathbb{P}_{y \sim \eta(x)} [h_{ST}(x) \neq y] \right]$$

$$\leq \mathbb{E}_{y_1 \sim p_1, \dots, y_k \sim p_k} \left[\mathbb{P}_{y \sim p} [h_{ST}(x) \neq y] \right] + |p - \eta(x)|$$

$$\leq \left(1 + \sqrt{\frac{8}{k}} \right)_{y \sim p} [y \neq \mathbf{1}[p > 1/2]] + |p - \eta(x)|$$

where the first inequality follows from Claim 1 and the second from Lemma 2. We have

$$\mathbb{P}_{y \sim p}[\mathbf{1}[p > 1/2] \neq y] = p
= \min\{p, 1 - p\}
\leq \min\{\eta(x), 1 - \eta(x)\} + |p - \eta(x)|$$

Further, since the regression function η is λ -Lipschitz and

 $\rho(x_i, x) \leq 3\epsilon$ for all *i*, we have

$$p - \eta(x)| = \left| \left(\frac{1}{k} \sum_{i} p_{i} \right) - \eta(x) \right|$$

$$= \left| \left(\frac{1}{k} \sum_{i} \eta(x_{i}) \right) - \eta(x) \right|$$

$$= \left| \left(\frac{1}{k} \sum_{i} \eta(x_{i}) - \eta(x) + \eta(x) \right) - \eta(x) \right|$$

$$\leq \left| \left(\frac{1}{k} \sum_{i} 3\lambda\epsilon + \eta(x) \right) - \eta(x) \right|$$

$$= \left| 3\lambda\epsilon + \left(\frac{1}{k} \sum_{i} \eta(x) \right) - \eta(x) \right| = 3\lambda\epsilon.$$

Thus, we get

$$\mathbb{P}_{y_1 \sim p_1, \dots, y_k \sim p_k, y \sim \eta(x)} [h_{ST}(x) \neq y]$$

$$= \mathbb{E}_{y_1 \sim p_1, \dots, y_k \sim p_k} \left[\mathbb{P}_{p \sim \eta(x)} [h_{ST}(x) \neq y] \right]$$

$$\leq \left(1 + \sqrt{\frac{8}{k}} \right) \mathbb{P}_{p}[y \neq \mathbf{1}[p > 1/2]] + |p - \eta(x)|$$

$$\leq \left(1 + \sqrt{\frac{8}{k}} \right) (\min\{\eta(x), 1 - \eta(x)\} + |p - \eta(x)|) + |p - \eta(x)|$$

$$\leq \left(1 + \sqrt{\frac{8}{k}} \right) (\min\{\eta(x), 1 - \eta(x)\}) + 3|p - \eta(x)|$$

$$\leq \left(1 + \sqrt{\frac{8}{k}} \right) (\min\{\eta(x), 1 - \eta(x)\}) + 9\lambda\epsilon.$$

Since this holds for all samples T and points x with $\rho(x,x_{k'}(x,T)) \leq \epsilon,$ we get,

$$\mathbb{E}_{x \sim D_T} \left[\mathbb{P}_{\substack{y \sim \eta(x) \\ T \sim D_T^{m_T}}} [h_{ST}(x) \neq y \mid \rho(x, x_{k'}(x, T)) \leq \epsilon] \right]$$

$$\leq \mathbb{E}_{x \sim D_T} \left[\left(1 + \sqrt{\frac{8}{k}} \right) (\min\{\eta(x), 1 - \eta(x)\}) + 9\lambda\epsilon \right]$$

$$= \left(1 + \sqrt{\frac{8}{k}} \right) \mathbb{E}_{x \sim D_T} [(\min\{\eta(x), 1 - \eta(x)\})] + 9\lambda\epsilon$$

$$= \left(1 + \sqrt{\frac{8}{k}} \right) \mathcal{L}_T(h_T^*) + 9\lambda\epsilon.$$

This yields

$$\mathbb{E}_{T \sim D_T m_T} [\mathcal{L}_{P_T}(h_{ST})] \\
\leq \mathbb{E}_{T \sim D_T m_T} \left[\mathbb{P}_{(x,y) \sim P_T} [|T \cap C(x)| < k'] \right] \\
+ \mathbb{E}_{T \sim D_T m_T} \left[\mathbb{P}_{(x,y) \sim P_T} [h_{ST}(x) \neq y \mid \rho(x, x_{k'}(x,T)) \leq \epsilon] \right] \\
\leq \frac{2 N_{\epsilon}(\mathcal{X}_T, \rho) k'}{m_T} + \left(1 + \sqrt{\frac{8}{k}} \right) \mathcal{L}_T(h_T^*) + 9\lambda\epsilon,$$

which completes the proof.

2. Proof of Corollary 1

Proof. We need to show that for every $\alpha > 0$, there exists an index i_0 , such that $\mathbb{E}_{T \sim P_T^{m_i}}[\mathcal{L}_T(\text{ANDA}(S_i, T, k_i, k'_i))] = \mathcal{L}_T(h^*) + \alpha$ for all $i \geq i_0$. Let $P_T \in \mathcal{P}(\mathcal{X}, \rho)$ and α be given.

Let γ be so that $9\gamma \leq \alpha/3$. Since η is uniformly continuous, there is a δ , such that for all $x, x' \in \mathcal{X}$, $\rho(x, x') \leq \delta \Rightarrow |\eta(x) - \eta(x')| \leq \gamma$. Note that the only way we used the λ -Lipschitzness in the proof of Theorem 1 is by using that for any two points x, x' that lie in a common element C of an ϵ -cover of the space, we have $|\eta(x) - \eta(x')| \leq \lambda \epsilon$. Thus, we could now repeat the proof of Theorem 1, using a δ -cover of the space and obtain that

$$\mathbb{E}_{T \sim D_T^{m_T}} [\mathcal{L}_T(\text{ANDA}(S, T, k, k'))] \\ \leq (1 + \sqrt{8/k}) \mathcal{L}_T(h^*) + 9\gamma + \frac{2 \operatorname{N}_{\delta}(\mathcal{X}_T, \rho) k'}{m_T}$$

for all $k \ge 10$ and $k' \ge k$. Now let i_1 be so that $\sqrt{\frac{8}{k_i}} \le \frac{\alpha}{3}$ for all $i \ge i_1$. Note that this implies $\sqrt{\frac{8}{k_i}}\mathcal{L}_T(h^*) \le \frac{\alpha}{3}$ for all $i \ge i_1$. Since $(k'_i/m_i) \to 0$ as $i \to \infty$, we can choose i_2 be so that $\frac{2N_{\delta}(\mathcal{X}_T, \rho)k'_i}{m_i} \le \alpha/3$ for all $i \ge i_2$. Together these imply that for all $i \ge i_0 := \max\{i_1, i_2\}$, we have $\mathbb{E}_{T \sim P_T^{m_i}}[\mathcal{L}_T(\text{ANDA}(S_i, T, k_i, k'_i))] = \mathcal{L}_T(h^*) + \alpha$ as desired. \Box

3. Proof of Theorem 3

Proof. Recall that, according to the requirements of Theoren 2, we have $m_T > k' = (C + 1)k$ for some k that satisfies $k \ge 9 (d_{\mathsf{VC}}(\mathcal{B}) \ln(2m_T) + \ln(6/\delta))$. Since D_T has a continuous density function, for every point x in \mathcal{X}_T and $0 < \epsilon \le 1$, there is a ball $B^{\epsilon}(x)$ of target weight exactly ϵ around x (*i.e.* $D_T(B^{\epsilon}(x)) = \epsilon$). For some w > 0, let $\mathcal{X}_T(\epsilon, w) \subseteq \mathcal{X}_T$ denote the set of points x whose ϵ -ball has weight ratio smaller than w, that is $\mathcal{X}_T(\epsilon, w) = \{x \in \mathcal{X}_T \mid \beta(B^{\epsilon}(x)) < w\}$.

Claim 2.

$$\lim_{w \to 0} D_T(\mathcal{X}_T(\epsilon, w) \cap \mathcal{X}_S) = 0$$

Let $\epsilon = Ck/3m_T$. Given the claim (which we prove below), we can choose w small enough such that (with probability at least $1 - \delta$), a target sample of size m_T will not hit $\mathcal{X}_T(\epsilon, w) \cap \mathcal{X}_S$. Now we can choose a size M_S for the source sample S large enough such that (with probability $1 - 2\delta$) ANDA-S will not query any points in $\mathcal{X}_S \setminus \mathcal{X}_T(\epsilon, w)$. This is shown similarly to the proof of Theorem 2 as follows.

First, assume that the sample T is so that the implications of Lemma 2 are satisfied (this also happens with probability at least $(1 - \delta)$). Then, by invoking the contrapositive of the first implication in Lemma 2,

$$D_T(B^{\epsilon}(x)) = \epsilon = \frac{Ck}{3m_T}$$

and

$$\frac{Ck}{m_T} \ge \frac{C 9 \left(d_{\mathsf{VC}}(\mathcal{B}) \ln(2m_T) + \ln(6/\delta) \right)}{m_T}$$

implies that

$$\widehat{T}(B^{\epsilon}(x)) \le \frac{Ck}{m_T}$$

Thus, for all x, the ball $B^{\epsilon}(x)$ contains at most Ck points from the target sample T.

Now we choose a sufficiently large size for the source sample S, namely

$$m_S \ge M_S = \frac{72 \ln(6/\delta)m_T}{C w} \ln\left(\frac{9 m_T}{C w}\right)$$

for the value of w chosen above. We assume that the sample S is so that the implications of Lemma 2 are satisfied (this, again, holds with probability at least $(1 - \delta)$).

Exactly as in the proof of Theorem 2, we can show that, for all x with $\beta(B^{\epsilon}(x)) \geq w$,

$$D_T(B^{\epsilon}(x)) = \frac{Ck}{3m_T}$$

implies

$$\widehat{S}(B^{\epsilon}(x)) \ge \frac{k}{m_S}$$

Thus, for all x with $\beta(B^{\epsilon}(x)) \ge w$, the ball $B^{\epsilon}(x)$ contains at least k points from the source sample S.

In summary, we have shown that with probability $(1 - 3\delta)$ over the samples S and T, for all target sample points x, that fall into the source support, we have $\beta(B^{\epsilon}(x)) \ge w$, and for those the ball $B^{\epsilon}(x)$ contains at most Ck target and at least k source samples points. This implies that for all target sample points, that fall into the source support, the k' = (C+1)k Nearest Neighbor ball (in $S \cup T$) around x contains at least k points from the source sample and will therefore not be queried.

Proof of Claim 2. Let $(w_i)_{i \in \mathbb{N}}$ be a decreasing sequence that converges to 0. Then the sets $\mathcal{X}_T(\epsilon, w_i)$ are linearly ordered by inclusion (getting smaller as w_i gets smaller). Thus, the limit of the sequence of sets $\mathcal{X}_T(\epsilon, w_i)$ exists and we have

$$\lim_{i \to \infty} \mathcal{X}_T(\epsilon, w_i) = \bigcap_{i=1}^{\infty} \mathcal{X}_T(\epsilon, w_i) \subseteq \mathcal{X}_T \setminus \mathcal{X}_S$$

To see the last inclusion, recall that, by definition, a point x is in the source support \mathcal{X}_S if and only if every ball B around x has positive source mass $D_S(B) > 0$. Hence, in particular $D_S(B^{\epsilon}(x)) > 0$, which implies that these balls also have strictly positive weight ratio $\beta(B^{\epsilon}(x)) > 0$. Thus, for every point x in the source support, there exists an i such that $x \notin \mathcal{X}_T(\epsilon, w_i)$, since the w_i converge to 0.

The above set convergence implies

$$\lim_{i \to \infty} D_T(\mathcal{X}_T(\epsilon, w_i)) = D_T(\bigcap_{i=1}^{\infty} \mathcal{X}_T(\epsilon, w_i)) \le D_T(\mathcal{X}_T \setminus \mathcal{X}_S)$$

This, in turn implies

$$\lim_{i \to \infty} D_T(\mathcal{X}_T(\epsilon, w_i) \cap \mathcal{X}_S) \le D_T((\mathcal{X}_T \setminus \mathcal{X}_S) \cap \mathcal{X}_S) = 0$$

yielding the claim.

References

Shalev-Shwartz, Shai and Ben-David, Shai. Understanding Machine Learning. Cambridge University Press, 2014.