Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons
 - Supplemental Materials

Yuxin Chen* Changho Suh ${ }^{\dagger}$

Abstract

This supplemental document presents details concerning analytical derivations that support the theorems made in the main text "Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons", accepted to the 32th International Conference on Machine Learning (ICML 2015). One can find here the detailed proof of Theorems 2-4.

1 Main Theorems

We repeat the main theorems as follows for convenience of presentation.
Theorem 2 (Minimax Lower Bounds). Fix $\epsilon \in\left(0, \frac{1}{2}\right)$, and let $\mathcal{G} \sim \mathcal{G}_{n, p_{\text {obs }}}$. If

$$
\begin{equation*}
L \leq c \frac{(1-\epsilon) \log n-2}{n p_{\text {obs }} \Delta_{K}^{2}} \tag{1}
\end{equation*}
$$

holds for some absolute constan ${ }^{1} c>0$, then for any ranking scheme ψ, there exists a preference vector \boldsymbol{w} with separation Δ_{K} such that the probability of error $P_{\mathrm{e}}(\psi) \geq \epsilon$.

Theorem 3. Let $c_{0}, c_{1}, c_{2}, c_{3}>0$ be some sufficiently large constants. Suppose that $L=O$ (poly $\left.(n)\right)$, the comparison graph $\mathcal{G} \sim \mathcal{G}_{n, p_{\mathrm{obs}}}$ with $p_{\mathrm{obs}}>c_{0} \log n / n$, and assume that the separation measure satisfies

$$
\begin{equation*}
\Delta_{K}>c_{1} \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}} \tag{2}
\end{equation*}
$$

Then with probability exceeding $1-1 / n^{2}$, Spectral MLE perfectly identifies the set of top-K ranked items, provided that the parameters obey $T \geq c_{2} \log n$ and

$$
\begin{equation*}
\xi_{t}:=c_{3}\left\{\xi_{\min }+\frac{1}{2^{t}}\left(\xi_{\max }-\xi_{\min }\right)\right\} \tag{3}
\end{equation*}
$$

where $\xi_{\min }:=\sqrt{\frac{\log n}{n L p_{\mathrm{obs}}}}$ and $\xi_{\max }:=\sqrt{\frac{\log n}{p_{\mathrm{obs}} L}}$.
Theorem 4. Suppose that $\mathcal{G} \sim \mathcal{G}_{n, p_{\text {obs }}}$ with $p_{\text {obs }}>c_{1} \log n / n$ for some large constant c_{1}, and that there exists a score $\hat{\boldsymbol{w}}^{\mathrm{ub}} \in\left[w_{\min }, w_{\max }\right]^{n}$ independent of \mathcal{G} satisfying

$$
\begin{align*}
\left|\hat{w}_{i}^{\mathrm{ub}}-w_{i}\right| & \leq \xi w_{\max }, \quad \forall 1 \leq i \leq n \tag{4}\\
\left\|\hat{\boldsymbol{w}}^{\mathrm{ub}}-\boldsymbol{w}\right\| & \leq \delta\|\boldsymbol{w}\| \tag{5}
\end{align*}
$$

[^0]Then with probability at least $1-c_{2} n^{-4}$ for some constant $c_{2}>0$, the coordinate-wise MLE

$$
\begin{equation*}
w_{i}^{\text {mle }}:=\arg \max _{\tau \in\left[w_{\min }, w_{\max }\right]} \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right) \tag{6}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\left|w_{i}-w_{i}^{\operatorname{mle}}\right|<\frac{20\left(6+\frac{\log L}{\log n}\right) w_{\max }^{5}}{w_{\min }^{4}} \max \left\{\delta+\frac{\xi \log n}{n p_{\mathrm{obs}}}, \quad \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}}\right\} \tag{7}
\end{equation*}
$$

simultaneously for all scores $\hat{\boldsymbol{w}} \in\left[w_{\min }, w_{\max }\right]^{n}$ obeying

$$
\begin{equation*}
\left|\hat{w}_{i}-w_{i}\right| \leq\left|\hat{w}_{i}^{\mathrm{ub}}-w_{i}\right|, \quad 1 \leq i \leq n \tag{8}
\end{equation*}
$$

2 Performance Guarantees of Spectral MLE

In this section, we establish the theoretical guarantees of Spectral MLE in controlling the ranking accuracy and ℓ_{∞} estimation errors, which are the subjects of Theorem 3 and Theorem 4 . The proof of Theorem 3 relies heavily on the claim of Theorem 4 for this reason, we present the proofs of Theorem 3 and Theorem 4 in a reverse order. Before proceeding, we recall that the coordinate-wise log-likelihood of τ is given by

$$
\begin{equation*}
\frac{1}{L} \log \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right):=\sum_{j:(i, j) \in \mathcal{E}} y_{i j} \log \frac{\tau}{\tau+\hat{w}_{j}}+\left(1-y_{i j}\right) \log \frac{\hat{w}_{j}}{\tau+\hat{w}_{j}} \tag{9}
\end{equation*}
$$

and we shall use $\boldsymbol{w} \backslash i$ (resp. $\hat{\boldsymbol{w}}_{\backslash i}$) to denote the vector $\boldsymbol{w}=\left[w_{1}, \cdots, w_{n}\right]$ (resp. $\hat{\boldsymbol{w}}=\left[\hat{w}_{1}, \cdots, \hat{w}_{n}\right]$) excluding the entry w_{i} (resp. \hat{w}_{i}).

2.1 Proof of Theorem 4

To prove Theorem 4, we aim to demonstrate that for every $\tau \in\left[w_{\min }, w_{\max }\right]$ that is sufficiently separated from the ground truth w_{i} (or, more formally, $\left|\tau-w_{i}\right| \gtrsim \max \left\{\delta+\frac{\xi \log n}{n p_{\mathrm{obs}}}, \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}}\right\}$), the coordinate-wise likelihood satisfies

$$
\begin{equation*}
\log \mathcal{L}\left(w_{i}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)>\log \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right) \tag{10}
\end{equation*}
$$

and, therefore, τ cannot be the coordinate-wise MLE.
To begin with, we provide a lemma (which will be proved later) that concerns (10) for any single τ that is well separated from w_{i}.

Lemma 1. Fix any $\gamma \geq 3$. Under the conditions of Theorem 4, for any $\tau \in\left[w_{\min }, w_{\max }\right]$ obeying

$$
\begin{equation*}
\left|w_{i}-\tau\right|>\gamma \cdot \frac{w_{\mathrm{max}}^{5}}{w_{\mathrm{min}}^{4}} \max \left\{\frac{25}{4}\left(\delta+\frac{\xi \log n}{n p_{\mathrm{obs}}}\right), \quad 20 \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}}\right\} \tag{11}
\end{equation*}
$$

one has

$$
\begin{equation*}
\frac{1}{L} \log \mathcal{L}\left(w_{i}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)-\frac{1}{L} \log \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)>\frac{w_{\max }^{6}}{100 w_{\min }^{6}} \frac{\log n}{L} . \tag{12}
\end{equation*}
$$

with probability exceeding $1-4 n^{-\gamma}-2 n^{-10}$; this holds simultaneously for all $\hat{\boldsymbol{w}}_{i} \in\left[w_{\min }, w_{\max }\right]^{n}$ satisfying (8).

To establish Theorem 4 , we still need to derive a uniform control over all τ satisfying (11). This will be accomplished via a standard covering argument. Specifically, for any small quantity $\epsilon>0$, we construct a set \mathcal{N}_{ϵ} (called an ϵ-cover) within the interval [$\left.w_{\text {min }}, w_{\max }\right]$ such that for any $\tau \in\left[w_{\min }, w_{\max }\right]$, there exists an $\tau_{0} \in \mathcal{N}_{\epsilon}$ obeying

$$
\begin{equation*}
\left|\tau-\tau_{0}\right| \leq \epsilon \quad \text { and } \quad\left|\tau_{0}-w_{i}\right| \geq\left|\tau-w_{i}\right| \tag{13}
\end{equation*}
$$

It is self-evident that one can produce such a cover \mathcal{N}_{ϵ} with cardinality $\left\lceil\frac{w_{\max }}{\epsilon}\right\rceil+1$. If we set $\gamma=6+\frac{\log L}{\log n}$ in Lemma 1, taking the union bound over \mathcal{N}_{ϵ} gives

$$
\begin{equation*}
\frac{1}{L} \log \mathcal{L}\left(w_{i}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)-\frac{1}{L} \log \mathcal{L}\left(\tau_{0}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)>\frac{w_{\max }^{6}}{100 w_{\min }^{6}} \frac{\log n}{L} \tag{14}
\end{equation*}
$$

simultaneously over all $\tau_{0} \in \mathcal{N}_{\epsilon}$ obeying $\left|w_{i}-\tau_{0}\right|>\frac{\left(6+\frac{\log L}{\log n}\right) w_{\max }^{5}}{w_{\min }^{4}} \max \left\{\frac{25}{4}\left(\delta+\frac{\xi \log n}{n p_{\text {obs }}}\right), 20 \sqrt{\frac{\log n}{n p_{\text {obs }} L}}\right\}$; this occurs with probability at least $1-4\left|\mathcal{N}_{\epsilon}\right| n^{-6-\frac{\log L}{\log n}}-8\left|\mathcal{N}_{\epsilon}\right| n^{-10}$.

We then proceed by bounding the difference between $\log \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)$ and $\log \mathcal{L}\left(\tau_{0}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)$. To achieve this, we first recognize that the Lipschitz constant of $\frac{1}{L} \log \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)$ (cf. (9)) is bounded above by

$$
\begin{aligned}
\frac{1}{L} \cdot\left|\frac{\partial \log \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)}{\partial \tau}\right| & =\left|\sum_{j:(i, j) \in \mathcal{E}} y_{i, j}\left(\frac{1}{\tau}-\frac{1}{\tau+\hat{w}_{j}}\right)-\left(1-y_{i, j}\right) \frac{1}{\tau+\hat{w}_{j}}\right| \\
& \leq \operatorname{dag}(i) \cdot \frac{2}{w_{\min }} \stackrel{\text { (b) }}{\leq} \frac{12}{5} \frac{n p_{\text {obs }}}{w_{\min }}
\end{aligned}
$$

where (a) follows since

$$
\left|y_{i, j}\left(\frac{1}{\tau}-\frac{1}{\tau+\tilde{w}_{j}}\right)-\left(1-y_{i, j}\right) \frac{1}{\tau+\tilde{w}_{j}}\right|=\left|\frac{y_{i, j}}{\tau}-\frac{1}{\tau+\tilde{w}_{j}}\right| \leq\left|\frac{y_{i, j}}{\tau}\right|+\left|\frac{1}{\tau+\tilde{w}_{j}}\right|<\frac{2}{w_{\min }}
$$

and (b) holds since $\operatorname{deg}(i) \leq 2.4 n p_{\text {obs }}$ with probability $1-O\left(n^{-4}\right)$ as long as $p_{\text {obs }}>\frac{c_{1} \log n}{n}$ for some sufficiently large $c_{1}>0$. As a result, by picking

$$
\begin{equation*}
\epsilon=\frac{\frac{w_{\max }^{6}}{100 w_{\min }^{\mathrm{E}}} \frac{\log n}{L}}{\frac{12}{5} \frac{n p_{\mathrm{obs}}}{w_{\min }}}=\frac{w_{\max }^{6}}{240 w_{\min }^{5}} \frac{\log n}{n p_{\mathrm{obs}} L} \tag{15}
\end{equation*}
$$

one can make sure that for any $\left|\tau-\tau_{0}\right| \leq \epsilon$,

$$
\begin{align*}
& \frac{1}{L} \log \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)-\frac{1}{L} \log \mathcal{L}\left(\tau_{0}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right) \leq \epsilon \cdot \frac{12}{5} \frac{n p_{\mathrm{obs}}}{w_{\min }} \tag{16}\\
\Rightarrow \quad & \frac{1}{L} \log \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)<\frac{1}{L} \log \mathcal{L}\left(\tau_{0}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)+\frac{w_{\max }^{6}}{100 w_{\min }^{6}} \frac{\log n}{L} . \tag{17}
\end{align*}
$$

In addition, with the above choice 15 of ϵ in place, the cardinality of the ϵ-cover is bounded above by

$$
\left|\mathcal{N}_{\epsilon}\right| \leq\left\lceil\frac{w_{\max }}{\epsilon}\right\rceil+1=\left\lceil\frac{240 n p_{\mathrm{obs}} L}{\log n} \cdot \frac{w_{\min }^{5}}{w_{\max }^{5}}\right\rceil+1 \ll n^{2} L
$$

for any sufficiently large n.
Putting (14) and 17 together suggests that for all $\tau \in\left[w_{\min }, w_{\max }\right]$ sufficiently apart from the ground truth w_{i}, namely,

$$
\begin{equation*}
\forall \tau \in\left[w_{\min }, w_{\max }\right]: \quad\left|\tau-w_{i}\right| \geq \frac{\left(6+\frac{\log L}{\log n}\right) w_{\max }^{5}}{w_{\min }^{4}} \max \left\{\frac{25}{4}\left(\delta+\frac{\xi \log n}{n p_{\mathrm{obs}}}\right), 20 \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}}\right\} \tag{18}
\end{equation*}
$$

one necessarily has

$$
\begin{align*}
& \frac{1}{L} \log \mathcal{L}\left(w_{i}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)-\frac{1}{L} \log \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right) \\
& =\left\{\frac{1}{L} \log \mathcal{L}\left(w_{i}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)-\frac{1}{L} \log \mathcal{L}\left(\tau_{0}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)\right\}+\left\{\frac{1}{L} \log \mathcal{L}\left(\tau_{0}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)-\frac{1}{L} \log \mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)\right\} \\
& >0 \tag{19}
\end{align*}
$$

with probability at least $1-4\left|\mathcal{N}_{\epsilon}\right| n^{-6-\frac{\log L}{\log n}}-O\left(n^{-4}\right) \geq 1-4 n^{2} L n^{-6-\frac{\log L}{\log n}}-O\left(n^{-4}\right)=1-O\left(n^{-4}\right)$. Consequently, any $\tau \in\left[w_{\min }, w_{\max }\right]$ that obeys 18 cannot be the coordinate-wise MLE, which in turn justifies the claim (7) of Theorem 4 (which is slightly weaker than what we prove here).

Proof of Lemma 1. We start by evaluating the true coordinate-wise likelihood gap

$$
\begin{equation*}
\log \mathcal{L}\left(w_{i}, \boldsymbol{w}_{\backslash i} ; \boldsymbol{y}_{i}\right)-\log \mathcal{L}\left(\tau, \boldsymbol{w}_{\backslash i} ; \boldsymbol{y}_{i}\right) \tag{20}
\end{equation*}
$$

for any fixed $\tau \neq w_{i}$ independent of \boldsymbol{y}_{i}. Here, $\boldsymbol{y}_{i}:=\left\{y_{i, j} \mid(i, j) \in \mathcal{E}\right\}$ is assumed to be generated under the BTL model parameterized by \boldsymbol{w}, which clearly obeys

$$
\mathbb{E}\left[y_{i, j}\right]=\frac{w_{i}}{w_{i}+w_{j}} \quad \text { and } \quad \operatorname{Var}\left[y_{i, j}\right]=\frac{1}{L} \frac{w_{i} w_{j}}{\left(w_{i}+w_{j}\right)^{2}}
$$

In order to quantify the average value of (20), we rewrite the likelihood function as

$$
\begin{align*}
\frac{1}{L} \log \mathcal{L}\left(\tau, \boldsymbol{w}_{\backslash i} ; \boldsymbol{y}_{i}\right) & =\sum_{j:(i, j) \in \mathcal{E}}\left\{y_{i, j} \log \left(\frac{\tau}{\tau+w_{j}}\right)+\left(1-y_{i, j}\right) \log \left(\frac{w_{j}}{\tau+w_{j}}\right)\right\} \tag{21}\\
& =\sum_{j:(i, j) \in \mathcal{E}} y_{i, j} \log \left(\frac{\tau}{w_{j}}\right)+\sum_{j:(i, j) \in \mathcal{E}} \log \left(\frac{w_{j}}{\tau+w_{j}}\right) \tag{22}
\end{align*}
$$

Taking expectation w.r.t. \boldsymbol{y}_{i} using the form (21) reveals that

$$
\begin{align*}
\mathbb{E} & {\left[\left.\frac{1}{L} \log \mathcal{L}\left(w_{i}, \boldsymbol{w}_{\backslash i} ; \boldsymbol{y}_{i}\right)-\frac{1}{L} \log \mathcal{L}\left(\tau, \boldsymbol{w}_{\backslash i} ; \boldsymbol{y}_{i}\right) \right\rvert\, \mathcal{G}\right]=\sum_{j:(i, j) \in \mathcal{E}}\left\{\frac{w_{i}}{w_{i}+w_{j}} \log \left(\frac{\frac{w_{i}}{w_{i}+w_{j}}}{\frac{\tau}{\tau+w_{j}}}\right)+\frac{w_{j}}{w_{i}+w_{j}} \log \left(\frac{\frac{w_{j}}{w_{i}+w_{j}}}{\frac{w_{j}}{\tau+w_{j}}}\right)\right\} } \\
& =\sum_{j:(i, j) \in \mathcal{E}} \mathrm{KL}\left(\frac{w_{i}}{w_{i}+w_{j}} \| \frac{\tau}{\tau+w_{j}}\right) \tag{23}
\end{align*}
$$

where $\mathrm{KL}(p \| q)$ stands for the Kullback-Leibler (KL) divergence of Bernoulli (q) from Bernoulli (p). Using Pinsker's inequality 11. Theorem 2.33], that is, $\mathrm{KL}(p \| q) \geq 2(p-q)^{2}$, we arrive at the following lower bound

$$
\begin{align*}
\mathbb{E} & {\left[\left.\frac{1}{L} \log \mathcal{L}\left(w_{i}, \boldsymbol{w}_{\backslash i} ; \boldsymbol{y}_{i}\right)-\frac{1}{L} \log \mathcal{L}\left(\tau, \boldsymbol{w}_{\backslash i} ; \boldsymbol{y}_{i}\right) \right\rvert\, \mathcal{G}\right] \geq 2 \sum_{j:(i, j) \in \mathcal{E}}\left(\frac{w_{i}}{w_{i}+w_{j}}-\frac{\tau}{\tau+w_{j}}\right)^{2} } \\
& =2\left(w_{i}-\tau\right)^{2} \sum_{j:(i, j) \in \mathcal{E}} \frac{w_{j}^{2}}{\left(w_{i}+w_{j}\right)^{2}\left(\tau+w_{j}\right)^{2}} \tag{24}
\end{align*}
$$

That being said, the true coordinate-wise likelihood of w_{i} strictly dominates that of τ in the mean sense.
However, when running Spectral MLE, we do not have access to the ground truth scores $\boldsymbol{w}_{\backslash i}$; what we actually compute is $\mathcal{L}\left(w_{i}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)$ (resp. $\left.\mathcal{L}\left(\tau, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right)\right)$ rather than $\mathcal{L}\left(\boldsymbol{w} ; \boldsymbol{y}_{i}\right)$ (resp. $\left.\mathcal{L}\left(\tau, \boldsymbol{w}_{\backslash i} ; \boldsymbol{y}_{i}\right)\right)$. Fortunately, such surrogate likelihoods are sufficiently close to the true coordinate-wise likelihoods, which we will show in the rest of the proof. For brevity, we shall denote respectively the heuristic and true log-likelihood functions by

$$
\left\{\begin{array}{l}
\hat{\ell}_{i}\left(w_{i}\right) \quad:=\frac{1}{L} \log \mathcal{L}\left(w_{i}, \hat{\boldsymbol{w}}_{\backslash i} ; \boldsymbol{y}_{i}\right), \tag{25}\\
\ell^{*}\left(w_{i}\right):=\frac{1}{L} \log \mathcal{L}\left(w_{i}, \boldsymbol{w}_{\backslash i} ; \boldsymbol{y}_{i}\right),
\end{array}\right.
$$

whenever it is clear from context. Note that $\hat{\boldsymbol{w}}_{\backslash i}$ could depend on \boldsymbol{y}_{i}.
As seen from $\sqrt[22]{2}$, for any candidate $\tau \in\left[w_{\min }, w_{\max }\right]$, we can quantify the difference between $\hat{\ell}_{i}(\tau)$ and $\ell^{*}(\tau)$ as

$$
\begin{equation*}
\hat{\ell}_{i}(\tau)-\ell^{*}(\tau)=\sum_{j:(i, j) \in \mathcal{E}} y_{i, j} \log \left(\frac{w_{j}}{\hat{w}_{j}}\right)+\sum_{j:(i, j) \in \mathcal{E}}\left\{\log \left(\frac{\hat{w}_{j}}{\tau+\hat{w}_{j}}\right)-\log \left(\frac{w_{j}}{\tau+w_{j}}\right)\right\} \tag{26}
\end{equation*}
$$

As a consequence, the gap between the true loss $\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau)$ and the surrogate loss $\hat{\ell}_{i}\left(w_{i}\right)-\hat{\ell}_{i}(\tau)$ is given by

$$
\begin{align*}
& \hat{\ell}_{i}\left(w_{i}\right)-\hat{\ell}_{i}(\tau)-\left(\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau)\right)=\hat{\ell}_{i}\left(w_{i}\right)-\ell^{*}\left(w_{i}\right)-\left(\hat{\ell}_{i}(\tau)-\ell^{*}(\tau)\right) \\
& \quad=\sum_{j:(i, j) \in \mathcal{E}}\left\{\log \left(\frac{\hat{w}_{j}}{w_{i}+\hat{w}_{j}}\right)-\log \left(\frac{w_{j}}{w_{i}+w_{j}}\right)-\left(\log \left(\frac{\hat{w}_{j}}{\tau+\hat{w}_{j}}\right)-\log \left(\frac{w_{j}}{\tau+w_{j}}\right)\right)\right\} \tag{27}\\
& \quad=\sum_{j:(i, j) \in \mathcal{E}}\left\{\log \left(\frac{\tau+\hat{w}_{j}}{w_{i}+\hat{w}_{j}}\right)-\log \left(\frac{\tau+w_{j}}{w_{i}+w_{j}}\right)\right\} . \tag{28}
\end{align*}
$$

This gap relies on the function

$$
g(t):=\log \left(\frac{\tau+t}{w_{i}+t}\right)-\log \left(\frac{\tau+w_{j}}{w_{i}+w_{j}}\right), \quad t \in\left[w_{\min }, w_{\max }\right],
$$

which apparently obeys the following two properties: (i) $g\left(w_{j}\right)=0$; (ii)

$$
\left|\frac{\partial g(t)}{\partial t}\right|=\left|\frac{1}{\tau+t}-\frac{1}{w_{i}+t}\right|=\frac{\left|\tau-w_{i}\right|}{\left(w_{i}+t\right)(\tau+t)} \leq \frac{\left|\tau-w_{i}\right|}{4 w_{\min }^{2}}, \quad \forall t \in\left[w_{\min }, w_{\max }\right] .
$$

Taken together these two properties demonstrate that

$$
|g(t)| \leq \frac{1}{4 w_{\min }^{2}}\left|\tau-w_{i}\right|\left|t-w_{j}\right|, \quad \forall t \in\left[w_{\min }, w_{\max }\right] .
$$

Substitution into (28) gives

$$
\begin{align*}
\left|\hat{\ell}_{i}\left(w_{i}\right)-\hat{\ell}_{i}(\tau)-\left(\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau)\right)\right| & \leq \frac{1}{4 w_{\min }^{2}}\left|\tau-w_{i}\right| \sum_{j:(i, j) \in \mathcal{E}}\left|\hat{w}_{j}-w_{j}\right| \\
& \leq \frac{1}{4 w_{\min }^{2}}\left|\tau-w_{i}\right| \sum_{j:(i, j) \in \mathcal{E}}\left|\hat{w}_{j}^{\mathrm{ub}}-w_{j}\right| . \tag{29}
\end{align*}
$$

Notably, this is a deterministic inequality which holds for all $\hat{\boldsymbol{w}}_{j}$ obeying $\left|\hat{w}_{j}-w_{j}\right| \leq\left|\hat{w}_{j}^{\mathrm{ub}}-w_{j}\right|(1 \leq j \leq n)$. A desired property of the upper bound (29) is that it is independent of \mathcal{G} and the data \boldsymbol{y}_{i}, due to our assumption on $\hat{\boldsymbol{w}}^{\mathrm{ub}}$.

We now move on to develop an upper bound on (29). From our assumptions on the initial estimate, we have

$$
\|\hat{\boldsymbol{w}}-\boldsymbol{w}\|^{2} \leq\left\|\hat{\boldsymbol{w}}^{\mathrm{ub}}-\boldsymbol{w}\right\|^{2} \leq \delta^{2}\|\boldsymbol{w}\|^{2} \leq n w_{\max }^{2} \delta^{2} .
$$

Since \mathcal{G} and $\hat{\boldsymbol{w}}^{\mathrm{ub}}$ are statistically independent, this inequality immediately gives rise to the following two consequences:

$$
\begin{align*}
\mathbb{E}\left[\sum_{j:(i, j) \in \mathcal{E}}\left|\hat{w}_{j}^{\mathrm{ub}}-w_{j}\right|\right] & =p_{\mathrm{obs}}\left\|\hat{\boldsymbol{w}}^{\mathrm{ub}}-\boldsymbol{w}\right\|_{1} \leq p_{\mathrm{obs}} \sqrt{n}\left\|\hat{\boldsymbol{w}}^{\mathrm{ub}}-\boldsymbol{w}\right\| \\
& \leq n p_{\mathrm{obs}} w_{\max } \delta \tag{30}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[\sum_{j:(i, j) \in \mathcal{E}}\left|\hat{w}_{j}^{\mathrm{ub}}-w_{j}\right|^{2}\right]=p_{\mathrm{obs}}\left\|\hat{\boldsymbol{w}}^{\mathrm{ub}}-\boldsymbol{w}\right\|_{2}^{2} \leq n p_{\mathrm{obs}} w_{\max }^{2} \delta^{2} . \tag{31}
\end{equation*}
$$

Recall our assumption that $\max _{j}\left|\hat{w}_{j}^{\mathrm{ub}}-w_{j}\right| \leq \xi w_{\max }$. For any fixed $\gamma \geq 3$, if $p_{\text {obs }}>\frac{2 \log n}{n}$, then with probability at least $1-2 n^{-\gamma}$,

$$
\begin{aligned}
\sum_{j:(i, j) \in \mathcal{E}}\left|\hat{w}_{j}^{\mathrm{ub}}-w_{j}\right| & \stackrel{(\mathrm{i})}{\leq} \mathbb{E}\left[\sum_{j:(i, j) \in \mathcal{E}}\left|\hat{w}_{j}^{\mathrm{ub}}-w_{j}\right|\right]+\sqrt{2 \gamma \log n \cdot \mathbb{E}\left[\sum_{j:(i, j) \in \mathcal{E}}\left|\hat{w}_{j}^{\mathrm{ub}}-w_{j}\right|^{2}\right]}+\frac{2 \gamma}{3} \xi w_{\max } \log n \\
& \leq n p_{\text {obs }} w_{\max } \delta+\sqrt{2 \gamma \cdot n p_{\mathrm{obs}} \log n} w_{\max } \delta+\frac{2 \gamma}{3} \xi w_{\max } \log n \\
& (1+\sqrt{\gamma}) n p_{\mathrm{obs}} w_{\max } \delta+\frac{2 \gamma}{3} \xi w_{\max } \log n \\
& (\text { (iii) } \\
\leq & \gamma n p_{\text {obs }} w_{\max } \delta+\gamma \xi w_{\max } \log n,
\end{aligned}
$$

where (i) comes from the Bernstein inequality as given in Lemma 4 (ii) follows since $\log n<\frac{p_{\text {obs }} n}{2}$ by assumption, and (iii) arises since $1+\sqrt{\gamma} \leq \gamma$ whenever $\gamma \geq 3$. This combined with 29) allows us to control

$$
\begin{equation*}
\left|\hat{\ell}_{i}\left(w_{i}\right)-\hat{\ell}_{i}(\tau)-\left(\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau)\right)\right| \leq \frac{\left|\tau-w_{i}\right| \gamma w_{\max }}{4 w_{\min }^{2}}\left(n p_{\mathrm{obs}} \delta+\xi \log n\right) \tag{32}
\end{equation*}
$$

with high probability.
The above arguments basically reveal that $\hat{\ell}_{i}\left(w_{i}\right)-\hat{\ell}_{i}(\tau)$ is reasonably close to $\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau)$. Thus, to show that $\hat{\ell}_{i}\left(w_{i}\right)-\hat{\ell}_{i}(\tau)>0$, it is sufficient to develop a lower bound on $\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau)$ that exceeds the gap 32 . In expectation, the preceding inequality 24 gives

$$
\begin{align*}
\mathbb{E}\left[\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau) \mid \mathcal{G}\right] & \geq 2\left(w_{i}-\tau\right)^{2} \sum_{j:(i, j) \in \mathcal{E}} \frac{w_{j}^{2}}{\left(w_{i}+w_{j}\right)^{2}\left(\tau+w_{j}\right)^{2}} \\
& \geq \frac{w_{\min }^{2}}{8 w_{\max }^{4}}\left(w_{i}-\tau\right)^{2} \operatorname{deg}(i) . \tag{33}
\end{align*}
$$

Recognizing that $y_{i, j}=\frac{1}{L} \sum_{l=1}^{L} y_{i, j}^{(l)}$ is a sum of independent random variables $y_{i, j}^{(l)} \sim \operatorname{Bernoulli}\left(\frac{w_{i}}{w_{i}+w_{j}}\right)$, we can control the conditional variance as

$$
\begin{align*}
& \operatorname{Var}\left[\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau) \mid \mathcal{G}\right] \stackrel{(\mathrm{a})}{=} \operatorname{Var}\left[\left.\sum_{j:(i, j) \in \mathcal{E}} y_{i, j} \log \left(\frac{w_{i}}{\tau}\right) \right\rvert\, \mathcal{G}\right] \\
& \quad=\log ^{2}\left(\frac{w_{i}}{\tau}\right) \sum_{j:(i, j) \in \mathcal{E}} \frac{1}{L} \frac{w_{i} w_{j}}{\left(w_{i}+w_{j}\right)^{2}} \stackrel{(\mathrm{~b})}{\leq} \frac{1}{L} \frac{\left(w_{i}-\tau\right)^{2}}{\min \left\{w_{i}^{2}, \tau^{2}\right\}} \sum_{j:(i, j) \in \mathcal{E}} \frac{w_{\max }^{2}}{4 w_{\min }^{2}} \\
& \quad \leq \frac{w_{\max }^{2}}{4 w_{\min }^{4}} \cdot \frac{1}{L}\left(w_{i}-\tau\right)^{2} \operatorname{deg}(i) \tag{34}
\end{align*}
$$

where (a) is an immediate consequence of 22 , and (b) follows since $\left|\log \frac{\beta}{\alpha}\right| \leq \frac{\beta-\alpha}{\alpha}$ for any $\beta>\alpha>0$. Note that $0 \leq \frac{1}{L} y_{i, j}^{(l)} \leq \frac{1}{L}$. Making use of the Bernstein inequality, 33 and 34 suggests that: conditional on \mathcal{G},

$$
\begin{align*}
\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau) & \geq \mathbb{E}\left[\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau) \mid \mathcal{G}\right]-\sqrt{2 \gamma \operatorname{Var}\left[\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau) \mid \mathcal{G}\right] \log n}-\frac{2 \gamma \log n \cdot\left|\log \left(\frac{w_{i}}{\tau}\right)\right|}{3 L} \\
& \geq \frac{w_{\min }^{2}}{8 w_{\max }^{4}}\left(w_{i}-\tau\right)^{2} \operatorname{deg}(i)-\frac{\sqrt{2 \gamma} w_{\max }\left|w_{i}-\tau\right|}{2 w_{\min }^{2}} \sqrt{\frac{\operatorname{deg}(i) \log n}{L}}-\frac{2 \gamma\left|w_{i}-\tau\right| \log n}{3 L w_{\min }} \tag{35}
\end{align*}
$$

holds with probability at least $1-2 n^{-\gamma}$, where the last inequality follows again from the inequality $\left|\log \left(\frac{\beta}{\alpha}\right)\right| \leq$ $\frac{\beta-\alpha}{\alpha}$ for any $\beta \geq \alpha>0$.

The above bound relies on $\operatorname{deg}(i)$, which is on the order of $n p_{\text {obs }}$ with high probability. More precisely, taking the Chernoff bound [2, Corollary 4.6] as well as the union bound reveals that: there exists some constant $c_{1}>1$ such that if $p_{\text {obs }}>\frac{c_{1} \log n}{n}$, then

$$
\begin{equation*}
\frac{4}{5} n p_{\mathrm{obs}}<\operatorname{deg}(i)<\frac{6}{5} n p_{\mathrm{obs}}, \quad \forall 1 \leq i \leq n \tag{36}
\end{equation*}
$$

with probability at least $\frac{2}{n^{10}}$. This taken collectively with 35 and the assumption $n p_{\text {obs }}>2 \log n$ implies
that

$$
\begin{align*}
\ell^{*}\left(w_{i}\right)-\ell^{*}(\tau) & \geq \frac{w_{\min }^{2}}{8 w_{\max }^{4}}\left(w_{i}-\tau\right)^{2} \cdot \frac{4}{5} n p_{\mathrm{obs}}-\sqrt{\frac{\gamma}{2}} \frac{w_{\max }\left|w_{i}-\tau\right|}{w_{\min }^{2}} \sqrt{\frac{6 n p_{\mathrm{obs}} \log n}{5 L}}-\frac{2 \gamma\left|w_{i}-\tau\right| \log n}{3 L w_{\min }} \\
& \geq \frac{w_{\min }^{2}}{10 w_{\max }^{4}}\left(w_{i}-\tau\right)^{2} n p_{\mathrm{obs}}-\left(\sqrt{\frac{3 \gamma}{5}}+\frac{2 \gamma}{3} \frac{1}{\sqrt{2}}\right) \frac{w_{\max }\left|w_{i}-\tau\right|}{w_{\min }^{2}} \sqrt{\frac{n p_{\mathrm{obs}} \log n}{L}} \\
& \geq \frac{w_{\min }^{2}}{10 w_{\max }^{4}}\left(w_{i}-\tau\right)^{2} n p_{\mathrm{obs}}-\gamma \frac{w_{\max }\left|w_{i}-\tau\right|}{w_{\min }^{2}} \sqrt{\frac{n p_{\mathrm{obs}} \log n}{L}} \tag{37}\\
& \geq \frac{w_{\min }^{2}}{20 w_{\max }^{4}}\left(w_{i}-\tau\right)^{2} n p_{\mathrm{obs}} \tag{38}
\end{align*}
$$

with probability at least $1-2 n^{-\gamma}-2 n^{-10}$, as long as

$$
\gamma \cdot \frac{w_{\max }\left|w_{i}-\tau\right|}{w_{\min }^{2}} \sqrt{\frac{n p_{\mathrm{obs}} \log n}{L}} \leq \frac{w_{\min }^{2}}{20 w_{\max }^{4}}\left(w_{i}-\tau\right)^{2} n p_{\mathrm{obs}}
$$

or, equivalently,

$$
\begin{equation*}
\left|w_{i}-\tau\right| \geq \frac{20 \gamma \cdot w_{\max }^{5}}{w_{\min }^{4}} \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}} \tag{39}
\end{equation*}
$$

Finally, we are ready to control $\hat{\ell}_{i}\left(w_{i}\right)-\hat{\ell}_{i}(\tau)$ from below. Putting 32 and 38 together, we see that with high probability,

$$
\begin{align*}
\hat{\ell}_{i}\left(w_{i}\right)-\hat{\ell}_{i}(\tau) & \geq \ell^{*}\left(w_{i}\right)-\ell^{*}(\tau)-\frac{\left|\tau-w_{i}\right| \gamma w_{\max }\left(n p_{\mathrm{obs}} \delta+\xi \log n\right)}{4 w_{\min }^{2}} \\
& \geq \frac{w_{\min }^{2}}{20 w_{\max }^{4}}\left(w_{i}-\tau\right)^{2} n p_{\mathrm{obs}}-\frac{\left|\tau-w_{i}\right| \gamma w_{\max }}{4 w_{\min }^{2}}\left(n p_{\mathrm{obs}} \delta+\xi \log n\right) \\
& >\frac{w_{\min }^{2}}{100 w_{\max }^{4}}\left(w_{i}-\tau\right)^{2} n p_{\mathrm{obs}} \tag{40}\\
& >\frac{w_{\max }^{6}}{100 w_{\min }^{6}} \frac{\log n}{L} \tag{41}
\end{align*}
$$

where (40) holds under the condition

$$
\left|\tau-w_{i}\right|>\frac{25 \gamma w_{\max }^{5}}{4 w_{\min }^{4}}\left(\delta+\frac{\xi \log n}{n p_{\mathrm{obs}}}\right)
$$

and (41) follows from the assumption (39). This establishes the claim (12).

2.2 Proof of Theorem 3

The accuracy of top- K identification is closely related to the ℓ_{∞} error of the score estimate. In the sequel, we shall assume that $w_{\max }=1$ to simplify presentation, and our goal is to demonstrate that

$$
\begin{equation*}
\left\|\boldsymbol{w}^{(t)}-\boldsymbol{w}\right\|_{\infty} \lesssim \sqrt{\frac{\log n}{n p_{\text {obs }} L}}+\frac{1}{2^{t}} \sqrt{\frac{\log n}{p_{\text {obs }} L}} \asymp \xi_{t}, \quad \forall t \in \mathbb{N} \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{t}:=c_{3}\left\{\xi_{\min }+\frac{1}{2^{t}}\left(\xi_{\max }-\xi_{\min }\right)\right\}, \quad \forall t \geq-1 \tag{43}
\end{equation*}
$$

with $\xi_{\min }=\sqrt{\frac{\log n}{n p_{\text {obs }} L}}$ and $\xi_{\max }=\sqrt{\frac{\log n}{p_{\mathrm{obs} L}}}$. If $T \geq c_{2} \log n$ for some sufficiently large $c_{2}>0$, then this gives

$$
\left\|\boldsymbol{w}^{(T)}-\boldsymbol{w}\right\|_{\infty} \asymp \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}}=\xi_{\min }
$$

The key implication is the following: if $w_{K}-w_{K-1} \geq c_{1} \sqrt{\frac{\log n}{n p_{\text {obs }} L}}$ for some sufficiently large $c_{1}>0$, then

$$
w_{i}^{(T)}-w_{j}^{(T)} \geq w_{i}-w_{j}-\left|w_{i}^{(T)}-w_{i}\right|-\left|w_{j}^{(T)}-w_{j}\right| \geq w_{K}-w_{K+1}-2\left\|\boldsymbol{w}^{(T)}-\boldsymbol{w}\right\|>0
$$

for all $1 \leq i \leq K$ and $j \geq K+1$, indicating that Spectral MLE will output the first K items as desired. The remaining proof then boils down to showing (42).

We start from $t=0$. When the initial estimate $\boldsymbol{w}^{(0)}$ is computed by Rank Centrality, the ℓ_{2} estimation error satisfies [3]

$$
\begin{equation*}
\frac{\left\|\boldsymbol{w}^{(0)}-\boldsymbol{w}\right\|}{\|\boldsymbol{w}\|} \leq c_{4} \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}}=c_{4} \xi_{\min }:=\delta \tag{44}
\end{equation*}
$$

with high probability, where $c_{4}>0$ is some universal constant independent of $n, p_{\text {obs }}, L$ and Δ_{K}. A byproduct of this result is an upper bound

$$
\begin{equation*}
\left\|\boldsymbol{w}^{(0)}-\boldsymbol{w}\right\|_{\infty} \leq\left\|\boldsymbol{w}^{(0)}-\boldsymbol{w}\right\| \leq \delta\|\boldsymbol{w}\| \leq \delta \sqrt{n}=c_{4} \sqrt{\frac{\log n}{p_{\mathrm{obs}} L}} \tag{45}
\end{equation*}
$$

which together with the fact $\left\|\boldsymbol{w}^{(0)}-\boldsymbol{w}\right\|_{\infty} \leq w_{\max }-w_{\min } \leq 1$ give

$$
\begin{equation*}
\left\|\boldsymbol{w}^{(0)}-\boldsymbol{w}\right\|_{\infty} \leq \min \left\{c_{4} \sqrt{\frac{\log n}{p_{\mathrm{obs}} L}}, 1\right\}=\min \left\{c_{4} \xi_{\max }, 1\right\} \tag{46}
\end{equation*}
$$

This justifies that $\boldsymbol{w}^{(0)}$ satisfies the claim 42. Notably, $\boldsymbol{w}^{(0)}$ is independent of $\mathcal{E}^{\text {iter }}$ and $\boldsymbol{y}^{\text {iter }}$ and, therefore, independent of the iterative steps.

In what follows, we divide the iterative stage into two phases: (1) $t \leq T_{0}$ and (2) $t>T_{0}$, where T_{0} is a threshold such that

$$
\begin{equation*}
\xi_{t} \geq c_{10} \xi_{\min }=c_{10} \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}}, \quad \text { iff } \quad t \leq T_{0} \tag{47}
\end{equation*}
$$

for some large constant c_{10}. As is seen from the definition of $\xi_{t}, T_{0} \lesssim \log n$ holds as long as $L=O$ (poly (n)).
For the case where $t \leq T_{0}$, we proceed by induction on t w.r.t. the following hypotheses:

- $\mathcal{M}_{t}:\left\|\boldsymbol{w}^{(\mathrm{mle})}-\boldsymbol{w}\right\|_{\infty} \leq \frac{1}{2} \xi_{t}$ holds at the $t^{\text {th }}$ iteration (the iteration where we compute $\boldsymbol{w}^{(t+1)}$);
- \mathcal{B}_{t} : all entries $w_{i}^{(\tau)}$ of $\boldsymbol{w}^{(\tau)}(\tau \leq t-1)$ satisfying $\left|w_{i}^{(\tau)}-w_{i}\right| \geq 1.5 \xi_{t}$ have been replaced by time t;
- \mathcal{H}_{t} : none of the entries $w_{i}^{(\tau)}(\tau \leq t-1)$ satisfying $\left|w_{i}^{(\tau)}-w_{i}\right| \leq \frac{1}{2} \xi_{t}$ have been replaced by time t.

We note that \mathcal{B}_{t} and \mathcal{H}_{t} are immediate consequences of $\mathcal{M}_{t}, \mathcal{B}_{t-1}$, and \mathcal{H}_{t-1}. First of all, with \mathcal{B}_{t-1} in mind, we only need to examine those entries $w_{i}^{(\tau)}$ obeying $\left|w_{i}^{(\tau)}-w_{i}\right| \geq 1.5 \xi_{t}$ that have not been replaced by time $t-1$. To this end, we recall that Spectral MLE replaces $w_{i}^{(\tau)}$ iff $\left|w_{i}^{(\tau)}-w_{i}^{\text {mle }}\right|>\xi_{t}$. With \mathcal{M}_{t} in place, for each i obeying $\left|w_{i}^{(\tau)}-w_{i}\right| \geq 1.5 \xi_{t}$, one has

$$
\left|w_{i}^{(\tau)}-w_{i}^{\mathrm{mle}}\right| \geq\left|w_{i}^{(\tau)}-w_{i}\right|-\left|w_{i}^{\mathrm{mle}}-w_{i}\right|>1.5 \xi_{t}-\frac{1}{2} \xi_{t}=\xi_{t}
$$

and hence it is necessarily replaced by $w_{i}^{\text {mle }}$ by time t. Similarly, for any i obeying $\left|w_{i}^{(\tau)}-w_{i}\right| \leq 0.5 \xi_{t}$, one has

$$
\left|w_{i}^{(\tau)}-w_{i}^{\mathrm{mle}}\right| \leq\left|w_{i}^{(\tau)}-w_{i}\right|+\left|w_{i}^{\mathrm{mle}}-w_{i}\right|<\frac{1}{2} \xi_{t}+\frac{1}{2} \xi_{t}=\xi_{t}
$$

and, therefore, it cannot be replaced by time t. These establish \mathcal{B}_{t} and \mathcal{H}_{t}. As a consequence, it suffices to verify \mathcal{M}_{t}, which is achieved by induction.

When $t=0$, applying Theorem 4 and setting $\boldsymbol{w}^{\mathrm{ub}}=\boldsymbol{w}^{(0)}$, we see that

$$
\left\|\boldsymbol{w}^{\mathrm{mle}}-\boldsymbol{w}\right\|_{\infty} \leq c_{7} \xi_{\min }+c_{9} \frac{\log n}{n p_{\mathrm{obs}}} \xi_{\max }
$$

for some universal constants $c_{7}, c_{9}>0$, where we have made use of the properties 44) and 46). When c_{10} is sufficiently large, the definition of T_{0} (cf. 47) gives $\xi_{0} \gg c_{7} \sqrt{\frac{\log n}{n p_{\text {obs } L}}}$; additionally, $c_{9} \frac{\log n}{n p_{\text {obs }}} \xi_{\max } \ll \xi_{\max } \leq \xi_{0}$ holds as long as $\frac{\log n}{n p_{\mathrm{obs}}}$ is sufficiently small. Putting these conditions together gives

$$
\left\|\boldsymbol{w}^{\mathrm{mle}}-\boldsymbol{w}\right\|_{\infty} \leq c_{7} \xi_{\min }+c_{9} c_{4} \frac{\log n}{n p_{\mathrm{obs}}} \xi_{\max }<\frac{1}{2} \xi_{0}
$$

which verifies the property \mathcal{M}_{0}.
We now turn to extending these inductive hypotheses to the $t^{\text {th }}$ iteration, assuming that all of them hold up to time $t-1$. Taken together \mathcal{M}_{t-1} and \mathcal{B}_{t-1} immediately reveal that

$$
\begin{equation*}
\left\|\boldsymbol{w}^{(t)}-\boldsymbol{w}\right\|_{\infty} \leq 1.5 \xi_{t-1} \tag{48}
\end{equation*}
$$

In order to invoke Theorem 4 for the coordinate-wise MLEs, we need to construct a looser auxiliary score estimate $\boldsymbol{w}^{\mathrm{ub}}$. With $\mathcal{B}_{t-1}, \mathcal{H}_{t-1}$ and 48 in mind, we propose a candidate for the $t^{\text {th }}$ iteration as follow $\underbrace{2}$

$$
w_{i}^{\mathrm{ub}}= \begin{cases}w_{i}+1.5 \xi_{t-1}, & \text { if }\left|w_{i}^{(0)}-w_{i}\right|>\frac{1}{2} \xi_{t-1} \tag{49}\\ w_{i}^{(0)} & \text { else }\end{cases}
$$

which is clearly independent of $\mathcal{E}^{\text {iter }}$ and $\boldsymbol{y}^{\text {iter }}$. According to \mathcal{B}_{t-1} and \mathcal{H}_{t-1}, (i) none of the entries $w_{i}^{(0)}$ with $\left|w_{i}^{(0)}-w_{i}\right| \leq \frac{1}{2} \xi_{t-1}$ have been replaced so far; (ii) if an entry $w_{i}^{(0)}$ has ever been replaced, then the error of the new iterate cannot exceed $1.5 \xi_{t-1}$ (otherwise it'll be replaced by the MLE in time $t-1$ which gives an error below $\left.0.5 \xi_{t-1}\right)$. As a result, $\boldsymbol{w}^{\mathrm{ub}}$ clearly satisfies

$$
\begin{equation*}
\left|w_{i}^{(t)}-w_{i}\right| \leq\left|w_{i}^{\mathrm{ub}}-w_{i}\right| \leq 1.5 \xi_{t-1} \tag{50}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad\left\|\boldsymbol{w}^{(t)}-\boldsymbol{w}\right\| \leq\left\|\boldsymbol{w}^{(\mathrm{ub})}-\boldsymbol{w}\right\| \stackrel{(\mathrm{i})}{\leq} \frac{1.5 \xi_{t-1}}{0.5 \xi_{t-1}}\left\|\boldsymbol{w}^{(0)}-\boldsymbol{w}\right\| \leq 3 \delta\|\boldsymbol{w}\| \tag{51}
\end{equation*}
$$

Here, (i) arises since if $w_{i}^{(0)}$ is replaced, then the error $\left|w_{i}^{(0)}-w_{i}\right|$ is at least $0.5 \xi_{t-1}$, whereas the replaced pointwise error is $1.5 \xi_{t-1}$, which inflates the original error by no more than 3 times. With these in place, applying Theorem 4 gives

$$
\left\|\boldsymbol{w}^{\mathrm{mle}}-\boldsymbol{w}\right\|_{\infty} \leq c_{8} \xi_{\min }+1.5 c_{9} \frac{\log n}{n p_{\mathrm{obs}}} \xi_{t-1}
$$

which relies on the fact $\delta \lesssim \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}}$. Recognize that

$$
\xi_{t} \gg c_{8} \xi_{\min } \quad \text { and } \quad 1.5 c_{9} \frac{\log n}{n p_{\mathrm{obs}}} \xi_{t-1} \ll \xi_{t}
$$

hold in the regime where $t \leq T_{0}$ and $\frac{\log n}{n p_{\text {obs }}} \ll 1$, which taken together give

$$
\left\|\boldsymbol{w}^{\mathrm{mle}}-\boldsymbol{w}\right\|_{\infty} \leq \frac{1}{2} \xi_{t}
$$

as claimed in \mathcal{M}_{t}. Having verified these inductive hypotheses, we see from the above argument that the worst case ℓ_{∞} error bound at the $t^{\text {th }}$ iteration is at most $1.5 \xi_{t}$, which in turn leads to the claim 42 for any $t \leq T_{0}$.

[^1]Starting from $t=T_{0}+1$, we fix the auxiliary score as follows

$$
w_{i}^{\mathrm{ub}}= \begin{cases}w_{i}+1.5 \xi_{T_{0}}, & \text { if }\left|w_{i}^{(0)}-w_{i}\right|>\frac{1}{2} \xi_{\infty} \tag{52}\\ w_{i}^{(0)} & \text { else }\end{cases}
$$

where we recall that $\xi_{\infty}=c_{3} \xi_{\text {min }}$ and $\xi_{T_{0}}=c_{10} \xi_{\text {min }}$. This apparently satisfies

$$
\left|w_{i}^{(t)}-w_{i}\right| \leq\left|w_{i}^{\mathrm{ub}}-w_{i}\right| \leq 1.5 \xi_{T_{0}}
$$

for $t=T_{0}+1$, due to the preceding analysis for $t \leq T_{0}$. Moreover, the number of indices that satisfy $\left|w_{i}^{(0)}-w_{i}\right|>\frac{1}{2} \xi_{\infty}$, denoted by k, obeys

$$
k \cdot\left(\frac{1}{2} \xi_{\infty}\right)^{2} \leq\left\|\boldsymbol{w}-\boldsymbol{w}^{(0)}\right\|^{2} \leq \delta^{2}\|\boldsymbol{w}\|^{2} \quad \Longleftrightarrow \quad k \cdot \leq \frac{4 \delta^{2}\|\boldsymbol{w}\|^{2}}{\xi_{\infty}^{2}}
$$

which further gives

$$
\begin{aligned}
\left\|\boldsymbol{w}^{\mathrm{ub}}-\boldsymbol{w}\right\|^{2} & \leq\left\|\boldsymbol{w}^{(0)}-\boldsymbol{w}\right\|^{2}+\sum_{i:\left|w_{i}^{(0)}-w_{i}\right|>\frac{1}{2} \Delta_{\infty}}\left(1.5 \xi_{T_{0}}\right)^{2} \leq \delta^{2}\|\boldsymbol{w}\|^{2}+2.25 k \xi_{T_{0}}^{2} \\
& \leq \delta^{2}\|\boldsymbol{w}\|^{2}\left(1+\frac{9 \xi_{T_{0}}^{2}}{\xi_{\infty}^{2}}\right)
\end{aligned}
$$

If we pick $\frac{c_{10}}{c_{3}}=\frac{\xi_{T_{0}}}{\xi_{\infty}} \leq \sqrt{2}$, then the above inequality gives rise to

$$
\left\|\boldsymbol{w}^{\mathrm{ub}}-\boldsymbol{w}\right\| \leq \sqrt{19} \delta\|\boldsymbol{w}\|
$$

Apply Theorem 4 to deduce

$$
\left\|\boldsymbol{w}^{\mathrm{mle}}-\boldsymbol{w}\right\|_{\infty} \lesssim \delta+\frac{\log n}{n p_{\mathrm{obs}}} \xi_{T_{0}}+\sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}} \asymp \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}} \ll \frac{1}{2} \xi_{\infty}
$$

as long as $\frac{\log n}{p_{\text {obs }} n}$ is small and c_{10}, c_{3} are sufficiently large.
The main point of the above calculation is that: for any entry $w_{i}^{(0)}$ satisfying $\left|w_{i}^{(0)}-w_{i}\right|<\frac{1}{2} \xi_{\infty}$, one must have

$$
\left|w_{i}^{(0)}-w_{i}^{\mathrm{mle}}\right| \leq\left|w_{i}^{(0)}-w_{i}\right|+\left|w_{i}^{(\mathrm{mle})}-w_{i}\right|<\xi_{\infty}<\xi_{t}
$$

and hence it will never be replaced. As a result, the auxiliary score 52 remains valid for all iterations that follow. Putting the above arguments together we obtain

$$
\left\|\boldsymbol{w}^{(t)}-\boldsymbol{w}\right\|_{\infty} \leq \frac{1}{2} \xi_{\infty} \asymp \sqrt{\frac{\log n}{n p_{\mathrm{obs}} L}}, \quad t>T_{0}
$$

This establishes the claim $\sqrt[42]{ }$ for $t>T_{0}$, and in turn finishes the proof of the theorem.

3 Minimax Lower Bound

This section establishes the minimax lower limit given in Theorem 2. To bound the minimax probability of error, we proceed by constructing a finite set of hypotheses, followed by an analysis based on classical Fano-type argument. For notational simplicity, each hypothesis is represented by a permutation σ over $[n]$, and we denote by $\sigma(i)$ and $\sigma([K])$ the index of the $i^{\text {th }}$ ranked item and the index set of all top- K items, respectively.

We now single out a set of hypotheses and some prior to be imposed on them. Suppose that the values of \boldsymbol{w} are fixed up to permutation in such a way that

$$
w_{\sigma(i)}= \begin{cases}w_{K}, & 1 \leq i \leq K \\ w_{K+1}, & K<i \leq n\end{cases}
$$

where we abuse the notation w_{K}, w_{K+1} to represent any two values satisfying

$$
\frac{w_{K}-w_{K+1}}{w_{\max }}=\Delta_{K}>0
$$

Below we suppose that the ranking scheme is informed of the values w_{K}, w_{K+1}, which only makes the ranking task easier. In addition, we impose a uniform prior over a collection \mathcal{M} of $M:=\max \{K, n-K\}+1$ hypotheses regarding the permutation: if $K<n / 2$, then

$$
\begin{equation*}
\mathbb{P}\{\sigma([K])=\mathcal{S}\}=\frac{1}{M}, \quad \text { if } \mathcal{S}=\{2, \cdots, K\} \cup\{i\}, \quad(i=1, K+1, \cdots, n) \tag{53}
\end{equation*}
$$

if $K \geq n / 2$, then

$$
\begin{equation*}
\mathbb{P}\{\sigma([K])=\mathcal{S}\}=\frac{1}{M}, \text { if } \mathcal{S}=\{1, \cdots, K+1\} \backslash\{i\}, \quad(i=1, \cdots, K+1) \tag{54}
\end{equation*}
$$

In words, each alternative hypothesis is generated by swapping two indices of the hypothesis obeying $\sigma([K])=[K]$. Denoting by $P_{\mathrm{e}, M}$ the average probability of error with respect to the prior we construct, one can easily verify that the minimax probability of error is at least $P_{\mathrm{e}, M}$.

This Bayesian probability of error will be bounded using classical Fano-type bounds. To accommodate partial observation, we introduce an erased version of $\boldsymbol{y}_{i, j}:=\left(y_{i, j}^{(1)}, \cdots, y_{i, j}^{(L)}\right)$ such that

$$
\boldsymbol{z}_{i, j}= \begin{cases}\boldsymbol{y}_{i, j}, & \text { with probability } p_{\mathrm{obs}} \\ \text { erasure, } & \text { else }\end{cases}
$$

and set $\boldsymbol{Z}:=\left\{\boldsymbol{z}_{i, j}\right\}_{1 \leq i \leq j \leq n}$. With a slight abuse of notation, we denote by σ and $\hat{\sigma}$ the ground truth permutation and the output of any ranking procedure, respectively. Making use of (53) and (54) gives

$$
\begin{aligned}
& \log M=H(\sigma)=I(\sigma ; \hat{\sigma})+H(\sigma \mid \hat{\sigma}) \\
& \quad \stackrel{(a)}{\leq} I(\sigma ; \boldsymbol{Z})+1+P_{\mathrm{e}, M} \log M \\
& \stackrel{(b)}{\leq} \frac{1}{M^{2}} \sum_{\sigma_{1}, \sigma_{2} \in \mathcal{M}} \mathrm{KL}\left(\mathbb{P}_{\boldsymbol{Z} \mid \sigma=\sigma_{1}} \| \mathbb{P}_{\boldsymbol{Z} \mid \sigma=\sigma_{2}}\right)+1+P_{\mathrm{e}, M} \log M \\
& \stackrel{(c)}{=} \frac{1}{M^{2}} \sum_{\sigma_{1}, \sigma_{2} \in \mathcal{M}} \sum_{i \neq j} \mathrm{KL}\left(\mathbb{P}_{\boldsymbol{z}_{i, j} \mid \sigma=\sigma_{1}} \| \mathbb{P}_{\boldsymbol{z}_{i, j} \mid \sigma=\sigma_{2}}\right)+1+P_{\mathrm{e}, M} \log M \\
& \quad=\frac{p_{\mathrm{obs}}}{M^{2}} \sum_{\sigma_{1}, \sigma_{2} \in \mathcal{M}} \sum_{i \neq j} \mathrm{KL}\left(\mathbb{P}_{\boldsymbol{y}_{i, j} \mid \sigma=\sigma_{1}} \| \mathbb{P}_{\boldsymbol{y}_{i, j} \mid \sigma=\sigma_{2}}\right)+1+P_{\mathrm{e}, M} \log M \\
& \stackrel{(d)}{=} \frac{p_{\mathrm{obs}} L}{M^{2}} \sum_{\sigma_{1}, \sigma_{2} \in \mathcal{M}} \sum_{i \neq j} \mathrm{KL}\left(\mathbb{P}_{y_{i, j}^{(1)} \mid \sigma=\sigma_{1}} \| \mathbb{P}_{y_{i, j}^{(1)} \mid \sigma=\sigma_{2}}\right)+1+P_{\mathrm{e}, M} \log M \\
& \quad(e) \\
& \quad \frac{2 w_{\max }^{4}}{w_{\min }^{4}} n p_{\mathrm{obs}} L \Delta_{K}^{2}+1+P_{\mathrm{e}, M} \log M,
\end{aligned}
$$

where $H(X), I(X ; Y)$, and $\mathrm{KL}(P \| Q)$ denote the entropy, mutual information, and Kullback-Leibler (KL) divergence, respectively. Here, (a) results from the data processing inequality and Fano's inequality 4; (b) arises from Lemma 2 (see below); (c) follows from the independence assumption of the $\boldsymbol{z}_{i, j}$'s; (d) is a
consequence of the fact that $y_{i, j}^{(\ell)}(1 \leq l \leq L)$ are i.i.d.; and (e) follows from Lemma 3 (see below). This immediately yields

$$
P_{\mathrm{e}, M} \geq \frac{\log M-\frac{2 w_{\max }^{4}}{w_{\min }^{4}} n p_{\mathrm{obs}} L \Delta_{K}^{2}-1}{\log M}
$$

Consequently, one would have $P_{\mathrm{e}} \geq P_{\mathrm{e}, M} \geq \epsilon$ if

$$
\frac{2 w_{\max }^{4}}{w_{\min }^{4}} n p_{\mathrm{obs}} L \Delta_{K}^{2} \leq(1-\epsilon) \log M-1
$$

Since $|\mathcal{M}|=M \geq \frac{n}{2}$, the above condition is necessarily satisfied when

$$
\frac{2 w_{\max }^{4}}{w_{\min }^{4}} n p_{\mathrm{obs}} L \Delta_{K}^{2} \leq(1-\epsilon) \log n-2 \quad \Longleftrightarrow \quad L \leq \frac{w_{\min }^{4}}{2 w_{\max }^{4}} \cdot \frac{(1-\epsilon) \log n-2}{n p_{\mathrm{obs}} \Delta_{K}^{2}}
$$

which finishes the proof.
Lemma 2. Under the prior (53) and (54), one has

$$
\begin{equation*}
I(\sigma ; \boldsymbol{z}) \leq \frac{1}{M^{2}} \sum_{\sigma_{1}, \sigma_{2} \in \mathcal{M}} \mathrm{KL}\left(\mathbb{P}_{\boldsymbol{Z} \mid \sigma=\sigma_{1}} \| \mathbb{P}_{\boldsymbol{Z} \mid \sigma=\sigma_{2}}\right) \tag{55}
\end{equation*}
$$

Proof. It follows from the definition of mutual information that

$$
\begin{aligned}
& I(\sigma ; \boldsymbol{z})=\sum_{\sigma_{1} \in \mathcal{M}} \sum_{\boldsymbol{z}} \mathbb{P}\left(\sigma=\sigma_{1}, \boldsymbol{Z}=\boldsymbol{z}\right) \log \frac{\mathbb{P}\left(\boldsymbol{Z}=\boldsymbol{z} \mid \sigma=\sigma_{1}\right)}{\mathbb{P}(\boldsymbol{Z}=\boldsymbol{z})} \\
& \quad=\frac{1}{M} \sum_{\sigma_{1} \in \mathcal{M}} \sum_{\boldsymbol{z}} \mathbb{P}\left(\boldsymbol{Z}=\boldsymbol{z} \mid \sigma=\sigma_{1}\right) \log \left\{\frac{\mathbb{P}\left(\boldsymbol{Z}=\boldsymbol{z} \mid \sigma=\sigma_{1}\right)}{\frac{1}{M} \sum_{\sigma_{2} \in \mathcal{M}} \mathbb{P}\left(\boldsymbol{Z}=\boldsymbol{z} \mid \sigma=\sigma_{2}\right)}\right\} \\
& \quad \leq \frac{1}{M} \sum_{\sigma_{1} \in \mathcal{M}} \sum_{\boldsymbol{z}} \mathbb{P}\left(\boldsymbol{Z}=\boldsymbol{z} \mid \sigma=\sigma_{1}\right)\left\{\frac{1}{M} \sum_{\sigma_{2} \in \mathcal{M}} \log \frac{\mathbb{P}\left(\boldsymbol{Z}=\boldsymbol{z} \mid \sigma=\sigma_{1}\right)}{\mathbb{P}\left(\boldsymbol{Z}=\boldsymbol{z} \mid \sigma=\sigma_{2}\right)}\right\} \\
& \quad=\frac{1}{M^{2}} \sum_{\sigma_{1}, \sigma_{2} \in \mathcal{M}} \mathrm{KL}\left(\mathbb{P}_{\boldsymbol{Z} \mid \sigma=\sigma_{1}} \| \mathbb{P}_{\boldsymbol{Z} \mid \sigma=\sigma_{2}}\right)
\end{aligned}
$$

where the inequality is due to Jensen's inequality.
Lemma 3. If $w_{K}, w_{K+1} \in\left[w_{\min }, w_{\max }\right]$, then for any $\sigma_{1}, \sigma_{2} \in \mathcal{M}$:

$$
\begin{equation*}
\sum_{i \neq j} \mathrm{KL}\left(\mathbb{P}_{y_{i, j}^{(1)} \mid \sigma=\sigma_{1}} \| \mathbb{P}_{y_{i, j}^{(1)} \mid \sigma=\sigma_{2}}\right) \leq \frac{2 w_{\max }^{4}}{w_{\min }^{4}} n \Delta_{K}^{2} \tag{56}
\end{equation*}
$$

Proof. To start with, for any two measures $P \sim \operatorname{Bernoulli}(p)$ and $Q \sim \operatorname{Bernoulli}(q)$, one has [5, Eqn. (7)]

$$
\begin{equation*}
\mathrm{KL}(P \| Q) \leq \chi^{2}(P \| Q)=\frac{(p-q)^{2}}{q}+\frac{(p-q)^{2}}{1-q}=\frac{(p-q)^{2}}{q(1-q)} \tag{57}
\end{equation*}
$$

where $\chi^{2}(P \| Q)$ denotes the χ^{2} divergence.
Recall that given $\sigma=\sigma_{1}$ (resp. $\sigma=\sigma_{2}$), $y_{i, j}^{(1)}$ is Bernoulli distributed with mean $r_{1}:=\frac{w_{\sigma_{1}(i)}}{w_{\sigma_{1}(i)}+w_{\sigma_{1}(j)}}$ (resp. $\left.r_{2}:=\frac{w_{\sigma_{2}(i)}}{w_{\sigma_{2}(i)}+w_{\sigma_{2}(j)}}\right)$. If we set $\delta=r_{1}-r_{2}$, then 57) yields

$$
\mathrm{KL}\left(\mathbb{P}_{y_{i, j}^{(1)} \mid \sigma=\sigma_{1}} \| \mathbb{P}_{y_{i, j}^{(1)} \mid \sigma=\sigma_{2}}\right) \leq \frac{\delta^{2}}{r_{2}\left(1-r_{2}\right)} \leq \frac{4 w_{\max }^{2}}{w_{\min }^{2}} \delta^{2}
$$

where the last inequality follows since

$$
r_{2}\left(1-r_{2}\right)=\frac{w_{\sigma_{2}(i)} w_{\sigma_{2}(j)}}{\left(w_{\sigma_{2}(i)}+w_{\sigma_{2}(j)}\right)^{2}} \geq \frac{w_{\min }^{2}}{4 w_{\max }^{2}}
$$

By construction, conditional on any hypotheses $\sigma_{1}, \sigma_{2} \in \mathcal{M}$, the resulting $\boldsymbol{y}_{i, j}$ are different over at most $2 n$ locations. For each of these $O(n)$ locations, our construction of \mathcal{M} ensures that

$$
|\delta|=\left|r_{2}-r_{1}\right| \leq \frac{w_{K}}{w_{K}+w_{K+1}}-\frac{w_{K+1}}{w_{K}+w_{K+1}}=\frac{w_{K}-w_{K+1}}{w_{K}+w_{K+1}} \leq \frac{w_{\max }}{2 w_{\min }} \Delta_{K}
$$

As a result, the total contribution is bounded above by

$$
\sum_{i \neq j} \mathrm{KL}\left(\mathbb{P}_{y_{i, j}^{(1)} \mid \sigma=\sigma_{1}} \| \mathbb{P}_{y_{i, j}^{(1)} \mid \sigma=\sigma_{2}}\right) \leq 2 n \cdot\left(\max _{i, j} \delta^{2}\right) \frac{4 w_{\max }^{2}}{w_{\min }^{2}} \leq \frac{2 w_{\max }^{4}}{w_{\min }^{4}} n \Delta_{K}^{2}
$$

A Bernstein Inequality

Our analysis relies on the Bernstein inequality. To simplify presentation, we state below a user-friendly version of Bernstein inequality.

Lemma 4. Consider n independent random variables $z_{l}(1 \leq l \leq n)$, each satisfying $\left|z_{l}\right| \leq B$. Then there exists a universal constant $c_{0}>0$ such that for any $a \geq 2$,

$$
\begin{equation*}
\left|\sum_{l=1}^{n} z_{l}-\mathbb{E}\left[\sum_{l=1}^{n} z_{l}\right]\right| \leq \sqrt{2 a \log n \sum_{l=1}^{n} \mathbb{E}\left[z_{l}^{2}\right]}+\frac{2 a}{3} B \log n \tag{58}
\end{equation*}
$$

with probability at least $1-\frac{2}{n^{a}}$.
This is an immediate consequence of the well-known Bernstein inequality

$$
\begin{equation*}
\mathbb{P}\left\{\left|\sum_{l=1}^{n} z_{l}-\mathbb{E}\left[\sum_{l=1}^{n} z_{l}\right]\right|>t\right\} \leq 2 \exp \left(-\frac{\frac{1}{2} t^{2}}{\sum_{l=1}^{n} \mathbb{E}\left[z_{l}^{2}\right]+\frac{1}{3} B t}\right) \tag{59}
\end{equation*}
$$

References

[1] R. W. Yeung, Information theory and network coding. Springer, 2008. 2.1
[2] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized algorithms and probabilistic analysis. Cambridge University Press, 2005. 2.1
[3] S. Negahban, S. Oh, and D. Shah, "Rank centrality: Ranking from pair-wise comparisons," 2012. [Online]. Available: http://arxiv.org/abs/1209.1688 2.2
[4] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley \& Sons, 2012. 3
[5] T. van Erven and P. Harremoes, "Renyi divergence and Kullback-Leibler divergence," IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 3797-3820, July 2014. 3

[^0]: *Department of Statistics, Stanford University, CA 94305, U.S.A.
 ${ }^{\dagger}$ Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
 ${ }^{1}$ More precisely, $c=w_{\text {min }}^{4} /\left(2 w_{\text {max }}^{4}\right)$.

[^1]: ${ }^{2}$ Careful readers will note that when $\left|w_{i}^{(0)}-w_{i}\right| \geq \frac{1}{2} \Delta_{t-1}$, the resulting $w_{i}^{\text {ub }}$ might exceed the range $\left[w_{\min }, w_{\max }\right]$. This can be easily addressed if we do the following: (1) change $w_{i}^{\text {ub }}$ to $w_{i}-1.5 \Delta_{t-1}$ instead if $w_{i}-1.5 \Delta_{t-1} \in\left[w_{\min }\right.$, $\left.w_{\max }\right]$; (2) if it is still infeasible, set w_{i}^{ub} to be $w_{\max }$ if $\left|w_{i}-w_{\max }\right|>\left|w_{i}-w_{\min }\right|$ and $w_{\min }$ otherwise. For simplicity of presentation, however, we omit these boundary situations and assume $w_{i}+1.5 \Delta_{t-1} \leq w_{\max }$ throughout, which will not change the results anyway.

