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A. Proofs
Lemma 1 (Ross & Bagnell Lemma 4.3). For any two policies, π1, π2:

J(π1)− J(π2) = TEt∼U(1,T ),s∼dtπ1
[Qπ2(s, π1)−Qπ2(s, π2)] = TEt∼U(1,T ),s∼dtπ2

[Qπ1(s, π1)−Qπ1(s, π2)]

Proof. Let πt be a policy that executes π1 in the first t steps and then executes π2 from time steps t + 1 to T . We have
J(π1) = J(πT ) and J(π2) = J(π0). Consequently, we can set up the telescoping sum:

J(π1)− J(π2) =

T∑
t=1

[
J(πt)− J(πt−1)

]
=

T∑
t=1

[
Es∼dtπ1

[Qπ2(st,π1)−Qπ2(st,π2)]
]

= TEt∼U(1,T ),s∼π1
[Qπ2(s, π1)−Qπ2(s, π2)]

The second equality in the lemma can be obtained by reversing the roles of π1 and π2 above.

A.1. Proof of Theorem 3

We start with an application of Lemma 1. Using the lemma, we have:

J(π̄)− J(πref) =
1

N

∑
i

[
J(π̂i)− J(πref)

]
=

1

N

∑
i

[
TEt∼U(1,T ),s∼π̂i

[
Qπ

ref
(s, π̂i)−Qπ

ref
(s, πref)

]]
(6)

We also observe that

T∑
t=1

(
J(π̄)−min

π∈Π
Es∼dtπ̄ [Qπ̄(s, π)]

)

=
1

N

N∑
i=1

T∑
t=1

[
J(π̂i)−min

π∈Π
Es∼dtπ̂i [Q

π̂i(s, π)]

]

=
1

N

N∑
i=1

T∑
t=1

[
Es∼dtπ̂i [Q

π̂i(s, π̂i)]−min
π∈Π

Es∼dtπ̂i [Q
π̂i(s, π)]

]

≤ 1

N

N∑
i=1

T∑
t=1

[
Es∼dtπ̂i [Q

π̂i(s, π̂i)−min
a
Qπ̂i(s, a)]

]
. (7)

Combining the above bounds from Equations 6 and 7, we see that

β
(
J(π̄)− J(πref)

)
+ (1− β)

T∑
t=1

(
J(π̄)−min

π∈Π
Es∼dtπ̄ [Qπ̄(s, π)]

)

≤ 1

N

N∑
i=1

T∑
t=1

Es∼dtπ̂i

[
β
(
Qπ

ref
(s, π̂i)−Qπ

ref
(s, πref)

)
+ (1− β)

(
Qπ̂i(s, π̂i)−min

a
Qπ̂i(s, a)

)]
=

1

N

N∑
i=1

T∑
t=1

Es∼dtπ̂i

[
Qπ

out
i (s, π̂i)− βQπ

ref
(s, πref)− (1− β) min

a
Qπ̂i(s, a)

]
≤ 1

N

N∑
i=1

T∑
t=1

Es∼dtπ̂i

[
Qπ

out
i (s, π̂i)− βmin

a
Qπ

ref
(s, a)− (1− β) min

a
Qπ̂i(s, a)

]
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A.2. Proof of Corollary 1

The proof is fairly straightforward from definitions. By definition of no-regret, it is immediate that the gap

N∑
i=1

T∑
t=1

E [ci,t(π̂i(st))− ci,t(π(st))] = o(NT ), (8)

for all policies π ∈ Π, where we recall that ci,t is the cost-vector over the actions on round i when we do roll-outs from the
tth decision point. Let Ei denote the conditional expectation on round i, conditioned on the previous rounds in Algorithm 1.
Then it is easily seen that

Ei[ci,t(a)] = Ei
[
`(ei,t(a))−min

a′
`(ei,t(a

′
))

]
,

with ei,t being the end-state reached on completing the roll-out with the policy πout
i on round i, when action a was taken

on the decision point t. Recalling that we rolled in following the trajectory of πin
i , this expectation further simplifies to

Ei[ci,t(a)] = Es∼dtπ̂i

[
Qπ

out
i (s, a)

]
− Ei

[
min
a′

`(ei,t(a
′
))

]
.

Now taking expectations in Equation 8 and combining with the above observation, we obtain that for any policy π ∈ Π,

N∑
i=1

T∑
t=1

E [ci,t(π̂i(st))− ci,t(π(st))]

=

N∑
i=1

T∑
t=1

Es∼dtπ̂i

[
Qπ

out
i (s, π̂i(s))−Qπ

out
i (s, π(s))

]
= o(NT ).

Taking the best policy π ∈ Π and dividing through by NT completes the proof.

A.3. Proof sketch of Theorem 5

(Sketch only) We decompose the analysis over exploration and exploitation rounds. For the exploration rounds, we bound
the regret by its maximum possible value of 1. To control the regret on the exploitation rounds, we focus on the updates
performed during exploration.

The cost vector ĉ(a) used at an exploration round i satisfies

Ei[ĉ(a)] = Ei [K`(e(at))1[a = at]]

= Et∼U(0:T−1),s∼dtπ̂ni

[
Qπ

out
i (s, a)

]
,

Corollary 1. Since the cost vector is identical in expectation as that used in Algorithm 1, the proof of theorem 3, which only
depends on expectations, can be reused to prove a result similar to theorem 3 for the exploration rounds. That is, letting π̄i
to be the averaged policy over all the policies in I at exploration round i, we have the bound

β(J(π̄i)− J(πref)) + (1− β)

T∑
t=1

(
J(π̄)−min

π∈Π
Es∼dtπ̄ [Qπ̄(s, π)]

)
≤ Tδi,

where δi is as defined in Equation 4.

On the exploitation rounds, we can now invoke this guarantee. Recalling that we have ni exploration rounds until round i,
the expected regret at an exploitation round i is at most δni . Thus the overall regret of the algorithm is at most

Regret ≤ ε+
1

N

N∑
i=1

δni ,

which completes the proof.
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Figure 4. Pictorial illustration of the proof elements of Theorem 4. Panel (a) depicts the actions chosen by policy 000. Selected action in
each state is indicated in bold. Panels (b) through (d) depict various stages as the algorithm updates the policy to its one-step deviations,
starting from the policy 000. Each policy that the algorithm selects is depicted by a shaded circle, with the arrows marking the moves
of the algorithm. Current policy is the shaded circle with a bold boundary. Dashed lines denote the potential one-step deviations that the
algorithm can move to and crossed policies are those which have higher costs than the current policy (see text for details).

A.4. Proof of corollary 2

We start by substituting Equation 5 in the regret bound of Theorem 5. This yields

Regret ≤ ε+
T

N
δclass +

cKT

N

N∑
i=1

√
log |Π|
ni

.

We would like to further replace ni with its expectation which is εi. However, this does not yield a valid upper bound
directly. Instead, we apply a Chernoff bound to the quantity ni, which is a sum of i i.i.d. Bernoulli random variables with
mean ε. Consequently, we have

P (ni ≤ (1− γ)εi) ≤ exp

(
−γ

2εi

2

)
≤ exp(−εi/8),

for γ = 1/2. Let i0 = 16 logN/ε+ 1. Then we can sum the failure probabilities above for all i ≥ i0 and obtain

N∑
i=i0

P (ni ≤ εi/2) ≤
N∑
i=i0

exp(−εi/8) ≤
∞∑
i=i0

exp(−εi/8)

≤ exp(−εi0/8)

1− exp(−ε/8)

=
exp(−2 logN)

exp(ε/8)− 1
≤ 8

N2ε
,

where the last inequality uses 1 + x ≤ exp(x). Consequently, we can now allow a regret of 1 on the first i0 rounds, and
control the regret on the remaining rounds using ni ≤ εi/2. Doing so, we see that with probability at least 1− 2/(N2ε)

Regret ≤ ε+
i0
N

+
T

N
δclass +

cKT

N

N∑
i=1

√
2 log |Π|

εi

≤ ε+
16 logN + ε

Nε
+
T

N
δclass +

8cKT log |Π|
εN

Choosing ε = (KT )2/3(log(N |Π|)/N)1/3 completes the proof.

A.5. Proof of Theorem 4

The proof follows from results in combinatorics. The dynamics of algorithms considered here can be thought of as a path
through a graph where the vertices are the corners of the boolean hypercube in T dimensions with two vertices at Hamming
distance 1 sharing an edge. We demonstrate that there is a cost function such that the algorithm is forced to traverse a long
path before reaching a local optimum. Without loss of generality, assume that the algorithm always moves to a one-step
deviation with the lowest cost since otherwise longer paths exist.
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Algorithm 3 Cost-sensitive One Against All (CSOAA) Algorithm
Require: Initial predictor f1(x)

1: for all t = 1, 2, . . . T do
2: Observe {xt,i}Ki=1.
3: Predict class it = arg minKi=1 ft(xt,i).
4: Observe costs {ct,i}Ki=1.
5: Update ft using online least-squares regression on data {xt,i, ct,i}Ki=1.
6: end for

To gain some intuition, first consider T = 3 which is depicted in Figure 4. Suppose the algorithm starts from the policy
000 then moves to the policy 001. If the algorithm picks the best amongst the one-step deviations, we know that J(001) ≤
min{J(000), J(010), J(100)}, placing constraints on the costs of these policies which force the algorithm to not visit any
of these policies later. Similarly, if the algorithm moves to the policy 011 next, we obtain a further constraint J(011) <
min{J(101), J(001)}. It is easy to check that the only feasible move (corresponding to policies not crossed in Figure 4(c))
which decreases the cost under these constraints is to the policy 111 and then 110, at which point the algorithm attains
local optimality since no more moves that decrease the cost are possible. In general, at any step i of the path, the policy
π̂i is a one-step deviation of π̂i−1 and at least 2 or more steps away from π̂j for j < i − 1. The policy never moves to a
neighbor of an ancestor (excluding the immediate parent) in the path.

This property is the key element to understand more generally. Suppose we have a current path π̂1 → π̂2 . . .→ π̂i−1 → π̂i.
Since we picked the best neighbor of π̂j as π̂j+1, π̂i+1 cannot be a neighbor of any π̂j for j < i. Consequently, the
maximum number of updates the algorithm must make is given by the length of the longest such path on a hypercube,
where each vertex (other than start and end) neighbors exactly two other vertices on the path. This is called the snake-in-
the-box problem in combinatorics, and arises in the study of error correcting codes. It is shown by Abbott & Katchalski
(1988) that the length of longest such path is Θ(2T ). With monotonically decreasing costs for policies in the path and
maximal cost for all policies not in the path, the traversal time is Θ(2T ).

Finally, it might appear that Algorithm 1 is capable of moving to policies which are not just one-step deviations of the
currently learned policy, since it performs updates on “mini-batches” of T cost-sensitive examples. However, on this lower
bound instance, Algorithm 1 will be forced to follow one-step deviations only due to the structure of the cost function. For
instance, from the policy 000 when we assign maximal cost to policies 010 and 100 in our example, this corresponds to
making the cost of taking action 1 on first and second step very large in the induced cost-sensitive problem. Consequently,
001 is the policy which minimizes the cost-sensitive loss even when all the T roll-outs are accumulated, implying the
algorithm is forced to traverse the same long path to local optimality.

B. Details of cost-sensitive reduction
In this section we present the details of the reduction to cost-sensitive multiclass classification used in our experimental
evaluation. The experiments used the Cost-Sensitive One Against All (CSOAA) classification technique, the pseudocode
for which is presented in Algorithm 3. In words, the algorithm takes as input a feature vector xt,i for class i at round t.
It then trains a regressor to predict the corresponding costs ct,i given the features. Given a fresh example, the predicted
label is the one with the smallest predicted cost. This is a natural extension of the One Against All (OAA) approach for
multiclass classification to cost-sensitive settings. Note that this also covers the alternative approach of having a common
feature vector, xt,i ≡ zt for all i and instead training K different cost predictors, one for each class. If zt ∈ Rd, one can
simply create xt,i ∈ RdK , with xt,i = zt in the ith block and zero elsewhere. Learning a common predictor f on x is now
representationally equivalent to learning K separate predictors, one for each class.

There is one missing detail in the specification of Algorithm 3, which is the update step. The specifics of this step depend
on the form of the function f(x) being used. For instance, if f(x) = wTx, then a simple update rule is to use online
ridge regression (see e.g. Section 11.7 in (Cesa-Bianchi & Lugosi, 2006)). Online gradient descent (Zinkevich, 2003)
on the squared loss

∑K
i=1(f(xt,i) − ct,i)2 is another simple alternative, which can be used more generally. The specific

implementation in our experiments uses a more sophisticated variant of online gradient descent with linear functions.
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C. Details of Experiments
Our implementation is based on Vowpal Wabbit (VW) version 7.8 (http://hunch.net/˜vw/). It is available
at https://github.com/KaiWeiChang/vowpal_wabbit/tree/icmlexp. For LOLS, we use flags “–
search rollin”, “–search rollout”, “–search beta” to set the rollin policy, the rollout policy, and β, respectively. We use
“–search interpolation policy –search passes per policy –passes 5” to enable SEARN. The details settings of various VW
flags for the three experiments are shown below:

• POS tagging: we use “–search task sequence –search 45 –holdout off –affix -2w,+2w –search neighbor features -
1:w,1:w -b 28”

• Dependency parsing: we use “ –search task dep parser –search 12 –holdout off –search history length 3 –
search no caching -b 24 –root label 8 –num label 12”

• Cost-sensitive multiclass: we use “–search task multiclasstask –search 5 –holdout off –mc cost”

The data sets used in the experiments are available upon request.

http://hunch.net/~vw/
https://github.com/KaiWeiChang/vowpal_wabbit/tree/icmlexp

