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A. Technical results
In this section, we present some technical results that will
be used to prove the main theorems. First, we expand the
notation introduced in the body of the paper (Section 3).
For any positive integer m, let �

m

: Xm ! D
T

be the
diagram and  

m

: D
T

! L
T

the landscape, i.e. �
m

(X) =

D
X

, for any X = {x
1

, · · · , x
m

} ⇢ X and  (D
X

) =

�
DX = �

X

, for any D
X

2 D
T

. Given µ 2 P(X), we
denote by �m

µ

the push-forward measure of µ⌦m by �
m

,
that is �m

µ

= (�
m

)⇤µ. Similarly, we denote by  m

µ

the
push-forward (induced) measure of µ⌦m by  ��

m

, that is
 

m

µ

= ( � �
m

)⇤µ.

For a fixed integer m > 0, consider the metric space (X, ⇢)
and the space Xm endowed with a metric ⇢

m

. We impose
two conditions on ⇢

m

:

(C1) Given a real number p � 1, for any X =

{x
1

, . . . , x
m

} ⇢ X and Y = {y
1

, . . . , y
m

} ⇢ X,

⇢
m

(X,Y ) 
 

m

X

i=1

⇢(x
i

, y
i

)

p

!

1
p

, (9)

(C2) For any X = {x
1

, . . . , x
m

} ⇢ X and Y =

{y
1

, . . . , y
m

} ⇢ X,

H(X,Y )  ⇢
m

(X,Y ). (10)

Two examples of distance that satisfy conditions (C1)
and (C2) are the Hausdorff distance and the L

p

-distance
⇢
m

(X,Y ) = (

P

m

i=1

⇢(x
i

, y
i

)

p

)

1
p .

Lemma 15. For any probability measures µ, ⌫ 2 P(X)
and any metric ⇢

m

: Xm⇥Xm ! R that satisfies (C1), we
have

W
⇢m,p

(µ⌦m, ⌫⌦m

)  m
1
pW

⇢,p

(µ, ⌫).

Remark: The bound of the above lemma is tight: it is an
equality when µ is a Dirac measure and ⌫ any other mea-
sure.

Proof. Let ⇧ 2 P(X ⇥ X) be a transport plan between µ
and ⌫. Up to reordering the components of X2m, ⇧⌦m is
a transport plan between µ⌦m and ⌫⌦m whose p-cost is

given by
Z

Xm⇥Xm

⇢
m

(X,Y )

pd⇧⌦m

(X,Y )


Z

Xm⇥Xm

m

X

i=1

⇢(x
i

, y
i

)

p d⇧(x
1

, y
1

) · · · d⇧(x
m

, y
m

)

= m

Z

X⇥X
⇢(x

1

, y
1

)

pd⇧(x
1

, y
1

).

The lemma follows by taking the minimum over all trans-
port plans on both sides of this inequality.

Lemma 16. For any probability measures µ, ⌫ 2 P(X)
and any metric ⇢

m

: Xm⇥Xm ! R that satisfies (C2), we
have

W
db,p

�

�

m

µ

, �m

⌫

�

 2W
⇢m,p

(µ⌦m, ⌫⌦m

).

Proof. This is a consequence of the stability theorem for
persistence diagrams. Given X,Y ⇢ Xm, define

⇤

m

(X,Y ) = (D
X

, D
Y

) .

If ⇧ 2 P(Xm ⇥Xm

) is a transport plan between µ⌦m and
⌫⌦m then ⇤

m,⇤⇧ is a transport plan between �m

µ

and �m

⌫

.
Its p-cost is given by
Z

DT⇥DT

d
b

(D
X

, D
Y

)

pd⇤
m,⇤⇧(DX

, D
Y

)

=

Z

Xm⇥Xm

d
b

(�
m

(X),�
m

(Y ))

pd⇧(X,Y )

 2

Z

Xm⇥Xm

H(X,Y )

pd⇧(X,Y ) (stability theorem )

 2

Z

Xm⇥Xm

⇢
m

(X,Y )

pd⇧(X,Y ).

The lemma follows by taking the minimum over all trans-
port plans on both sides of this inequality.

Lemma 17. Let µ and ⌫ be two probability measures on X.
Let �

X

⇠  m

µ

and �
Y

⇠  m

⌫

. Then
�

�

�

E
 

m
µ
[�

X

]� E
 

m
⌫
[�

Y

]

�

�

�

1
 W

db,p

�

�

m

µ

, �m

⌫

�

.

Proof. Let ⇧ be a transport plan between �m

µ

and �m

⌫

. For
any t 2 R we have

�

�

�

E
 

m
µ
[�

X

](t)� E
 

m
⌫
[�

Y

](t)
�

�

�

p

= |E[�
X

(t)� �
Y

(t)]|p

 E [|�
X

(t)� �
Y

(t)|p] (Jensen inequality)
 E [d

b

(D
X

, D
Y

)

p

] (Stability of landscapes)

=

Z

DT⇥DT

d
b

(D
X

, D
Y

)

pd⇧(D
X

, D
Y

)

= C
p

(⇧)

p.
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The following lemma is similar to Theorem 2 in Chazal
et al. (2014c).

Lemma 18. Let X be a sample of size m from a measure
µ 2 P(X) that satisfies the (a, b, r

0

)-standard assumption.

Let r
m

= 2

⇣

logm

am

⌘

1/b

. Then

E [H(X,X
µ

)]  r
0

+ 2

✓

logm

am

◆

1/b

(r0,1)

(r
m

)+

+ 2C
1

(a, b)

✓

logm

am

◆

1/b

1

(logm)

2

,

where C
1

(a, b) is a constant depending on a and b.

Proof. Let r > r
0

. It can be proven that q :=

Cv (X
µ

, r/2)  4

b

ar

b _ 1, where Cv(X
µ

, 2r) denotes
the number of balls of radius r/2 that are necessary to
cover X

µ

. Let C = {x
1

, . . . , x
p

} be a set of centers such
that B(x

1

, r/2), . . . , B(x
p

, r/2) is a covering of X
µ

. Then,

P (H(X,X
µ

) > r)

 P (H(X, C) +H(C,X
µ

) > r)

 P (H(X, C) > r/2)

 P (9i 2 {1, · · · , p} such that X \B(x
i

, r/2) = ;)


p

X

i=1

P (X \B(x
i

, r/2) = ;)

 4

b

arb



1� inf

i=1...p

P(B(x
i

, r/2))

�

m

 4

b

arb



1� arb

2

b

�

m

 4

b

arb
exp

⇣

�m
a

2

b

rb
⌘

.

Then

E [H(X,X
µ

)] =

Z

r>0

P (H(X,X
µ

) > r) dr

 r
0

+

Z

r>r0

P (H(X,X
µ

) > r) dr. (11)

If r
m

 r
0

then the last quantity in (11) is bounded by

r
0

+

Z

r>rm

P (H(X,X
µ

) > r) dr,

otherwise (11) is bounded by

r
0

+

Z

r>0

P (H(X,X
µ

) > r) dr

 r
0

+ r
m

+

Z

r>rm

P (H(X,X
µ

) > r) dr.

In either case, we follow the strategy in Chazal et al.
(2014c) to obtain the following bound:

Z

r>rm

P (H(X,X
µ

) > r) dr

 2C(a, b)

✓

logm

am

◆

1/b

1

(logm)

2

,

which implies that

E [H(X,X
µ

)]  r
0

+ r
m

(r0,1)

(r
m

)+

+ 2C(a, b)

✓

logm

am

◆

1/b

1

(logm)

2

.

B. Main Proofs
Proof of Theorem 5 It immediately follows from the
three following inequalities of Lemmas 15, 16 and 17:

• upper bound on the Wasserstein distance between the
tensor product of measures:

W
⇢m,p

(µ⌦m, ⌫⌦m

)  m
1
pW

⇢,p

(µ, ⌫)

• from measures on Xm to measures on D:

W
db,p

�

�

m

µ

, �m

⌫

�

 2W
⇢m,p

(µ⌦m, ⌫⌦m

)

• from measures on D to difference of the expected
landscapes:
�

�

�

E
 

m
µ
[�

X

]� E
 

m
⌫
[�

Y

]

�

�

�

1
 2W

db,p

�

�

m

µ

, �m

⌫

�

Proof of Theorem 7

kE
 

m
µ
(�

X

)� E
 

m
⌫
(�

Y

)k1

=

Z

">0

P
 

m
µ ⌦ m

⌫
(k�

X

� �
Y

k1 > ") d"

= "
0

+

Z

">"0

P
 

m
µ ⌦ m

⌫
(k�

X

� �
Y

k1 > ") d". (12)

The event {k�
X

� �
Y

k1 > "} inside the integral implies
that
"
0

2

 "

2

< H(X,Y )  H(X,X
µ

)+H(X
µ

,X
⌫

)+H(Y,X
⌫

),

(13)
where X and Y are two samples of m points from µ and
⌫, respectively. Let "

0

= 2H(X
µ

,X
⌫

). By (13), it follows
that at least one of the following conditions holds:

H(X,X
µ

) � "� "
0

4

,

H(Y,X
⌫

) � "� "
0

4

.
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We assume that the first condition holds (the other case fol-
lows similarly). Then the last quantity in equation (12) can
be bounded by

"
0

+

Z

">"0

P
✓

H(X,X
µ

) � "� "
0

4

◆

d"

=2H(X
µ

,X
⌫

) + 4

Z

u>0

P (H(X,X
µ

) � u) du

=2H(X
µ

,X
⌫

) + 4E [H(X,X
µ

)]

2H(X
µ

,X
⌫

) + 4r
0

+ 8

✓

logm

am

◆

1/b

(r0,1)

(r
m

)+

+ 8C
1

(a, b)

✓

logm

am

◆

1/b

1

(logm)

2

,

where the last inequality follows from Lemma 18.

Proof of Theorem 9 It follows directly from (8) and
Lemma 18 .

Proof of Theorem 10

E
h

k�Xµ � c�m
n

k1
i

 2E
h

H(X
µ

,dCm

n

)

i

 2

Z

r>0

P
⇣

H(X
µ

,dCm

n

) > r
⌘

dr

 2r
0

+ 2

Z

r>r0

[P (H(X
µ

, Sm

1

) > r)]n dr

 2r
0

+ 2

Z

r>r0



4

b

arb
exp

⇣

�m
a

2

b

rb
⌘

�

n

dr,

where the last inequality follows from Lemma 18. If r
m


r
0

then the last term is upper bounded by

2r
0

+ 2

Z

r>rm



4

b

arb
exp

⇣

�m
a

2

b

rb
⌘

�

n

dr,

otherwise it is bounded by

2r
0

+ 2r
m

+ 2

Z

r>rm



4

b

arb
exp

⇣

�m
a

2

b

rb
⌘

�

n

dr.

In either case,
Z

r>rm



4

b

arb
exp

⇣

�m
a

2

b

rb
⌘

�

n

dr

= 2

2

bn

b
(ma)�1/bmn

Z

u>logm

u1/b�n�1

exp(�nu)du

 2C
2

(a, b)

✓

log(2

bm)

am

◆

1/b

1

n [ log(2

bm)]

n+1

,

where in the last inequality we applied the same strategy
used to prove Theorem 2 in Chazal et al. (2014c).

C. About the (a, b, r0)-standard assumption
The aim of this section is to explain why the (a, b, r

0

)-
standard assumption is relevant, in particular when µ is
a discrete measure. Our argument is related to weighted
empirical processes, which have been studied in details by
Alexander; see Alexander (1985; 1987b;a). A new look
on this problem has been proposed more recently in Giné
& Koltchinskii (2006); Giné et al. (2003) by using Tala-
grand concentration inequalities. The following result from
Alexander (1985) will be sufficient here. Let (X, ⇢, ⌘) be a
measure metric space and let ⌘

N

be the empirical counter-
part of ⌘.
Proposition 19. Let C be a VC class of measurable sets
of index v of X. Then for every �, " > 0 there exists K
such that

⌘
h

sup

n

�

�

�

⌘N (C)�⌘(C)

⌘(C)

�

�

�

: ⌘(C) � Kv logN

N

, C 2 C
o

> "
i

= O(N�(1+�)v

). (14)

Assume that µ is the discrete uniform measure on a point
cloud X

N

= {x
1

, . . . , x
N

} which has been sampled
from ⌘, thus µ = ⌘

N

. Assume moreover that ⌘ satisfies
an (a0, b)-standard assumption (r

0

= 0). Let r
0

be a posi-
tive function of N chosen further. For any r > r

0

(N) and
any y 2 X

µ

:

inf

y2Xµ

µ(B(y, r))

= inf

y2Xµ

⌘
N

(B(y, r))

= inf

y2Xµ

⇢

⌘(B(y, r))



1� ⌘(B(y, r))� ⌘
N

(B(y, r))

⌘(B(y, r))

��

� (1 ^ a0rb) inf

y2Xµ

⇢

1� sup

x2X

�

�

�

�

⌘(B(x, r))� ⌘
N

(B(x, r))

⌘(B(x, r))

�

�

�

�

�

� (1 ^ a0rb) inf

y2Xµ

⇥

⇥
(

1� sup

x2X,r0�r0(N)

�

�

�

�

⌘(B(x, r0))� ⌘
N

(B(x, r0))

⌘(B(x, r0))

�

�

�

�

)

(15)

Assume that the set of balls in (X, ⇢) has a finite VC-
dimension v. For instance, in Rd, the VC-dimension of
balls is d+1. Under this assumption we apply Alexander’s
Proposition with (for instance) � = 1 and " = 1/2. Let
K > 0 such that (14) is satisfied. Then, by setting

r
0

(N) :=

✓

Kv

a0
logN

N

◆

1/b

,

we finally obtain using (14) and (15) that

⌘



inf

y2Xµ, r�rN

µ(B(y, r)) � 1 ^ a0

2

rb
�

= O(N�2v

).
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In this quite general context, we see that by taking r
0

of the order of
⇣

logN

N

⌘

1/b

, for large values of N the
(a, b, r

0

)-standard assumption is satisfied with high prob-
ability (in ⌘).

D. Robustness to Outliers
The average landscape method is insensitive to outliers, as
can be seen by the stability result of Theorem 5. The prob-
ability mass of an outlier gives a minimal contribution to
the Wasserstein distance on the right hand side of the in-
equality. For example, suppose that X

N

= {x
1

, . . . , x
N

}
is a random sample from the unit circle S2, and let Y

N

=

X
N

\{x
1

} [ {(0, 0)}. See Figure 7. The landscapes �
XN

and �
YN are very different because of the presence of the

outlier (0, 0). On the other hand, the average landscapes
constructed by multiple subsamples of m < N points
from X

N

and Y
N

are close to each other. Formally, let µ
be the discrete uniform measure that put mass 1/N on
each point of X

N

and similarly let ⌫ be the discrete uni-
form measure on Y

N

. The 1st Wasserstein distance be-
tween the two measure is 1/N and, according to Theo-
rem 5, the difference between the average landscapes is
�

�

�

E
 

m
µ
[�

X

]� E
 

m
⌫
[�

Y

]

�

�

�

1
 2

m

N

.

More formally, we can show that the average landscape �m
n

can be more accurate than the closest subsample method
when there are outliers. In fact, �m

n

can even be more ac-
curate than the landscape corresponding to a large sample
of N points.

Suppose that the large, given point cloud X
N

=

{x
1

, . . . , x
N

} has a small fraction of outliers. Specifically,
X

N

= G
S

B where G = {x
1

, . . . , x
G

} are the good obser-
vations and B = {y

1

, . . . , y
B

} are the outliers (bad obser-
vations). Let G = |G|, B = |B| so that N = G+B and let
✏ = B/N which we assume is small but positive. Our tar-
get is the landscape based on the non-outliers, namely, �G .
The presence of the outliers means that �

XN 6= �
G

. Let
� = inf

S

||�
S

� �G ||1 > �, for some � > 0, where the
infimum is over all subsets that contain at least one outlier.
Thus, � denotes the minimal bias due to the outliers. We
consider three estimators:
�
XN : landscape from full given sample X

N

;
�m
n

: average landscape from n subsamples of size m;
c�m
n

: landscape of closest subsample, from n subsamples of
size m.

The last two estimators are defined in Section 3, and are
constructed using n independent samples of size m from
the discrete uniform measure that puts mass 1/N on each
point of X

N

.

Proposition 20. If ✏ = o(1/n), then, for large enough n

and m,

Ek�m
n

� �Gk1 < Ek�
XN � �Gk1. (16)

In addition, if nm✏! 1 then

P
h

Ek�m
n

� �Gk1 < kc�m
n

� �Gk1
i

! 1. (17)

Proof. We say that a subsample is clean if it contains no
outliers and that it is infected if it contains at least one out-
lier. Let S

1

, . . . , S
n

be the subsamples of X
N

of size m.
Let I = {i : S

i

is infected} and C = {i : S
i

is clean}.
Then

�m
n

=

n
0

n
�
0

+

n
1

n
�
1

where n
0

is the number of clean subsamples, n
1

=

n � n
0

is the number of infected subsamples, �
0

=

(1/n
0

)

P

i2C

�
Si and �

1

= (1/n
1

)

P

i2I

�
Si . Hence,

k�m
n

� �Gk1  n
0

n
k�

0

� �Gk1 +

n
1

n
k�

1

� �Gk1

 n
0

n
k�

0

� �Gk1 +

Tn
1

2n
.

A subsample is clean with probability (1�✏)m. Thus, n
0

⇠
Binomial(n, (1 � ✏)m) and n

1

⇠ Binomial(n, 1 � (1 �
✏)m). Let ⇡ = 1� (1� ✏)m. By Hoeffding’s inequality

P
✓

Tn
1

2n
>
�

2

◆

= P
✓

Tn
1

2n
� T⇡

2

>
�

2

� T⇡

2

◆

 exp

 

�2n

✓

�

T
� ⇡

◆

2

!

.

Since ✏ = o(1/n), we eventually have that

⇡ = 1� (1� ✏)m <
�

T
�
r

log n

2n
,

which implies that P
⇣

Tn1
2n

> �

2

⌘

< 1/n. So, except on a
set of probability tending to 0,

k�m
n

��Gk1  n
0

n
k�

0

��Gk1+

�

2

 k�
0

��Gk1+

�

2

and thus, as soon as n,m and N are large enough,

Ek�m
n

� �Gk1  �

2

+

�

2

= �  k�
XN � �Gk1.

This proves the first claim. To prove the second claim, note
that the probability that at least one subsample is infected is
1�(1�✏)nm ⇠ 1�e�✏nm ! 1. So with probability tend-
ing to one, there will be an infected subsample. This sub-
sample will minimize H(X,S

j

) and the landscape based
on this selected subsample will have a bias of order �.
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Figure 7. Left: XN is the set of N = 500 points on the unit circle; YN = XN\{x1} [ {(0, 0)}. Middle: persistence diagrams (dim
1) of the VR filtrations on XN and YN , in the same plot, with different symbols. Right: landscapes of XN , YN and the corresponding
average landscapes constructed by subsampling m = 100 points from the two sets, for n = 30 times.

In practice, we can increase the robustness further, by using
filtered subsampling. This can be done using the distance
to the k-th nearest neighbor or using a kernel density esti-
mator. For example, let

bp
h

(x) =
1

N

N

X

j=1

K

✓

||x�X
i

||
h

◆

be a kernel density estimator with bandwidth h and ker-
nel K. Suppose that all subsamples are chosen from the
filtered set F = {X

i

: bp
h

(X
i

) > t}. Suppose that the
good observations G are sampled from a distribution on a
set A ⇢ [0, 1]d satisfying the (a, b)-standard condition with
b < d, a > 0 and that B consists of B observations sampled
from a uniform on [0, 1]d. For any x 2 A,

E[bp
h

(x)] ⇡ ahb

hd

and for any outlier X
i

we have (for h small enough) that
bp
h

(X
i

) = 1/(nhd

). Hence, if we choose t such that

1

nhd

< t <
a

hd�b

then F = G with high probability.


