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Abstract
Persistent homology is a multiscale method for
analyzing the shape of sets and functions from
point cloud data arising from an unknown distri-
bution supported on those sets. When the size of
the sample is large, direct computation of the per-
sistent homology is prohibitive due to the com-
binatorial nature of the existing algorithms. We
propose to compute the persistent homology of
several subsamples of the data and then com-
bine the resulting estimates. We study the risk
of two estimators and we prove that the subsam-
pling approach carries stable topological infor-
mation while achieving a great reduction in com-
putational complexity.

1. Introduction
Topological Data Analysis (TDA) refers to a collection of
methods for finding topological structure in data (Carlsson,
2009). The input is a dataset drawn from a probability mea-
sure supported on an unknown set X. The output is a collec-
tion of data summaries that are used to describe the topo-
logical features of X. Comparisons between the datasets
can then be done on these data summaries.

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

Homology, or more precisely persistent homology, appears
as a fundamental tool for TDA. Homology associates to
any topological space X, a family of vector spaces (the
so-called homology groups) H

k

(X), k = 0, 1, . . ., each of
them encoding topological features of X. The kth Betti
number of X, denoted �

k

, is the rank of H
k

(X) and repre-
sents the number of k-dimensional features of X: for ex-
ample, �

0

is the number of connected components of M,
�
1

the number of independent cycles or “tunnels”, �
2

the
number of “voids”, etc. (see Hatcher, 2001). Persistent ho-
mology (Edelsbrunner et al., 2002; Zomorodian & Carls-
son, 2005) provides a framework and efficient algorithms
to encode the evolution of the homology of families of
nested topological spaces indexed by a set of real numbers
that may often be seen as scales, such as the the union of
growing balls, or a nested family of simplicial complexes
built on top of the data. The obtained multiscale topolog-
ical information is then represented in a simple way as a
barcode or persistence diagram, providing relevant infor-
mation about the data (Cohen-Steiner et al., 2007; Chazal
et al., 2009; 2012a;b). The persistence diagram can be con-
verted into a summary function called a persistence land-
scape (Bubenik, 2012); see Section 2. These landscapes
are the data summaries that we focus on in this paper.

Contribution and Related Work. The time and space
complexity of persistent homology algorithms is one of
the main obstacles in applying TDA techniques to high-
dimensional problems. To overcome the problem of com-
putational costs, we propose the following strategy: given



Subsampling Methods for Persistent Homology

a large point cloud, take several subsamples, compute the
landscape for each subsample, and then combine the in-
formation. More precisely, let � be a random persistence
landscape from  

m

µ

, a measure on the space of landscape
functions induced by a sample of size m from a metric
measure space (X, ⇢, µ). We show that the average land-
scape is stable with respect to perturbations of the un-
derlying measure µ in the Wasserstein metric; see Theo-
rem 5. The empirical counterpart of the average landscape
is �m

n

=

1

n

P

n

i=1

�
i

, where �
1

, . . . ,�
n

⇠  m

µ

. The empir-
ical average landscape can be used as an unbiased estimator
of E

 

m
µ
[�] and as a biased estimator of �Xµ , the computa-

tionally expensive persistence landscape associated to the
support of the measure µ. Unlike �Xµ , the estimator �m

n

is robust to the presence of outliers. In the same spirit,
we propose a different estimator constructed by choosing
a sample of m points of X as close as possible to X

µ

,
and then computing its persistent homology to approxi-
mate �Xµ . See Section 3 for more details.

Closely related to our approach, the distribution of persis-
tence diagrams associated to subsamples of fixed size was
studied in Blumberg et al. (2014). There, the authors show
that the distribution of persistence diagrams associated to
subsamples of fixed size is stable with respect to perturba-
tions of the underlying measure in the Gromov-Prohorov
metric. Though similar in spirit, our approach relies on
different techniques and, in particular, leads to easily com-
putable summaries of the persistent homology of a given
space. These summaries are particularly useful when the
exact computation of the persistent homology is infeasible,
as in the case of large point clouds or when the data are
noisy or contain outliers.

Software. The computations in this paper were done us-
ing the R package TDA (Fasy et al., 2014a). The package
includes a series of tools for the statistical analysis of per-
sistent homology, including the methods described in Fasy
et al. (2014b), Chazal et al. (2014b), Chazal et al. (2014a),
and this paper.

Outline. Background on persistent homology is presented
in Section 2. Our approach is introduced in Section 3, with
a formal definition of the estimators briefly described in this
introduction. Section 4 contains the stability result of the
average landscape. Section 5 is devoted to the risk anal-
ysis of the proposed estimators. In Section 6, we apply
our methods to two examples. We conclude with some re-
marks in Section 7 and defer proofs and technical details to
the appendices.

2. Background
In this section, we briefly introduce the basics of persis-
tence used in this paper. We refer the reader to Edelsbrun-

ner & Harer (2010); Chazal et al. (2012b); Bubenik (2012)
for more details.

2.1. Geometric Complexes

To compute the persistent homology from a set of data, we
need to construct a set of structures called simplicial com-
plexes. A simplicial complex C is a set of simplices (points,
segments, triangles, etc) such that any face from a simplex
in C is also in C and the intersection of any two simplices
of C is a (possibly empty) face of these simplices.

Figure 1. Top left: The ↵ sublevel set of the distance function
to a point set X in R2. Top right: the ↵-complex. Bottom left:
Cech↵(X). Bottom right: Rips2↵(X). The last two complexes
include a tetrahedron.

Given a metric space X, we define three simplicial com-
plexes whose vertex set is X; see Figure 1 for illustrations.
The Vietoris-Rips complex Rips

↵

(X) is the set of sim-
plices [x

0

, . . . , x
k

] such that dX(x
i

, x
j

)  ↵ for all (i, j).
The Čech complex Cech

↵

(X) is similarly defined as the
set of simplices [x

0

, . . . , x
k

] such that there exists a point
x 2 X for which dX(x, x

i

)  ↵ for all i. Note that these
two complexes are related by Rips

↵

(X) ✓ Cech

↵

(X) ✓
Rips

2↵

(X) and that their definition does not require X to
be finite. When X ⇢ Rd, we also define the ↵-complex as
the set of simplices [x

0

, . . . , x
k

] such that there exists a ball
of radius at most ↵ containing x

0

, . . . , x
k

on its boundary
and whose interior does not intersect X.

Each family described above is non-decreasing with ↵: for
any ↵  �, there is an inclusion of Rips

↵

(X) in Rips

�

(X),
and similarly for the Čech and Alpha complexes. These
sequences of inclusions are called filtrations. In the fol-
lowing, we let Filt(X) := (Filt

↵

(X))
↵2A denote a filtra-

tion corresponding to one of the parameterized complexes
defined above.

2.2. Persistence Diagrams

The topology of Filt
↵

(X) changes as ↵ increases: new con-
nected components can appear, existing connected compo-
nents can merge, cycles and cavities can appear or be filled,
etc. Persistent homology tracks these changes, identifies
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features and associates an interval or lifetime (from b to d)
to them. For instance, a connected component is a feature
that is born at the smallest ↵ such that the component is
present in Filt

↵

(X), and dies when it merges with an older
connected component. Intuitively, the longer a feature per-
sists, the more relevant it is. The lifetime of a feature can be
represented as a point in the plane with coordinates (b, d).
The obtained set of points (with multiplicity) is called the
persistence diagram D(Filt(X)) (and we will abuse ter-
minology slightly by denoting it DX). Note that the dia-
gram is entirely contained in the half-plane above the diag-
onal � defined by y = x, since death always occurs after
birth. Chazal et al. (2012a) shows that this diagram is still
well-defined under very weak hypotheses, and in particular
D(Filt(X)) is well-defined for any compact metric space.
The most persistent features (supposedly the most impor-
tant) are those represented by the points furthest from the
diagonal in the diagram; whereas, points close to the diag-
onal can be interpreted as (topological) noise, as they are
indistinguishable from features that are born and die at the
same value of ↵.

To avoid (minor) technical difficulties, we restrict our at-
tention to diagrams D such that (b, d) 2 [0, T ]⇥ [0, T ] for
all (b, d) 2 D, for some fixed T > 0. Note that, in our set-
ting, DX satisfies this property as soon as T is larger than
the diameter of X. We denote by D

T

the space of all such
(restricted) persistence diagrams and we endow it with a
metric called the bottleneck distance d

b

. Given two per-
sistence diagrams, the bottleneck distance is defined as the
infimum of the � for which we can find a matching between
the diagrams, such that two points can only be matched if
their distance is less than � and all points at distance more
than � from the diagonal must be matched.

A fundamental property of persistence diagrams, proven
in Chazal et al. (2012a), is their stability. Recall
that the Hausdorff distance between two compact sub-
sets X,Y of a metric space (X, ⇢) is H(X,Y ) =

max

n

max

x2X

min

y2Y

⇢(x, y), max

y2Y

min

x2X

⇢(x, y)
o

. If X and eX
are two compact metric spaces, then one has

d

b

(DX, DeX)  2dGH(X, eX), (1)

where dGH(X, eX) denotes the Gromov-Hausdorff distance,
i.e., the infimum Hausdorff distance between X and eX over
all possible isometric embeddings into a common metric
space. If X and eX are already embedded in the same metric
space then (1) holds for H(·, ·) in place of dGH(·, ·).

2.3. Persistence Landscapes

The persistence landscape, introduced in Bubenik (2012),
is a collection of continuous, piecewise linear func-
tions � : Z+ ⇥ R ! R that summarizes a persistence dia-

gram. To define the landscape, consider the set of functions
created by tenting each point p = (x, y) =

�

b+d

2

, d�b

2

�

rep-
resenting a birth-death pair (b, d) 2 D as follows:

⇤

p

(t) =

8

>

<

>

:

t� x+ y t 2 [x� y, x]

x+ y � t t 2 (x, x+ y]

0 otherwise

=

8

>

<

>

:

t� b t 2 [b, b+d

2

]

d� t t 2 (

b+d

2

, d]

0 otherwise.
(2)

Figure 2. We use the rotated axes to represent a persistence di-
agram D. A feature (b, d) 2 D is represented by the point
( b+d

2 ,

d�b
2 ) (pink). In words, the x-coordinate is the average pa-

rameter value over which the feature exists, and the y-coordinate
is the half-life of the feature. The cyan curve is the land-
scape �(1, ·).

We obtain an arrangement of piecewise linear curves by
overlaying the graphs of the functions {⇤

p

}
p

; see Figure 2.
The persistence landscape of D is a summary of this ar-
rangement. Formally, the persistence landscape of D is the
collection of functions

�
D

(k, t) = kmax
p

⇤

p

(t), t 2 [0, T ], k 2 N, (3)

where kmax is the kth largest value in the set; in particular,
1max is the usual maximum function. We set �

D

(k, t) = 0

if the set {⇤
p

(t)}
p

contains less than k points. For simplic-
ity of exposition, if DX is the persistence diagram of some
metric space X, then we use �X to denote �

DX .

We denote by L
T

the space of persistence landscapes cor-
responding to D

T

. From the definition of persistence
landscape, we immediately observe that �

D

(k, ·) is one-
Lipschitz. The following additional properties are proven
in Bubenik (2012).
Lemma 1. Let D,D0 be persistence diagrams. We have
the following for any t 2 R and any k 2 N:
(i) �

D

(k, t) � �
D

(k + 1, t) � 0.
(ii) |�

D

(k, t)� �
D

0
(k, t)|  d

b

(D,D0
).

For ease of exposition, we focus on the case k = 1, and set
�
D

(t) = �
D

(1, t). However, the results we present hold
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for k > 1. In fact, the results hold for more general sum-
maries of persistence landscapes, including the silhouette
defined in Chazal et al. (2014b).

3. The Multiple Samples Approach
Let (X, ⇢) be a metric space of diameter at most T/2 and
let P(X) be the space of probability measures on X, such
that, for any measure µ 2 P(X), its support X

µ

is a com-
pact set. The space X

µ

is a natural object of interest in
computational topology. Its persistent homology is usually
approximated by the persistent homology of the distance
function to a sample X

N

= {x
1

, . . . , x
N

} ⇢ X
µ

. Fasy
et al. (2014b) propose several methods for the construction
of confidence sets for the persistence diagram of X

µ

, while
Chazal et al. (2014c) establish optimal convergence rates
for d

b

(DXµ , DXN ).

When N is too large, the computation of the persistent
homology of X

N

is prohibitive, due to the combinatorial
complexity of the computation. Our aim is to study topo-
logical signatures of the data that can be efficiently com-
puted in a reasonable time. We define such quantities by
repeatedly sampling m points of X according to µ.

For any positive integer m, let X = {x
1

, · · · , x
m

} ⇢ X
be a sample of m points from the measure µ 2 P(X). The
corresponding persistence landscape is �

X

and we denote
by  m

µ

the measure induced by µ⌦m on LT . Note that
the persistence landscape �

X

can be seen as a single draw
from the measure m

µ

. We consider the point-wise expecta-
tions of the (random) persistence landscape under this mea-
sure: E

 

m
µ
[�

X

(t)], t 2 [0, T ]. The main result of this paper
establishes the stability of this quantity under perturbation
of µ, making it relevant from a topological point of view
(see next section).

The average landscape E
 

m
µ
[�

X

] has a natural empirical
counterpart, which can be used as its unbiased estima-
tor. Let Sm

1

, . . . , Sm

n

be n independent samples of size m
from µ. We define the empirical average landscape as

�m

n

(t) =
1

n

n

X

i=1

�
S

m
i
(t), for all t 2 [0, T ], (4)

and propose to use �m

n

to estimate �Xµ . The variance of
this estimator under the `1-distance was studied in detail
in Chazal et al. (2014b). Here instead we are concerned
with the quantity k�Xµ � E

 

m
µ
[�

X

]k1, which can be seen
as the bias component (see Section 5).

In addition to the average, we also consider using the clos-
est sample to X

µ

in Hausdorff distance. The closest sample
method consists in choosing a sample of m points of X, as
close as possible to X

µ

, and then use this sample to build
a landscape that approximates �Xµ . Let Sm

1

, . . . , Sm

n

be

n independent samples of size m from µ⌦m. The closest
sample is

dCm

n

= arg min

S2{Sm
1 ,...,S

m
n }

H(S,X
µ

) (5)

and the corresponding landscape function is c�m

n

= �d
C

m
n
.

Of course, the method requires the support of µ to be a
known quantity.
Remark 2. Computing the persistent homology of X

N

is
O(exp(N)), whereas computing the average landscape is
O(n exp(m)) and the persistent homology of the closest
sample is O(nmN + exp(m)).
Remark 3. The general framework described above is
valid for the case in which µ is a discrete measure with
support X

µ

= {x
1

, . . . , x
N

} ⇢ RD. For example, the fol-
lowing situation is very common in practice. Let X

N

=

{x
1

, . . . , x
N

} be a given point cloud, for large but fixed
N 2 N. When N is large, the computation of the per-
sistent homology of X

N

is infeasible. Instead, we consider
the discrete uniform measure µ that puts mass 1/N on each
point of X

N

, and we propose to estimate �Xu by repeatedly
subsampling m ⌧ N points of X

N

according to µ.

We study the `1-risk of the proposed estimators,
E
⇥

k�Xµ � �m

n

k1
⇤

and E
h

k�Xµ � c�m

n

k1
i

, under the fol-
lowing assumption on the underlying measure µ, which we
refer to as the (a, b, r

0

)-standard assumption: there exist
positive constants a, b and r

0

� 0 such that

8r > r
0

, 8x 2 X
µ

, µ(B(x, r)) � 1 ^ arb. (6)

For r
0

= 0, this is known as the (a, b)-standard assumption
and has been widely used in the literature of set estima-
tion under Hausdorff distance (Cuevas & Rodrı́guez-Casal,
2004; Cuevas, 2009; Singh et al., 2009) and more recently
in the statistical analysis of persistence diagrams (Chazal
et al., 2014c; Fasy et al., 2014b). We use the generalized
version with r

0

> 0 to take into account the case in which µ
is a discrete measure (in which case r

0

depends on N ); see
Appendix C for more details.

4. Stability of the Average Landscape
Consider the framework described in Section 3: m points
are repeatedly sampled from the space X according to a
measure µ 2 P(X). In this section, we show that the
average landscape E

 

m
µ
[�

X

] is an interesting quantity on
its own, since it carries some stable topological informa-
tion about the underlying measure µ, from which the data
are generated.

Chazal et al. (2014b) provide a way to construct confidence
bands for E

 

m
µ
[�

X

]. Here, we compare the average land-
scapes corresponding to two measures that are close to each
other in the Wasserstein metric.



Subsampling Methods for Persistent Homology

Definition 4. Given a metric space (X, ⇢), the pth Wasser-
stein distance between two measures µ, ⌫ 2 P(X) is

W
⇢,p

(µ, ⌫) =

⇣

inf

⇧

R

X⇥X[⇢(x, y)]
pd⇧(x, y)

⌘

1
p

, where
the infimum is taken over all measures on X ⇥ X with
marginals µ and ⌫.

Next, we show that the average behavior of the landscapes
of sets of m points sampled according to any measure µ is
stable with respect to the Wasserstein distance.
Theorem 5. Let (X, ⇢) be a metric space of diameter
bounded by T/2. Let X ⇠ µ⌦m and Y ⇠ ⌫⌦m, where
µ, ⌫ 2 P(X) are two probability measures. For any p � 1

we have
�

�

�

E
 

m
µ
[�

X

]� E
 

m
⌫
[�

Y

]

�

�

�

1
 2m

1
pW

⇢,p

(µ, ⌫).

Remark 6. For measures that are not defined on
the same metric space, the inequality of Theorem 5
can be extended to Gromov-Wasserstein metric:
�

�

�

E
 

m
µ
[�

X

]� E
 

m
⌫
[�

Y

]

�

�

�

1
 2m

1
pGW

⇢,p

(µ, ⌫).

The result of Theorem 5 is useful for two reasons. First, it
tells us that for a fixed m, the expected “topological behav-
ior” of a set of m points carries some stable information
about the underlying measure from which the data are gen-
erated. Second, it provides a lower bound for the Wasser-
stein distance between two measures, based on the topo-
logical signature of samples of m points.

The dependence on m of the upper bound of Theorem 5
seems to be necessary in this setting: intuitively, when m
grows, the samples of m points converge to the support
of µ and ⌫ w.r.t. the Hausdorff distance. Therefore the ex-
pected landscapes should converge to the landscapes of the
support of the measures. But, in general, two measures
that are close in the Wasserstein metric can have support
that have very different and unrelated topologies. Indeed,
a similar dependence was also obtained in Blumberg et al.
(2014) when considering the Gromov-Prohorov metric.

Note that in Theorem 5 we do not make any assumption on
the measures µ and ⌫. If we assume that they both satisfy
the (a, b, r

0

)-standard assumption we can provide a differ-
ent bound on the difference of the expected landscapes,
based on the Hausdorff distance between the support of the
two measures.
Theorem 7. Let (X, ⇢) be a metric space of diameter
bounded by T/2. Let X ⇠ µ⌦m and Y ⇠ ⌫⌦m, where
µ, ⌫ 2 P(X) satisfy the (a, b, r

0

)-standard assumption

on X. Define r
m

= 2

⇣

logm

am

⌘

1/b

. Then

kE
 

m
µ
(�

X

)� E
 

m
⌫
(�

Y

)k1  2H(X
µ

,X
⌫

) + 4r
0

+

+ 4r
m

(r0,1)

(r
m

) + 4C
1

(a, b) r
m

1

(logm)

2

,

where C
1

(a, b) is a constant depending on a and b.

The following result follows from Theorems 5 and 7.
Corollary 8. Under the same assumptions of Theorem 7,
we have that

kE
 

m
µ
(�

X

)� E
 

m
⌫
(�

Y

)k1  2min

n

m
1
pW

p

(µ, ⌫),

H(X
µ

,X
⌫

) + 2r
0

+ 2r
m

(r0,1)

(r
m

)+

+ 2C
1

(a, b) r
m

1

(logm)

2

o

.

5. Risk Analysis
In this section, we study the performance of the average
landscape �m

n

and of the landscape of the closest sample
c�m

n

, as estimators of �Xµ . We start by decomposing the `1-
risk of the average landscape as follows. Set �

1

= �
S

m
1

,
with Sm

1

a sample of size m from µ. Then,

E
�

��Xµ � �m

n

�

�

1 
�

��Xµ � E�
1

�

�

1 + E
�

��m

n

� E�
1

�

�

1 ,
(7)

where the expectation of �m

n

is w.r.t. ( m

µ

)

⌦n and the ex-
pectation of �

1

is w.r.t.  m

µ

.

For the bias term
�

��Xµ � E�
1

�

�

1 we use the stability prop-
erty to go back into Rd :
�

��Xµ � E�
1

�

�

1  E
 

m
µ

�

��Xµ � �
1

�

�

1  2E
µ

⌦mH(X
µ

, X),
(8)

where X is a sample of size m from µ. Note that, if calcu-
lating H(X

µ

, X) is computationally feasible, then, in prac-
tice, E

µ

⌦mH(X
µ

, X) can be approximated by the average
of a large number B of values of H(X

µ

, X), for B different
draws of subsamples X ⇠ µ⌦m.

To give an explicit bound on the bias, we assume that µ
satisfies the (a, b, r

0

)-standard assumption.

Theorem 9. Let r
m

= 2

⇣

logm

am

⌘

1/b

. If µ satisfies the
(a, b, r

0

)-standard assumption, then
�

��Xµ � E�
1

�

�

1 2r
0

+ 2r
m

(r0,1)

(r
m

)+

+ 2C
1

(a, b) r
m

1

(logm)

2

,

where C
1

(a, b) is a constant that depends on a and b.

Chazal et al. (2014b) control the variance term, which is of
the order of 1/

p
n. Therefore, if r

0

is negligible, we see
that n should be taken of the order of (m/logm)

2/b.

We now turn to the closest sample estimator b�
n

and inves-
tigate its `1 risk E

h

k�Xµ � c�m

n

k1
i

, where the expecta-
tion is with respect to ( 

m

µ

)

⌦n. As before, in our analy-

sis, we rely on the stability property E
h

k�Xµ � c�m

n

k1
i





Subsampling Methods for Persistent Homology

2E
h

H(X
µ

,dCm

n

)

i

, where the second expectation is with re-
spect to (µ⌦m

)

⌦n.

Theorem 10. Let r
m

= 2

⇣

log(2

b
m)

am

⌘

1
b
. If µ 2 P(X) satis-

fies the (a, b, r
0

)-standard assumption, then

E
h

k�Xµ � c�m

n

k1
i

 2r
0

+ 2r
m

(r0,1)

(r
m

)+

+ 2C
2

(a, b) r
m

1

n [ log(2

bm)]

n+1

,

where C
2

(a, b) is a constant that depends on a and b.
Remark 11. The risk of the closest subsample method can
in principle be smaller than the average landscape method.
In Appendix C, we show that if µ is the discrete uniform
measure on a point cloud of size N , sampled from a mea-
sure satisfying the (a, b, 0)-standard assumption, then r

0

is
of the order of ( logN

N

)

1/b. When r
0

is negligible, the rates
of theorems 9 and 10 are comparable, both of the order
of O(

logm

m

)

1/b. However, the average method has another
advantage: it is robust to outliers. This point is discussed
in detail in Appendix D.

6. Experiments
Since computing the persistent homology of the Vietoris-
Rips (VR) filtrations built on top of a large samples is in-
feasible, we resort to the subsampling strategy described
in Section 3. More formally, let X

N

= {x
1

, . . . , x
N

}
be a large point cloud. We draw n subsamples, each of
size m ⌧ N points, from µ, the discrete uniform mea-
sure on X

N

. First, we use a toy example to compare the
time complexity of computing the persistent homology of
the entire point cloud, with the complexity of the subsam-
pling approach.
Example 12 (Toy). Let X

N

be the sample of N = 500

points depicted in the left plot of Figure 3. The VR filtra-
tion built on top of the sample consists of 20,833,750 sim-
plices and computing the persistence diagram, and hence
the 1st persistence landscape of one-dimensional features
in the middle plot, required 28.34 seconds on a Macbook
Pro with 2.8 GHz processor and 16 GB RAM. The aver-
age landscape on the right plot is computed using n = 10

subsamples of size m = 100, each resulting in a VR fil-
tration of 166,750 simplices, whose persistent homology
was computed on average in 0.14 seconds. The 95% con-
fidence band for the true average landscape is constructed
using the multiplier bootstrap described in Chazal et al.
(2014b). Both landscapes (the landscape of the full sample
and the average landscape) show two peaks, correspond-
ing to the two loops of the circles from which the data were
sampled. However computing the the average landscape
was 20 times faster.

In each of the following two examples, we consider four

point clouds and compare the corresponding average land-
scapes and closest subsample landscapes, induced by the
persistent homology of the VR filtrations built on top of
the subsamples.

Example 13 (3D Shapes). We use the publicly avail-
able database of triangulated shapes (Sumner & Popović,
2004). We select a single pose (#2) of four different classes:
camel, elephant, flamingo, lion. The four shapes are repre-
sented in Figure 4. In practice, each shape consists of a 3D
point cloud embedded in Euclidean space, with a number of
vertices that ranges from 7K to 40K. The data are normal-
ized, so that the diameter of each shape is one. For n = 100

times we subsample m = 300 points from each shape, then
we select the closest subsample to the corresponding orig-
inal point cloud and compute 4 ⇥ n persistence diagrams
(dimension one), one for each subsample. See Figure 5:
the plot on the left shows the landscapes corresponding to
the closest subsamples of m points among the n different
subsamples from each shape; the plot in the middle shows
the empirical average landscapes within each class, com-
puted as the pointwise average of n landscapes, with a
95% uniform confidence band for the true average land-
scape, constructed using the method described in Chazal
et al. (2014b); the dissimilarity matrix on the right shows
the pairwise `1 distances between the average landscapes
(scale from yellow to red), which, according to Theorem 5,
represent a lower bound for the pairwise Wasserstein dis-
tances of the discrete uniform measures on the four differ-
ent shapes.

Example 14 (Magnetometer Data). For the second exam-
ple, we consider the problem of distinguishing human ac-
tivities performed while wearing inertial and magnetic sen-
sor units. The dataset is publicly available at the UCI Ma-
chine Learning Repository1 and is described in Barshan
& Yüksek (2013), where it is used to classify 19 activi-
ties performed by eight people wearing sensor units on the
chest, arms, and legs. For ease of illustration, we report
here the results on four activities (walking, stepper, cross
trainer, jumping) performed by a single person (#1). We
use the data from the magnetometer of a single sensor (left
leg), which measures the direction of the magnetic field in
the space at a frequency of 25Hz. For each activity there
are 7,500 consecutive measurements that we treat as a 3D
point cloud in the Euclidean space. As an example, Fig-
ure 4 shows 500 points at random for two activities (walk-
ing and using a cross trainer). As in the previous example,
for n = 80 times, we subsample m = 200 points from the
point cloud of each activity, then construct the landscapes
of the closest subsamples, the average landscapes (dimen-
sion one), and the dissimilarity matrix based on the `1 dis-
tances of the average landscapes. See Figure 6. To the

1 http://archive.ics.uci.edu/ml/datasets/Daily+and+
Sports+Activities
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Figure 3. Left: 500 points from two circles of different radii. Middle: 1st landscape of one-dimensional features using the entire sample.
Right: average landscape with 95% confidence band, constructed using n = 10 subsamples, each of size m = 100.

Figure 4. Left: Four 3D shapes. Middle and Left: 500 random points from the magnetometer data of the second experiment.
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Figure 5. Subsampling methods applied to 3D shapes. For n = 100 subsamples of size m = 300, for each shape, we constructed the
landscapes of the closest subsample (left), the average landscape with 95% confidence band (middle) and the dissimilarity matrix of the
pairwise `1 distance between average landscapes.

best of our knowledge, persistent homology has never been
used to study data from accelerometers or magnetometers
before. A remarkable advantage is that the methods of per-
sistent homology are insensitive to the orientation of the
input data, as opposed to other methods that require the
exact calibration of the sensor units; see, for example, Al-
tun et al. (2010) and Barshan & Yüksek (2013).

7. Conclusion
We presented a framework for approximating the persistent
homology of a set using subsamples. The method is simple
and computationally fast. Moreover, we provided stability
results for the new summaries and bounds on the risk of the
proposed estimators. In the future, we plan to investigate
methods for further speeding up the computations.
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Figure 6. Subsampling methods applied to magnetometer data. For n = 80 subsamples of size m = 200, for each activity, we
constructed the landscapes of the closest subsample (left), the average landscape with 95% confidence band (middle) and the dissimilarity
matrix of the pairwise `1 distance between average landscapes.
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