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Abstract

We describe a novel non-parametric statistical
hypothesis test of relative dependence between
a source variable and two candidate target vari-
ables. Such a test enables us to determine
whether one source variable is significantly more
dependent on a first target variable or a sec-
ond. Dependence is measured via the Hilbert-
Schmidt Independence Criterion (HSIC), result-
ing in a pair of empirical dependence mea-
sures (source-target 1, source-target 2). We test
whether the first dependence measure is signif-
icantly larger than the second. Modeling the
covariance between these HSIC statistics leads
to a provably more powerful test than the con-
struction of independent HSIC statistics by sub-
sampling. The resulting test is consistent and
unbiased, and (being based on U-statistics) has
favorable convergence properties. The test can
be computed in quadratic time, matching the
computational complexity of standard empiri-
cal HSIC estimators. The effectiveness of the
test is demonstrated on several real-world prob-
lems: we identify language groups from a mul-
tilingual corpus, and we prove that tumor lo-
cation is more dependent on gene expression
than chromosomal imbalances. Source code is
available for download at https://github.
com/wbounliphone/reldep.
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1. Introduction
Tests of dependence are important tools in statistical anal-
ysis, and are widely applied in many data analysis con-
texts. Classical criteria include Spearman’s ρ and Kendall’s
τ , which can detect non-linear monotonic dependencies.
More recent research on dependence measurement has fo-
cused on non-parametric measures of dependence, which
apply even when the dependence is nonlinear, or the vari-
ables are multivariate or non-euclidean (for instance im-
ages, strings, and graphs). The statistics for such tests are
diverse, and include kernel measures of covariance (Gret-
ton et al., 2008; Zhang et al., 2011) and correlation (Daux-
ois & Nkiet, 1998; Fukumizu et al., 2008), distance co-
variances (which are instances of kernel tests) (Székely
et al., 2007; Sejdinovic et al., 2013b), kernel regression
tests (Cortes et al., 2009; Gunn & Kandola, 2002), rank-
ings (Heller et al., 2013), and space partitioning approaches
(Gretton & Gyorfi, 2010; Reshef et al., 2011; Kinney & At-
wal, 2014). Specialization of such methods to univariate
linear dependence can yield similar tests to classical ap-
proaches such as Darlington (1968); Bring (1996).

For many problems in data analysis, however, the question
of whether dependence exists is secondary: there may be
multiple dependencies, and the question becomes which
dependence is the strongest. For instance, in neuroscience,
multiple stimuli may be present (e.g. visual and audio), and
it is of interest to determine which of the two has a stronger
influence on brain activity (Trommershauser et al., 2011).
In automated translation (Peters et al., 2012), it is of inter-
est to determine whether documents in a source language
are a significantly better match to those in one target lan-
guage than to another target language, either as a measure
of difficulty of the respective learning tasks, or as a basic
tool for comparative linguistics.

https://github.com/wbounliphone/reldep
https://github.com/wbounliphone/reldep
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We present a statistical test which determines whether two
target variables have a significant difference in their de-
pendence on a third, source variable. The dependence be-
tween each of the target variables and the source is com-
puted using the Hilbert-Schmidt Independence Criterion
(Gretton et al., 2005; 2008).1 Care must be taken in an-
alyzing the asymptotic behavior of the test statistics, since
the two measures of dependence will themselves be cor-
related: they are both computed with respect to the same
source. Thus, we derive the joint asymptotic distribution
of both dependencies. The derivation of our test utilizes
classical results of U -statistics (Hoeffding, 1963; Serfling,
1981; Arcones & Gine, 1993). In particular, we make use
of results by Hoeffding (1963) and Serfling (1981) to deter-
mine the asymptotic joint distributions of the statistics (see
Theorem 4). Consequently, we derive the lowest variance
unbiased estimator of the test statistic.

We prove our approach to have greater statistical power
than constructing two uncorrelated statistics on the same
data by subsampling, and testing on these. In experiments,
we are able to successfully test which of two variables is
most strongly related to a third, in synthetic examples, in a
language group identification task, and in a task for iden-
tifying the relative strength of factors for Glioma type in a
pediatric patient population.

To our knowledge, there do not exist competing non-
parametric tests to determine which of two dependencies
is strongest. One related area is that of multiple regression
analysis (e.g. (Sen & Srivastava, 2011)). In this case a lin-
ear model is assumed, and it is determined whether individ-
ual inputs have a statistically significant effect on an output
variable. The procedure does not address the question of
whether the influence of one variable is higher than that of
another to a statistically significant degree. The problem of
variable selection has also been investigated in the case of
nonlinear relations between the inputs and outputs (Cortes
et al., 2009; 2012; Song et al., 2012), however this again
does not address which of two variables most strongly in-
fluences a third. A less closely related area is that of detect-
ing three-variable interactions (Sejdinovic et al., 2013a),
where it is determined whether there exists any factoriza-
tion of the joint distribution over three variables. This test
again does not address the issue of finding which connec-
tions are strongest, however.

1Dependency can also be tested with the correlation operator.
However, Fukumizu et al., (2007) show that unlike the covariance
operator, the asymptotic distribution of the norm of the correlation
operator is unknown, so the construction of a computationally ef-
ficient test of relative dependence remains an open problem.

2. Definitions and description of HSIC
We base our underlying notion of dependence on the
Hilbert-Schmidt Independence Criterion (Gretton et al.,
2005; 2008; Song et al., 2012). All results in this section
except for Problem 1 can be found in these previous works.

Definition 1. (Gretton et al., 2005, Definition 1,Lemma 1:
Hilbert-Schmidt Independence Criterion)

Let Pxy be a Borel probability measure over over (X ×
Y,Γ×Λ) with Γ and Λ the respective Borel sets on X and
Y , and Px and Py the marginal distributions on domains
X and Y . Given separable RKHSs F and G, the Hilbert-
Schmidt Independence Criterion (HSIC) is defined as the
squared HS-norm of the associated cross-covariance oper-
ator Cxy . When the kernels k, l are associated uniquely
withs respective RKHSs F and G and bounded, HSIC can
be expressed in terms of expectations of kernel functions

HSIC(F ,G, Pxy) := ‖Cxy‖2HS
= Exx′yy′ [k(x, x′)l(y, y′)] + Exx′ [k(x, x′)]Eyy′ [l(y, y′)]

− 2Exy [Ex′ [k(x, x′)]Ey′ [l(y, y′)]] . (1)

HSIC determines independence: HSIC = 0 iff Pxy = PxPy
when kernels k and l are characteristic on their respective
marginal domains (Gretton, 2015).

With this choice, the problem we would like to solve is
described as follows:

Problem 1. Given separable RKHSs F , G, and H with
HSIC(F ,G, Pxy) > 0 and HSIC(F ,H, Pxz) > 0,
we test the null hypothesis H0 : HSIC(F ,G, Pxy) ≤
HSIC(F ,H, Pxz) versus the alternative hypothesis H1 :
HSIC(F ,G, Pxy) > HSIC(F ,H, Pxz) at a given sig-
nificance level α.

We now describe the asymptotic behavior of the HSIC for
dependent variables.

Theorem 1. (Song et al., 2012, Theorem 2: Unbiased
estimator for HSIC(F ,G, Pxy)) We denote by S the set
of observations {(x1, y1), ..., (xm, ym)} of size m drawn
i.i.d. from Pxy . The unbiased estimator HSICm(F ,G,S)
is given by

HSICm(F ,G,S) =
1

m(m− 3)
× (2)[

Tr(K̃L̃) +
1′K̃11′L̃1

(m− 1)(m− 2)
− 2

m− 2
1′K̃L̃1

]

where K̃ and L̃ are related to K and L by K̃ij = (1 −
δij)K̃ij and L̃ij = (1− δij)L̃ij .
Theorem 2. (Song et al., 2012, Theorem 3: U-statistic of
HSIC) This finite sample unbiased estimator of HSICXYm
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can be written as a U-statistic,

HSICXYm = (m)−14

∑
(i,j,q,r)∈im4

hijqr (3)

where (m)4 :=
m!

(m− 4)!
, the index set im4 denotes the

set of all 4−tuples drawn without replacement from the set
{1, . . .m}, and the kernel h of the U-statistic is defined as

hijqr =
1

24

(i,j,q,r)∑
(s,t,u,v)

kst(lst + luv − 2lsu) (4)

where the kernels k and l are associated uniquely with re-
spective reproducing kernel Hilbert spaces F and G.

Theorem 3. (Gretton et al., 2008, Theorem 1: Asymptotic
distribution of HSICm) If E[h2] < ∞, and source and
targets are not independent, then, underH1, as m→∞,

√
m(HSICXYm −HSIC(F ,G, Pxy))

d−→ N (0, σ2
XY )

(5)
where σ2

XY = 16
(
Ei (Ej,q,rhijqr)

2 −HSIC(F ,G, Pxy))
)

with Ej,q,r := ESj ,Sq,Sr
. Its empirical esti-

mate is σ̂XY = 16
(
RXY − (HSICXYm )2

)
where

RXY =
1

m

m∑
i=1

(m− 1)−13

∑
(j,q,r)∈im3 \{i}

hijqr

2

and

the index set im3 \ {i} denotes the set of all 3−tuples drawn
without replacement from the set {1, . . .m} \ {i}.

3. A test of relative dependence
In this section we calculate two dependent HSIC statistics
and derive the joint asymptotic distribution of these depen-
dent quantities, which is used to construct a consistent test
for Problem 1. We next construct a simpler consistent test,
by computing two independent HSIC statistics on sample
subsets. While the simpler strategy is superficially attrac-
tive and less effort to implement, we prove the dependent
strategy is strictly more powerful.

3.1. Joint asymptotic distribution of HSIC and test

In the present section, we compute each HSIC estimate
on the full dataset, and explicitly obtain the correlations
between the resulting empirical dependence measurements
HSICXYm and HSICXZm . We denote by S1 = (X,Y, Z)
the joint sample of observations which are drawn i.i.d. with
respective Borel probability measure Pxyz defined on the
domain X × Y × Z . The kernels k, l and d are associated
uniquely with respective reproducing kernel Hilbert spaces
F , G and H. Moreover, K, L and D ∈ Rm×m are kernel
matrices containing kij = k(xi, xj), lij = l(yi, yj) and

dij = d(zi, zj). Let HSICXYm and HSICXZm be respec-
tively the unbiased estimators of HSIC(F ,G, Pxy) and
HSIC(F ,H, Pxz), written as a sum of U-statistics with
respective kernels hijqr and gijqr as described in (4),

hijqr =
1

24

(i,j,q,r)∑
(s,t,u,v)

kst(lst + luv − 2lsu),

gijqr =
1

24

(i,j,q,r)∑
(s,t,u,v)

kst(dst + duv − 2dsu). (6)

Theorem 4. (Joint asymptotic distribution of HSIC) If
E[h2] <∞ and E[g2] <∞, then

√
m

((
HSICXYm
HSICXZm

)
−
(
HSIC(F ,G, Pxy)
HSIC(F ,H, Pxz)

))
d−→ N

((
0
0

)
,

(
σ2
XY σXYXZ

σXYXZ σ2
XZ

))
, (7)

where σ2
XY and σ2

XZ are as in Theorem 3. The
empirical estimate of σXYXZ is σ̂XYXZ =
16

m

(
RXYXZ −HSICXYm HSICXZm

)
, where

RXYXZ =
1

m

m∑
i=1

(m− 1)−23

∑
(j,q,r)∈im3 \{i}

hijqrgijqr

 .

(8)

Proof. Eq. (8) is constructed with the definition of vari-
ance of a U-statistic as given by Serfling, Ch. 5 (1981),
where one variable is fixed. Eq. (7) follows from the appli-
cation of Hoeffding, Theorem 7.1 (1963), which gives the
joint asymptotic distribution of U-statistics.

Based on the joint asymptotic distribution of HSIC de-
scribed in Theorem 4, we can now describe a statistical
test to solve Problem 1: given a sample S1 as described
in Section 3.1, T (S1) : {(X × Y × Z)m} → {0, 1} is
used to test the null hypothesis H0 : HSIC(F ,G, Pxy) ≤
HSIC(F ,H, Pxz) versus the alternative hypothesis H1 :
HSIC(F ,G, Pxy) > HSIC(F ,H, Pxz) at a given sig-
nificance level α. This is achieved by projecting the distri-
bution to 1D using the statistic HSICXYm − HSICXZm ,
and determining where the statistic falls relative to a
conservative estimate of the the 1 − α quantile of the
null. We now derive this conservative estimate. A sim-
ple way of achieving this is to rotate the distribution by
π
4 counter-clockwise about the origin, and to integrate
the resulting distribution projected onto the first axis (cf.
Fig. 3). Denote the asymptotically normal distribution of√
m[HSICXYm HSICXZm ]T as N (µ,Σ). The distribution

resulting from rotation and projection is

N
(
[Qµ]1, [QΣQT ]11

)
, (9)
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where Q =

√
2

2

(
1 −1
1 1

)
is the rotation matrix by π

4 and

[Qµ]1 =

√
2

2
(HSIC(F ,G, Pxy)−HSIC(F ,H, Pxz)) ,

(10)

[QΣQT ]11 =
1

2
(σ2
XY + σ2

XZ − 2σXYXZ). (11)

Following the empirical distribution from Eq. (9), a test
with statistic HSICXYm −HSICXZm has p-value

p ≤ 1−Φ

(
(HSICXYm −HSICXZm )√
σ2
XY + σ2

XZ − 2σXYXZ

)
, (12)

where Φ is the CDF of a standard normal distribution, and
we have made the most conservative possible assumption
that HSIC(F ,G, Pxy) − HSIC(F ,H, Pxz) = 0 under
the null (the null also allows for the difference in population
dependence measures to be negative).

To implement the test in practice, the variances of
σ2
XY , σ

2
XZ and σ2

XYXZ may be replaced by their empir-
ical estimates. The test will still be consistent for a large
enough sample size, since the estimates will be sufficiently
well converged to ensure the test is calibrated. Eq. (8) is
expensive to compute naı̈vely, because even computing the
kernels hijqr and gijqr of the U -statistic itself is a non
trivial task. Following (Song et al., 2012, Section 2.5),
we first form a vector hXY with entries corresponding to∑

(j,q,r)∈im3 \{i}
hijqr, and a vector hXZ with entries cor-

responding to
∑

(j,q,r)∈im3 \{i}
gijqr. Collecting terms in

Eq. (4) related to kernel matrices K̃ and L̃, hXY can be
written as

hXY = (m− 2)2
(
K̃� L̃

)
1−m(K̃1)� (L̃1) (13)

+ (m− 2)
(

(Tr(K̃L̃))1− K̃(L̃1)− L̃(K̃1)
)

+ (1T L̃1)K̃1+ (1T K̃1)L̃1− ((1T K̃)(L̃1))1

where � denotes the Hadamard product. Then RXYXZ
in Eq. (8) can be computed as RXYXZ = (4m)−1(m −
1)−23 hXY

ThXZ. Using the order of operations implied by
the parentheses in Eq. (13), the computational cost of the
cross covariance term is O(m2). Combining this with the
unbiased estimator of HSIC in Eq. (2) leads to a final com-
putational complexity of O(m2).

In addition to the asymptotic consistency result, we provide
a finite sample bound on the deviation between the differ-
ence of two population HSIC statistics and the difference
of two empirical HSIC estimates.

Theorem 5 (Generalization bound on the difference of
empirical HSIC statistics). Assume that k, l, and d are
bounded almost everywhere by 1, and are non-negative.

Then for m > 1 and all δ > 0 with probability at least
1 − δ, for all pxyz , the generalization bound on the differ-
ence of empirical HSIC statistics is

| {HSIC(F ,G, Pxy)−HSIC(F ,H, Pxz)}
−
{
HSICXYm −HSICXZm

}
|

≤ 2

{√
log(6/δ)

α2m
+
C

m

}
(14)

where α > 0.24 and C are constants.

Proof. In Gretton et al., (2005) a finite sample bound is
given for a single HSIC statistic. Eq. (14) is proved by
using a union bound.

Corollary 1. HSICXYm −HSICXZm converges to the pop-
ulation statistic at rate O(

√
m).

3.2. A simple consistent test via uncorrelated HSICs

From the result in Eq. (5), a simple, consistent test of
relative dependence can be constructed as follows: split
the samples from Px into two equal sized sets denoted
by X ′ and X ′′, and drop the second half of the sam-
ple pairs with Y and the first half of the sample pairs
with Z. We will denote the remaining samples as Y ′

and Z ′′. We can now estimate the joint distribution of√
m[HSICX

′Y ′

m/2 , HSIC
X′′Z′′

m/2 ]T as

N
((

HSIC(F ,G, Pxy)
HSIC(F ,H, Pxz)

)
,

(
σ2
X′Y ′ 0
0 σ2

X′′Z′′

))
, (15)

which we will write as N (µ′,Σ′). Given this joint
distribution, we need to determine the distribution over
the half space defined by HSIC(F ,G, Pxy) <
HSIC(F ,H, Pxz). As in the previous section, we achieve
this by rotating the distribution by π

4 counter-clockwise
about the origin, and integrating the resulting distribution
projected onto the first axis (cf. Fig. 3). The resulting pro-
jection of the rotated distribution onto the primary axis is

N
(
[Qµ′]1 ,

[
QΣ′QT

]
11

)
(16)

where

[Qµ′]1 =

√
2

2
(HSIC(F ,G, Pxy)−HSIC(F ,H, Pxz)) ,

(17)

[QΣ′QT ]11 =
1

2
(σ2
X′Y ′ + σ2

X′′Z′′). (18)

From this empirically estimated distribution, it is straight-
forward to construct a consistent test (cf. Eq. (12)). The
power of this test varies inversely with the variance of the
distribution in Eq. (16).
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3.3. The dependent test is more powerful

While discarding half the samples leads to a consistent test,
we might expect some loss of power over the approach in
Section 3.1, due to the increase in variance with lower sam-
ple size. In this section, we prove the Section 3.1 test is
more powerful than that of Section 3.2, regardless of Pxy
and Pxz .

We call the simple and consistent approach in Section 3.2,
the independent approach, and the lower variance approach
in Section 3.1, the dependent approach. The following the-
orem compares these approaches.

Theorem 6. The asymptotic relative efficiency (ARE) of the
independent approach relative to the dependent approach
is always greater than 1.

Remark 1. The asymptotic relative efficiency (ARE) is de-
fined in e.g. Serfling (1981, Chap.5, Section 1.15.4). If mA

andmB are the sample sizes at which tests ”perform equiv-
alently” (i.e. have equal power), then the ratio mA

mB
repre-

sents the relative efficiency. WhenmA andmB tend to +∞
and the ratio mA

mB
→ L (at equivalent performance), then

the value L represents the asymptotic relative efficiency of
procedure B relative to procedure A. This example is rele-
vant to our case since we are comparing two test statistics
with different asymptotically Normal distributions.

The following lemma is used for the proof of Theorem 6.

Lemma 1. (Lower Variance) The variance of the depen-
dent test statistic is smaller than the variance of the inde-
pendent test statistic.

Proof. From the convergence of moments in the applica-
tion of the central limit theorem (von Bahr, 1965), we
have that σ2

X′Y ′ = 2σ2
XY . Then the variance summary

in Eq. (11) is 1
2 (σ2

XY +σ2
XZ − 2σXYXZ) and the variance

summary in Equation (18) is 1
2 (2σ2

XY + 2σ2
XZ) where in

both cases the statistic is scaled by
√
m. We have that the

variance of the independent test statistic is smaller than the
variance of the dependent test statistic when

1

2
(σ2
XY + σ2

XZ − 2σXYXZ) <
1

2
(2σ2

XY + 2σ2
XZ)

⇐⇒ −2σXYXZ < σ2
XY + σ2

XZ (19)

which is implied by the positive definiteness of Σ.

Proof of Theorem 6. The Type II error probability of the
independent test at level α is

Φ

Φ−1(1− α)−

m−1/2
(
HSIC(F ,G, Pxy)

−HSIC(F ,H, Pxz)
)√

σ2
X′Y ′ + σ2

X′′Z′′

 , (20)

where we again make the most conservative possible as-
sumption that HSIC(F ,G, Pxy) −HSIC(F ,H, Pxz) =
0 under the null. The Type II error probability of the de-
pendent test at level α is

Φ

Φ−1(1− α)−

m−1/2
(
HSIC(F ,G, Pxy)

−HSIC(F ,H, Pxz)
)√

σ2
XY + σ2

XZ − 2σXYXZ

 (21)

where Φ is the CDF of the standard normal distribution.
The numerator in Eq. (20) is the same as the numerator in
Eq. (21), and the denominator in Eq. (21) is smaller due to
Lemma 1. The lower variance dependent test therefore has
higher ARE, i.e., for a sufficient sample size m > τ for
some distribution dependent τ ∈ N+, the dependent test
will be more powerful than the independent test.

4. Generalizing to more than two HSIC
statistics

The generalization of the dependence test to more
than three random variables follows from the earlier
derivation by applying successive rotations to a higher
dimensional joint Gaussian distribution over multiple
HSIC statistics. We assume a sample S of size m
over n domains with kernels k1, . . . , kn associated
uniquely with respective reproducing kernel Hilbert
spaces F1, . . . ,Fn. We define a generalized statisti-
cal test, Tg(S) → {0, 1} to test the null hypothesis
H0 :

∑
(x,y)∈{1,...,n}2 v(x,y)HSIC(Fx,Fy, Pxy) ≤

0 versus the alternative hypothesis Hm :∑
(x,y)∈{1,...,n}2 v(x,y)HSIC(Fx,Fy, Pxy) > 0, where

v is a vector of weights on each HSIC statistic. We
may recover the test in the previous section by set-
ting v(1,2) = +1 v(1,3) = −1 and v(i,j) = 0 for all
(i, j) ∈ {1, 2, 3}2 \ {(1, 2), (1, 3)}.

The derivation of the test follows the general strategy used
in the previous section: we construct a rotation matrix so
as to project the joint Gaussian distribution onto the first
axis, and read the p-value from a standard normal table. To
construct the rotation matrix, we simply need to rotate v
such that it is aligned with the first axis. Such a rotation
can be computed by composing n 2-dimensional rotation
matrices as in Algorithm 1.

5. Experiments
We apply our estimates of statistical dependence to three
challenging problems. The first is a synthetic data experi-
ment, in which we can directly control the relative degree
of functional dependence between variates. The second ex-
periment uses a multilingual corpus to determine the rela-
tive relations between European languages. The last exper-
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Algorithm 1 Successive rotation for generalized high-
dimensional relative tests of dependency (cf. Section 4)
Require: v ∈ Rn
Ensure: [Qv]i = 0 ∀i 6= 1, QTQ = I
Q = I
for i = 2 to n do
Qi = I; θ = − tan−1 vi

[Qv]1

[Qi]11 = cos(θ); [Qi]1i = − sin(θ)
[Qi]i1 = sin(θ); [Qi]ii = cos(θ)
Q = QiQ

end for

si
n
(t
)
+
γ
1
N
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1
)

−1 0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t
si
n
(t
)
+
γ
2
N

(0
,
1
)

−10 −5 0 5 10 15
−15

−10

−5

0

5

10

t
c
o
s(
t)

+
γ
3
N

(0
,
1
)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

t + γ1N (0, 1) t cos(t) + γ2N (0, 1) t cos(t) + γ3N (0, 1)

(a) γ1 = 0.3 (b) γ2 = 0.3 (c) γ3 = 0.6

Figure 1. Illustration of a synthetic dataset sampled from the dis-
tribution in Eq. (22).

iment is a 3-block dataset which combines gene expression,
comparative genomic hybridization, and a qualitative phe-
notype measured on a sample of Glioma patients.

5.1. Synthetic experiment

We constructed 3 distributions as defined in Eq. (22) and
illustrated in Figure 1.

Let t ∼ U [(0, 2π)], (22)
(a) x1 ∼ t+ γ1N (0, 1) y1 ∼ sin(t) + γ1N (0, 1)

(b) x2 ∼ t cos(t) + γ2N (0, 1) y2 ∼ t sin(t) + γ2N (0, 1)

(c) x3 ∼ t cos(t) + γ3N (0, 1) y3 ∼ t sin(t) + γ3N (0, 1)

These distributions are specified so that we can control the
relative degree of functional dependence between the vari-
ates by varying the relative size of noise scaling parameters
γ1, γ2 and γ3. The question is then whether the dependence
between (a) and (b) is larger than the dependence between
(a) and (c). In these experiments, we fixed γ1 = γ2 = 0.3,
while we varied γ3, and used a Gaussian kernel with band-
width σ selected as the median pairwise distance between
data points. This kernel is sufficient to obtain good perfor-
mance, although others choices exist (Gretton et al., 2012).

Figure 2 shows the power of the dependent and the inde-
pendent tests as we vary γ3. It is clear from these results
that the dependent test is far more powerful than the inde-
pendent test over the great majority of γ3 values consid-
ered. Figure 3 demonstrates that this superior test power
arises due to the tighter and more concentrated distribution
of the dependent statistic.
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Figure 2. Power of the dependent and independent test as a func-
tion of γ3 on the synthetic data described in Section 5.1. For val-
ues of γ3 > 0.3 the distribution in Fig. 1(a) is closer to 1(b) than
to 1(c). The problem becomes difficult as γ3 → 0.3. As predicted
by theory, the dependent test is significantly more powerful over
almost all values of γ3 by a substantial margin.

5.2. Multilingual data

In this section, we demonstrate dependence testing to pre-
dict the relative similarity of different languages. We use
a real world dataset taken from the parallel European Par-
liament corpus (Koehn, 2005). We choose 3000 random
documents in common written in: Finnish (fi), Italian (it),
French (fr), Spanish (es), Portuguese (pt), English (en),
Dutch (nl), German (de), Danish (da) and Swedish (sv).
These languages can be broadly categorized into either the
Romance, Germanic or Uralic groups (Gray & Atkinson,
2003). In this dataset, we considered each language as a
random variable and each document as an observation.

Our first goal is to test if the statistical dependence between
two languages in the same group is greater than the sta-
tistical dependence between languages in different groups.
For pre-processing, we removed stop-words (http://
www.nltk.org) and performed stemming (http://
snowball.tartarus.org). We applied the TF-IDF
model as a feature representation and used a Gaussian ker-
nel with the bandwidth σ set per language as the median
pairwise distance between documents.

In Table 1, a selection of tests between language groups
(Germanic, Romance, and Uralic) is given: all p-values
strongly support that our relative dependence test finds the
different language groups with very high significance.

Further, if we focus on the Romance family, our test en-
ables one to answer more fine-grained questions about the
relative similarity of languages within the same group. As
before, we determine the ground truth similarities from the
topology of the tree of European languages determined by
the linguistics community (Gray & Atkinson, 2003; Bouck-
aert et al., 2012) as illustrated in Fig. 4 for the Romance

http://www.nltk.org
http://www.nltk.org
http://snowball.tartarus.org
http://snowball.tartarus.org
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pdep = 0.0189, pindep = 0.3492 pdep = 10−4, pindep = 0.3690 pdep = 10−6, pindep = 0.2876
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(d) m=500, γ3 = 1.7 (e) m=1000, γ3 = 1.7 (f) m=3000, γ3 = 1.7
pdep = 10−9, pindep = 0.982 pdep = 10−10, pindep = 0.0326 pdep = 10−13, pindep = 0.005

Figure 3. For the synthetic experiments described in Section 5.1, we plot empirical HSIC values for dependent and independent tests for
100 repeated draws with different sample sizes. Empirical p-values for each test show that the dependent distribution converges faster
than the independent distribution even at low sample size, resulting in a more powerful statistical test.

Source Target 1 Target 2 p-value
es pt fi 0.0066
fr it da 0.0418
it es fi 0.0169
pt es da 0.0173
de nl fi < 10−4

nl en es < 10−4

da sv fr < 10−6

sv en it < 10−4

en de es < 10−4

Table 1. A selection of relative dependency tests between two
pairs of HSIC statistics for the multilingual corpus data. Low p-
values indicate a source is closer to target 1 than to target 2. In all
cases, the test correctly identifies that languages within the same
group are more strongly related than those in different groups.

group. We have run the test on all triplets from the cor-
pus for which the topology of the tree specifies a correct
ordering of the dependencies. In a fraction of a second (ex-
cluding kernel computation), we are able to recover certain
features of the subtree of relationships between languages
present in the Romance language group (Table 2). The test
always indicates the correct relative similarity of languages
when nearby languages (pt,es) are compared with those fur-
ther away (ft,it), however errors are made when comparing
triplets of languages for which the nearest common ances-
tor is more than one link removed.

Figure 4. Partial tree of Romance languages adapted from (Gray
& Atkinson, 2003).

Source Target 1 Target 2 p-value
fr es it 0.0157
fr pt it 0.1882
es fr it 0.2147
es pt it < 10−4

es pt fr < 10−4

pt fr it 0.7649
pt es it 0.0011
pt es fr < 10−8

Table 2. Relative dependency tests between Romance languages.
The tests are ordered such that a low p-value corresponds with a
confirmation of the topology of the tree of Romance languages de-
termined by the linguistics community (Gray & Atkinson, 2003).
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In our next tests, we evaluate our more general framework
for testing relative dependencies with more than two HSIC
statistics. We chose four languages, and tested whether the
average dependence between languages in the same group
is higher than the dependence between groups. The results
of these tests are in Table 3. As before, our test is able to
distinguish language groups with high significance.

Source Targets p-value
da de sv fi < 10−9

da sv en fr < 10−9

de sv en it < 10−5

fr it es sv < 10−5

es fr pt nl 0.0175

Table 3. Relative dependency test between four pairs of HSIC
statistics for the multilingual corpus data. These tests show the
ability of the relative dependence test to generalize to arbitrary
numbers of HSIC statistics by constructing a rotation matrix us-
ing Algorithm 1. In all cases v = [1 1 −2].

5.3. Pediatric glioma data

Brain tumors are the most common solid tumors in children
and have the highest mortality rate of all pediatric cancers.
Despite advances in multimodality therapy, children with
pediatric high-grade gliomas (pHGG) invariably have an
overall survival of around 20% at 5 years. Depending on
their location (e.g. brainstem, central nuclei, or supraten-
torial), pHGG present different characteristics in terms of
radiological appearance, histology, and prognosis. The hy-
pothesis is that pHGG have different genetic origins and
oncogenic pathways depending on their location. Thus, the
biological processes involved in the development of the tu-
mor may be different from one location to another.

In order to evaluate such hypotheses, pre-treatment frozen
tumor samples were obtained from 53 children with newly
diagnosed pHGG from Necker Enfants Malades (Paris,
France) from Puget et al, (2012). The 53 tumors are di-
vided into 3 locations: supratentorial (HEMI), central nu-
clei (MIDL), and brain stem (DIPG). The final dataset is or-
ganized in 3 blocks of variables defined for the 53 tumors:
X is a block of indicator variables describing the location
category, the second data matrix Y provides the expression
of 15 702 genes (GE). The third data matrix Z contains the
imbalances of 1229 segments (CGH) of chromosomes.

For X, we use a linear kernel, which is characteristic for
indicator variables, and for Y and Z, the kernel was cho-
sen to be the Gaussian kernel with σ selected as the median
of pairwise distances. The p-value of our relative depen-
dency test is < 10−5. This shows that the tumor location
in the brain is more dependent on gene expression than on
chromosomal imbalances. By contrast with Section 5.1,
the independent test was also able to find the same order-
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Figure 5. 2σ iso-curves of the Gaussian distributions estimated
from the pediatric Glioma data. As before, the dependent test
has a much lower variance than the independent test. The tests
support the stronger dependence on the tumor location to gene
expression than chromosomal imbalances.

ing of dependence, but with a p-value that is three orders of
magnitude larger (p = 0.005). Figure 5 shows iso-curves
of the Gaussian distributions estimated in the independent
and dependent tests. The empirical relative dependency is
consistent with findings in the medical literature, and pro-
vides additional statistical support for the importance of
tumor location in Glioma (Gilbertson & Gutmann, 2007;
Palm et al., 2009; Puget et al., 2012).

6. Conclusions
We have described a novel statistical test that determines
whether a source random variable is more strongly de-
pendent on one target random variable or another. This
test, built on the Hilbert-Schmidt Independence Criterion,
is low variance, consistent, and unbiased. We have shown
that our test is strictly more powerful than a test that does
not exploit the covariance between HSIC statistics, and
empirically achieves p-values several orders of magnitude
smaller. We have empirically demonstrated the test perfor-
mance on synthetic data, where the degree of dependence
could be controlled; on the challenging problem of iden-
tifying language groups from a multilingual corpus; and
for finding the most important determinant of Glioma type.
The computation and memory requirements of the test are
quadratic in the sample size, matching the performance of
HSIC and related tests for dependence between two ran-
dom variables. The test is therefore scalable to the wide
range of problem instances where non-parametric depen-
dency tests are currently applied. We have generalized the
test framework to more than two HSIC statistics, and have
given an algorithm to construct a consistent, low-variance,
unbiased test in this setting.
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