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Abstract

This supplemental document presents details concerning analytical derivations that support the the-
orems made in the main text “Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons”,
accepted to the 32th International Conference on Machine Learning (ICML 2015). One can find here the
detailed proof of Theorems 2 - 4.

1 Main Theorems
We repeat the main theorems as follows for convenience of presentation.

Theorem 2 (Minimax Lower Bounds). Fix ε ∈
(
0, 1

2

)
, and let G ∼ Gn,pobs . If

L ≤ c
(1− ε) log n− 2

npobs∆2
K

(1)

holds for some absolute constant1 c > 0, then for any ranking scheme ψ, there exists a preference vector w
with separation ∆K such that the probability of error Pe (ψ) ≥ ε.

Theorem 3. Let c0, c1, c2, c3 > 0 be some sufficiently large constants. Suppose that L = O (poly (n)), the
comparison graph G ∼ Gn,pobs

with pobs > c0 log n/n, and assume that the separation measure satisfies

∆K > c1

√
log n

npobsL
. (2)

Then with probability exceeding 1 − 1/n2, Spectral MLE perfectly identifies the set of top-K ranked items,
provided that the parameters obey T ≥ c2 log n and

ξt := c3

{
ξmin +

1

2t
(ξmax − ξmin)

}
, (3)

where ξmin :=
√

logn
nLpobs

and ξmax :=
√

logn
pobsL

.

Theorem 4. Suppose that G ∼ Gn,pobs
with pobs > c1 log n/n for some large constant c1, and that there

exists a score ŵub ∈ [wmin, wmax]
n independent of G satisfying∣∣ŵub

i − wi
∣∣ ≤ ξwmax, ∀1 ≤ i ≤ n; (4)

‖ŵub −w‖ ≤ δ ‖w‖ . (5)
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1More precisely, c = w4

min/(2w4
max).
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Then with probability at least 1− c2n−4 for some constant c2 > 0, the coordinate-wise MLE

wmle
i := arg max

τ∈[wmin,wmax]
L
(
τ, ŵ\i;yi

)
(6)

satisfies ∣∣wi − wmle
i

∣∣ < 20
(

6 + logL
logn

)
w5

max

w4
min

max

{
δ +

ξ log n

npobs
,

√
log n

npobsL

}
(7)

simultaneously for all scores ŵ ∈ [wmin, wmax]
n obeying

|ŵi − wi| ≤
∣∣ŵub
i − wi

∣∣ , 1 ≤ i ≤ n. (8)

2 Performance Guarantees of Spectral MLE
In this section, we establish the theoretical guarantees of Spectral MLE in controlling the ranking accuracy
and `∞ estimation errors, which are the subjects of Theorem 3 and Theorem 4. The proof of Theorem 3
relies heavily on the claim of Theorem 4; for this reason, we present the proofs of Theorem 3 and Theorem
4 in a reverse order. Before proceeding, we recall that the coordinate-wise log-likelihood of τ is given by

1

L
logL

(
τ, ŵ\i;yi

)
:=

∑
j:(i,j)∈E

yij log
τ

τ + ŵj
+ (1− yij) log

ŵj
τ + ŵj

, (9)

and we shall use w\i (resp. ŵ\i) to denote the vector w = [w1, · · · , wn] (resp. ŵ = [ŵ1, · · · , ŵn]) excluding
the entry wi (resp. ŵi).

2.1 Proof of Theorem 4
To prove Theorem 4, we aim to demonstrate that for every τ ∈ [wmin, wmax] that is sufficiently separated
from the ground truth wi (or, more formally, |τ − wi| & max

{
δ + ξ logn

npobs
,
√

logn
npobsL

}
), the coordinate-wise

likelihood satisfies
logL

(
wi, ŵ\i;yi

)
> logL

(
τ, ŵ\i;yi

)
(10)

and, therefore, τ cannot be the coordinate-wise MLE.
To begin with, we provide a lemma (which will be proved later) that concerns (10) for any single τ that

is well separated from wi.

Lemma 1. Fix any γ ≥ 3. Under the conditions of Theorem 4, for any τ ∈ [wmin, wmax] obeying

|wi − τ | > γ · w
5
max

w4
min

max

{
25

4

(
δ +

ξ log n

npobs

)
, 20

√
log n

npobsL

}
, (11)

one has
1

L
logL

(
wi, ŵ\i;yi

)
− 1

L
logL

(
τ, ŵ\i;yi

)
>

w6
max

100w6
min

log n

L
. (12)

with probability exceeding 1 − 4n−γ − 2n−10; this holds simultaneously for all ŵi ∈ [wmin, wmax]
n satisfying

(8).

To establish Theorem 4, we still need to derive a uniform control over all τ satisfying (11). This will be
accomplished via a standard covering argument. Specifically, for any small quantity ε > 0, we construct a
set Nε (called an ε-cover) within the interval [wmin, wmax] such that for any τ ∈ [wmin, wmax], there exists an
τ0 ∈ Nε obeying

|τ − τ0| ≤ ε and |τ0 − wi| ≥ |τ − wi|. (13)
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It is self-evident that one can produce such a cover Nε with cardinality
⌈
wmax

ε

⌉
+ 1. If we set γ = 6 + logL

logn
in Lemma 1, taking the union bound over Nε gives

1

L
logL

(
wi, ŵ\i;yi

)
− 1

L
logL

(
τ0, ŵ\i;yi

)
>

w6
max

100w6
min

log n

L
(14)

simultaneously over all τ0 ∈ Nε obeying |wi − τ0| >
(6+ logL

logn )w5
max

w4
min

max
{

25
4

(
δ + ξ logn

npobs

)
, 20

√
logn
npobsL

}
; this

occurs with probability at least 1− 4 |Nε|n−6− logL
logn − 8 |Nε|n−10.

We then proceed by bounding the difference between logL
(
τ, ŵ\i;yi

)
and logL

(
τ0, ŵ\i;yi

)
. To achieve

this, we first recognize that the Lipschitz constant of 1
L logL

(
τ, ŵ\i;yi

)
(cf. (9)) is bounded above by

1

L
·

∣∣∣∣∣∂ logL
(
τ, ŵ\i;yi

)
∂τ

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

j:(i,j)∈E

yi,j

(
1

τ
− 1

τ + ŵj

)
− (1− yi,j)

1

τ + ŵj

∣∣∣∣∣∣
(a)

≤ deg (i) · 2

wmin

(b)

≤ 12

5

npobs

wmin
.

where (a) follows since∣∣∣∣yi,j (1

τ
− 1

τ + w̃j

)
− (1− yi,j)

1

τ + w̃j

∣∣∣∣ =

∣∣∣∣yi,jτ − 1

τ + w̃j

∣∣∣∣ ≤ ∣∣∣yi,jτ ∣∣∣+

∣∣∣∣ 1

τ + w̃j

∣∣∣∣ < 2

wmin
,

and (b) holds since deg(i) ≤ 2.4npobs with probability 1 − O
(
n−4

)
as long as pobs > c1 logn

n for some
sufficiently large c1 > 0. As a result, by picking

ε =

w6
max

100w6
min

logn
L

12
5
npobs
wmin

=
w6

max

240w5
min

log n

npobsL
, (15)

one can make sure that for any |τ − τ0| ≤ ε,

1

L
logL

(
τ, ŵ\i;yi

)
− 1

L
logL

(
τ0, ŵ\i;yi

)
≤ ε · 12

5

npobs

wmin
, (16)

⇒ 1

L
logL

(
τ, ŵ\i;yi

)
<

1

L
logL

(
τ0, ŵ\i;yi

)
+

w6
max

100w6
min

log n

L
. (17)

In addition, with the above choice (15) of ε in place, the cardinality of the ε-cover is bounded above by

|Nε| ≤
⌈wmax

ε

⌉
+ 1 =

⌈
240npobsL

log n
· w

5
min

w5
max

⌉
+ 1� n2L

for any sufficiently large n.
Putting (14) and (17) together suggests that for all τ ∈ [wmin, wmax] sufficiently apart from the ground

truth wi, namely,

∀τ ∈ [wmin, wmax] : |τ − wi| ≥

(
6 + logL

logn

)
w5

max

w4
min

max

{
25

4

(
δ +

ξ log n

npobs

)
, 20

√
log n

npobsL

}
, (18)

one necessarily has

1

L
logL

(
wi, ŵ\i;yi

)
− 1

L
logL

(
τ, ŵ\i;yi

)
=

{
1

L
logL

(
wi, ŵ\i;yi

)
− 1

L
logL

(
τ0, ŵ\i;yi

)}
+

{
1

L
logL

(
τ0, ŵ\i;yi

)
− 1

L
logL

(
τ, ŵ\i;yi

)}
> 0, (19)
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with probability at least 1 − 4 |Nε|n−6− logL
logn − O

(
n−4

)
≥ 1 − 4n2Ln−6− logL

logn − O(n−4) = 1 − O(n−4).
Consequently, any τ ∈ [wmin, wmax] that obeys (18) cannot be the coordinate-wise MLE, which in turn
justifies the claim (7) of Theorem 4 (which is slightly weaker than what we prove here).

Proof of Lemma 1. We start by evaluating the true coordinate-wise likelihood gap

logL
(
wi,w\i;yi

)
− logL

(
τ,w\i;yi

)
(20)

for any fixed τ 6= wi independent of yi. Here, yi := {yi,j | (i, j) ∈ E} is assumed to be generated under the
BTL model parameterized by w, which clearly obeys

E [yi,j ] =
wi

wi + wj
and Var [yi,j ] =

1

L

wiwj

(wi + wj)
2 .

In order to quantify the average value of (20), we rewrite the likelihood function as

1

L
logL

(
τ,w\i;yi

)
=

∑
j:(i,j)∈E

{
yi,j log

(
τ

τ + wj

)
+ (1− yi,j) log

(
wj

τ + wj

)}
(21)

=
∑

j:(i,j)∈E

yi,j log

(
τ

wj

)
+

∑
j:(i,j)∈E

log

(
wj

τ + wj

)
. (22)

Taking expectation w.r.t. yi using the form (21) reveals that

E
[

1

L
logL

(
wi,w\i;yi

)
− 1

L
logL

(
τ,w\i;yi

)∣∣∣∣G] =
∑

j:(i,j)∈E

{
wi

wi + wj
log

(
wi

wi+wj
τ

τ+wj

)
+

wj
wi + wj

log

( wj
wi+wj
wj

τ+wj

)}

=
∑

j:(i,j)∈E

KL

(
wi

wi + wj

∥∥∥ τ

τ + wj

)
, (23)

where KL (p‖q) stands for the Kullback–Leibler (KL) divergence of Bernoulli (q) from Bernoulli (p). Using
Pinsker’s inequality [1, Theorem 2.33], that is, KL (p‖q) ≥ 2 (p− q)2, we arrive at the following lower bound

E
[

1

L
logL

(
wi,w\i;yi

)
− 1

L
logL

(
τ,w\i;yi

)∣∣∣∣G] ≥ 2
∑

j:(i,j)∈E

(
wi

wi + wj
− τ

τ + wj

)2

= 2 (wi − τ)
2
∑

j:(i,j)∈E

w2
j

(wi + wj)
2

(τ + wj)
2 . (24)

That being said, the true coordinate-wise likelihood of wi strictly dominates that of τ in the mean sense.
However, when running Spectral MLE, we do not have access to the ground truth scores w\i; what we

actually compute is L(wi, ŵ\i;yi) (resp. L(τ, ŵ\i;yi)) rather than L (w;yi) (resp. L(τ,w\i;yi)). Fortu-
nately, such surrogate likelihoods are sufficiently close to the true coordinate-wise likelihoods, which we will
show in the rest of the proof. For brevity, we shall denote respectively the heuristic and true log-likelihood
functions by {

ˆ̀
i (wi) := 1

L logL
(
wi, ŵ\i;yi

)
,

`∗ (wi) := 1
L logL

(
wi,w\i;yi

)
,

(25)

whenever it is clear from context. Note that ŵ\i could depend on yi.
As seen from (22), for any candidate τ ∈ [wmin, wmax], we can quantify the difference between ˆ̀

i (τ) and
`∗ (τ) as

ˆ̀
i (τ)− `∗ (τ) =

∑
j:(i,j)∈E

yi,j log

(
wj
ŵj

)
+

∑
j:(i,j)∈E

{
log

(
ŵj

τ + ŵj

)
− log

(
wj

τ + wj

)}
. (26)
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As a consequence, the gap between the true loss `∗ (wi)− `∗ (τ) and the surrogate loss ˆ̀
i (wi)− ˆ̀

i (τ) is given
by

ˆ̀
i (wi)− ˆ̀

i (τ)− (`∗ (wi)− `∗ (τ)) = ˆ̀
i (wi)− `∗ (wi)−

(
ˆ̀
i (τ)− `∗ (τ)

)
=

∑
j:(i,j)∈E

{
log

(
ŵj

wi + ŵj

)
− log

(
wj

wi + wj

)
−
(

log

(
ŵj

τ + ŵj

)
− log

(
wj

τ + wj

))}
(27)

=
∑

j:(i,j)∈E

{
log

(
τ + ŵj
wi + ŵj

)
− log

(
τ + wj
wi + wj

)}
. (28)

This gap relies on the function

g (t) := log

(
τ + t

wi + t

)
− log

(
τ + wj
wi + wj

)
, t ∈ [wmin, wmax] ,

which apparently obeys the following two properties: (i) g (wj) = 0; (ii)∣∣∣∣∂g (t)

∂t

∣∣∣∣ =

∣∣∣∣ 1

τ + t
− 1

wi + t

∣∣∣∣ =
|τ − wi|

(wi + t) (τ + t)
≤ |τ − wi|

4w2
min

, ∀t ∈ [wmin, wmax] .

Taken together these two properties demonstrate that

|g (t)| ≤ 1

4w2
min

|τ − wi| |t− wj | , ∀t ∈ [wmin, wmax] .

Substitution into (28) gives∣∣∣ˆ̀i (wi)− ˆ̀
i (τ)− (`∗ (wi)− `∗ (τ))

∣∣∣ ≤ 1

4w2
min

|τ − wi|
∑

j:(i,j)∈E

|ŵj − wj |

≤ 1

4w2
min

|τ − wi|
∑

j:(i,j)∈E

∣∣ŵub
j − wj

∣∣ . (29)

Notably, this is a deterministic inequality which holds for all ŵj obeying |ŵj −wj | ≤ |ŵub
j −wj | (1 ≤ j ≤ n).

A desired property of the upper bound (29) is that it is independent of G and the data yi, due to our
assumption on ŵub.

We now move on to develop an upper bound on (29). From our assumptions on the initial estimate, we
have

‖ŵ −w‖2 ≤ ‖ŵub −w‖2 ≤ δ2 ‖w‖2 ≤ nw2
maxδ

2.

Since G and ŵub are statistically independent, this inequality immediately gives rise to the following two
consequences:

E
[∑

j:(i,j)∈E
∣∣ŵub
j − wj

∣∣] = pobs‖ŵub −w‖1 ≤ pobs

√
n‖ŵub −w‖

≤ npobswmaxδ (30)

and
E
[∑

j:(i,j)∈E
∣∣ŵub
j − wj

∣∣2] = pobs‖ŵub −w‖22 ≤ npobsw
2
maxδ

2. (31)

Recall our assumption that maxj
∣∣ŵub
j − wj

∣∣ ≤ ξwmax. For any fixed γ ≥ 3, if pobs >
2 logn
n , then with

probability at least 1− 2n−γ ,

∑
j:(i,j)∈E

∣∣ŵub
j − wj

∣∣ (i)
≤ E

 ∑
j:(i,j)∈E

∣∣ŵub
j − wj

∣∣+

√
2γ log n · E

[∑
j:(i,j)∈E

∣∣ŵub
j − wj

∣∣2]+
2γ

3
ξwmax log n

≤ npobswmaxδ +
√

2γ · npobs log nwmaxδ +
2γ

3
ξwmax log n

(ii)
≤ (1 +

√
γ)npobswmaxδ +

2γ

3
ξwmax log n

(iii)
≤ γnpobswmaxδ + γξwmax log n,
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where (i) comes from the Bernstein inequality as given in Lemma 4, (ii) follows since log n < pobsn
2 by

assumption, and (iii) arises since 1 +
√
γ ≤ γ whenever γ ≥ 3. This combined with (29) allows us to control∣∣∣ˆ̀i (wi)− ˆ̀

i (τ)− (`∗ (wi)− `∗ (τ))
∣∣∣ ≤ |τ − wi| γwmax

4w2
min

(npobsδ + ξ log n) (32)

with high probability.
The above arguments basically reveal that ˆ̀

i (wi)− ˆ̀
i (τ) is reasonably close to `∗ (wi)− `∗ (τ). Thus, to

show that ˆ̀
i (wi) − ˆ̀

i (τ) > 0, it is sufficient to develop a lower bound on `∗ (wi) − `∗ (τ) that exceeds the
gap (32). In expectation, the preceding inequality (24) gives

E [`∗ (wi)− `∗ (τ) | G] ≥ 2 (wi − τ)
2
∑

j:(i,j)∈E

w2
j

(wi + wj)
2

(τ + wj)
2

≥ w2
min

8w4
max

(wi − τ)
2

deg (i) . (33)

Recognizing that yi,j = 1
L

∑L
l=1 y

(l)
i,j is a sum of independent random variables y(l)

i,j ∼ Bernoulli
(

wi
wi+wj

)
, we

can control the conditional variance as

Var [`∗ (wi)− `∗ (τ) | G]
(a)
= Var

 ∑
j:(i,j)∈E

yi,j log
(wi
τ

) ∣∣∣∣∣∣G


= log2
(wi
τ

) ∑
j:(i,j)∈E

1

L

wiwj

(wi + wj)
2

(b)

≤ 1

L

(wi − τ)
2

min {w2
i , τ

2}
∑

j:(i,j)∈E

w2
max

4w2
min

≤ w2
max

4w4
min

· 1

L
(wi − τ)

2 deg (i) , (34)

where (a) is an immediate consequence of (22), and (b) follows since
∣∣∣log β

α

∣∣∣ ≤ β−α
α for any β > α > 0. Note

that 0 ≤ 1
Ly

(l)
i,j ≤ 1

L . Making use of the Bernstein inequality, (33) and (34) suggests that: conditional on G,

`∗ (wi)− `∗ (τ) ≥ E [`∗ (wi)− `∗ (τ) | G]−
√

2γVar [`∗ (wi)− `∗ (τ) | G] log n−
2γ log n ·

∣∣log
(
wi
τ

)∣∣
3L

≥ w2
min

8w4
max

(wi − τ)
2

deg (i)−
√

2γwmax |wi − τ |
2w2

min

√
deg (i) log n

L
− 2γ |wi − τ | log n

3Lwmin
(35)

holds with probability at least 1−2n−γ , where the last inequality follows again from the inequality
∣∣∣log

(
β
α

)∣∣∣ ≤
β−α
α for any β ≥ α > 0.
The above bound relies on deg(i), which is on the order of npobs with high probability. More precisely,

taking the Chernoff bound [2, Corollary 4.6] as well as the union bound reveals that: there exists some
constant c1 > 1 such that if pobs >

c1 logn
n , then

4

5
npobs < deg (i) <

6

5
npobs, ∀1 ≤ i ≤ n (36)

with probability at least 2
n10 . This taken collectively with (35) and the assumption npobs > 2 log n implies

6



that

`∗ (wi)− `∗ (τ) ≥ w2
min

8w4
max

(wi − τ)
2 · 4

5
npobs −

√
γ

2

wmax |wi − τ |
w2

min

√
6npobs log n

5L
− 2γ |wi − τ | log n

3Lwmin

≥ w2
min

10w4
max

(wi − τ)
2
npobs −

(√
3γ

5
+

2γ

3

1√
2

)
wmax |wi − τ |

w2
min

√
npobs log n

L

≥ w2
min

10w4
max

(wi − τ)
2
npobs − γ

wmax |wi − τ |
w2

min

√
npobs log n

L
(37)

≥ w2
min

20w4
max

(wi − τ)
2
npobs (38)

with probability at least 1− 2n−γ − 2n−10, as long as

γ · wmax |wi − τ |
w2

min

√
npobs log n

L
≤ w2

min

20w4
max

(wi − τ)
2
npobs

or, equivalently,

|wi − τ | ≥
20γ · w5

max

w4
min

√
log n

npobsL
. (39)

Finally, we are ready to control ˆ̀
i (wi)− ˆ̀

i (τ) from below. Putting (32) and (38) together, we see that
with high probability,

ˆ̀
i (wi)− ˆ̀

i (τ) ≥ `∗ (wi)− `∗ (τ)− |τ − wi| γwmax (npobsδ + ξ log n)

4w2
min

≥ w2
min

20w4
max

(wi − τ)
2
npobs −

|τ − wi| γwmax

4w2
min

(npobsδ + ξ log n)

>
w2

min

100w4
max

(wi − τ)
2
npobs (40)

>
w6

max

100w6
min

log n

L
, (41)

where (40) holds under the condition

|τ − wi| >
25γw5

max

4w4
min

(
δ +

ξ log n

npobs

)
,

and (41) follows from the assumption (39). This establishes the claim (12).

2.2 Proof of Theorem 3
The accuracy of top-K identification is closely related to the `∞ error of the score estimate. In the sequel,
we shall assume that wmax = 1 to simplify presentation, and our goal is to demonstrate that∥∥∥w(t) −w

∥∥∥
∞

.

√
log n

npobsL
+

1

2t

√
log n

pobsL
� ξt, ∀t ∈ N, (42)

where
ξt := c3

{
ξmin +

1

2t
(ξmax − ξmin)

}
, ∀t ≥ −1 (43)

with ξmin =
√

logn
npobsL

and ξmax =
√

logn
pobsL

. If T ≥ c2 log n for some sufficiently large c2 > 0, then this gives

∥∥∥w(T ) −w
∥∥∥
∞
�

√
log n

npobsL
= ξmin.
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The key implication is the following: if wK − wK−1 ≥ c1
√

logn
npobsL

for some sufficiently large c1 > 0, then

w
(T )
i − w(T )

j ≥ wi − wj −
∣∣∣w(T )
i − wi

∣∣∣− ∣∣∣w(T )
j − wj

∣∣∣ ≥ wK − wK+1 − 2
∥∥∥w(T ) −w

∥∥∥ > 0

for all 1 ≤ i ≤ K and j ≥ K+ 1, indicating that Spectral MLE will output the first K items as desired. The
remaining proof then boils down to showing (42).

We start from t = 0. When the initial estimate w(0) is computed by Rank Centrality, the `2 estimation
error satisfies [3] ∥∥w(0) −w

∥∥
‖w‖

≤ c4

√
log n

npobsL
= c4ξmin := δ (44)

with high probability, where c4 > 0 is some universal constant independent of n, pobs, L and ∆K . A by-
product of this result is an upper bound

∥∥∥w(0) −w
∥∥∥
∞
≤
∥∥∥w(0) −w

∥∥∥ ≤ δ‖w‖ ≤ δ√n = c4

√
log n

pobsL
, (45)

which together with the fact
∥∥w(0) −w

∥∥
∞ ≤ wmax − wmin ≤ 1 give

∥∥∥w(0) −w
∥∥∥
∞
≤ min

{
c4

√
log n

pobsL
, 1

}
= min {c4ξmax, 1} . (46)

This justifies that w(0) satisfies the claim (42). Notably, w(0) is independent of E iter and yiter and, therefore,
independent of the iterative steps.

In what follows, we divide the iterative stage into two phases: (1) t ≤ T0 and (2) t > T0, where T0 is a
threshold such that

ξt ≥ c10ξmin = c10

√
log n

npobsL
, iff t ≤ T0, (47)

for some large constant c10. As is seen from the definition of ξt, T0 . log n holds as long as L = O (poly (n)).
For the case where t ≤ T0, we proceed by induction on t w.r.t. the following hypotheses:

• Mt:
∥∥w(mle) −w

∥∥
∞ ≤

1
2ξt holds at the t

th iteration (the iteration where we compute w(t+1));

• Bt: all entries w(τ)
i of w(τ) (τ ≤ t− 1) satisfying |w(τ)

i − wi| ≥ 1.5ξt have been replaced by time t;

• Ht: none of the entries w(τ)
i (τ ≤ t− 1) satisfying |w(τ)

i − wi| ≤ 1
2ξt have been replaced by time t.

We note that Bt and Ht are immediate consequences ofMt, Bt−1, and Ht−1. First of all, with Bt−1 in mind,
we only need to examine those entries w(τ)

i obeying |w(τ)
i −wi| ≥ 1.5ξt that have not been replaced by time

t− 1. To this end, we recall that Spectral MLE replaces w(τ)
i iff |w(τ)

i − wmle
i | > ξt. WithMt in place, for

each i obeying |w(τ)
i − wi| ≥ 1.5ξt, one has

|w(τ)
i − w

mle
i | ≥ |w

(τ)
i − wi| − |w

mle
i − wi| > 1.5ξt −

1

2
ξt = ξt

and hence it is necessarily replaced by wmle
i by time t. Similarly, for any i obeying |w(τ)

i − wi| ≤ 0.5ξt, one
has

|w(τ)
i − w

mle
i | ≤ |w

(τ)
i − wi|+ |w

mle
i − wi| <

1

2
ξt +

1

2
ξt = ξt

and, therefore, it cannot be replaced by time t. These establish Bt and Ht. As a consequence, it suffices to
verifyMt, which is achieved by induction.

When t = 0, applying Theorem 4 and setting wub = w(0), we see that∥∥wmle −w
∥∥
∞ ≤ c7ξmin + c9

log n

npobs
ξmax

8



for some universal constants c7, c9 > 0, where we have made use of the properties (44) and (46). When c10 is
sufficiently large, the definition of T0 (cf. (47)) gives ξ0 � c7

√
logn
npobsL

; additionally, c9 logn
npobs

ξmax � ξmax ≤ ξ0
holds as long as logn

npobs
is sufficiently small. Putting these conditions together gives

∥∥wmle −w
∥∥
∞ ≤ c7ξmin + c9c4

log n

npobs
ξmax <

1

2
ξ0,

which verifies the propertyM0.
We now turn to extending these inductive hypotheses to the tth iteration, assuming that all of them hold

up to time t− 1. Taken togetherMt−1 and Bt−1 immediately reveal that∥∥∥w(t) −w
∥∥∥
∞
≤ 1.5ξt−1. (48)

In order to invoke Theorem 4 for the coordinate-wise MLEs, we need to construct a looser auxiliary score
estimate wub. With Bt−1, Ht−1 and (48) in mind, we propose a candidate for the tth iteration as follows2

wub
i =

{
wi + 1.5ξt−1, if |w(0)

i − wi| > 1
2ξt−1,

w
(0)
i else.

(49)

which is clearly independent of E iter and yiter. According to Bt−1 and Ht−1, (i) none of the entries w
(0)
i with

|w(0)
i − wi| ≤ 1

2ξt−1 have been replaced so far; (ii) if an entry w(0)
i has ever been replaced, then the error of

the new iterate cannot exceed 1.5ξt−1 (otherwise it’ll be replaced by the MLE in time t− 1 which gives an
error below 0.5ξt−1). As a result, wub clearly satisfies∣∣∣w(t)

i − wi
∣∣∣ ≤ ∣∣wub

i − wi
∣∣ ≤ 1.5ξt−1, (50)

and
∥∥∥w(t) −w

∥∥∥ ≤ ∥∥∥w(ub) −w
∥∥∥ (i)
≤ 1.5ξt−1

0.5ξt−1

∥∥∥w(0) −w
∥∥∥ ≤ 3δ‖w‖. (51)

Here, (i) arises since if w(0)
i is replaced, then the error

∣∣∣w(0)
i − wi

∣∣∣ is at least 0.5ξt−1, whereas the replaced
pointwise error is 1.5ξt−1, which inflates the original error by no more than 3 times. With these in place,
applying Theorem 4 gives ∥∥wmle −w

∥∥
∞ ≤ c8ξmin + 1.5c9

log n

npobs
ξt−1,

which relies on the fact δ .
√

logn
npobsL

. Recognize that

ξt � c8ξmin and 1.5c9
log n

npobs
ξt−1 � ξt

hold in the regime where t ≤ T0 and logn
npobs

� 1, which taken together give

∥∥wmle −w
∥∥
∞ ≤

1

2
ξt

as claimed in Mt. Having verified these inductive hypotheses, we see from the above argument that the
worst case `∞ error bound at the tth iteration is at most 1.5ξt, which in turn leads to the claim (42) for any
t ≤ T0.

2Careful readers will note that when |w(0)
i −wi| ≥ 1

2
∆t−1, the resulting wub

i might exceed the range [wmin, wmax]. This can
be easily addressed if we do the following: (1) change wub

i to wi − 1.5∆t−1 instead if wi − 1.5∆t−1 ∈ [wmin, wmax]; (2) if it is
still infeasible, set wub

i to be wmax if |wi − wmax| > |wi − wmin| and wmin otherwise. For simplicity of presentation, however,
we omit these boundary situations and assume wi + 1.5∆t−1 ≤ wmax throughout, which will not change the results anyway.
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Starting from t = T0 + 1, we fix the auxiliary score as follows

wub
i =

{
wi + 1.5ξT0 , if |w(0)

i − wi| > 1
2ξ∞,

w
(0)
i else,

(52)

where we recall that ξ∞ = c3ξmin and ξT0
= c10ξmin. This apparently satisfies∣∣∣w(t)

i − wi
∣∣∣ ≤ ∣∣wub

i − wi
∣∣ ≤ 1.5ξT0

for t = T0 + 1, due to the preceding analysis for t ≤ T0. Moreover, the number of indices that satisfy
|w(0)
i − wi| > 1

2ξ∞, denoted by k, obeys

k ·
(

1

2
ξ∞

)2

≤
∥∥∥w −w(0)

∥∥∥2

≤ δ2‖w‖2 ⇐⇒ k· ≤ 4δ2‖w‖2

ξ2
∞

,

which further gives∥∥wub −w
∥∥2 ≤

∥∥∥w(0) −w
∥∥∥2

+
∑

i: |w(0)
i −wi|>

1
2 ∆∞

(1.5ξT0)
2 ≤ δ2‖w‖2 + 2.25kξ2

T0

≤ δ2‖w‖2
(

1 +
9ξ2
T0

ξ2
∞

)
.

If we pick c10
c3

=
ξT0
ξ∞
≤
√

2, then the above inequality gives rise to∥∥wub −w
∥∥ ≤ √19δ‖w‖.

Apply Theorem 4 to deduce

∥∥wmle −w
∥∥
∞ . δ +

log n

npobs
ξT0 +

√
log n

npobsL
�

√
log n

npobsL
� 1

2
ξ∞,

as long as logn
pobsn

is small and c10, c3 are sufficiently large.

The main point of the above calculation is that: for any entry w(0)
i satisfying |w(0)

i − wi| < 1
2ξ∞, one

must have ∣∣∣w(0)
i − w

mle
i

∣∣∣ ≤ ∣∣∣w(0)
i − wi

∣∣∣+
∣∣∣w(mle)
i − wi

∣∣∣ < ξ∞ < ξt,

and hence it will never be replaced. As a result, the auxiliary score (52) remains valid for all iterations that
follow. Putting the above arguments together we obtain

∥∥∥w(t) −w
∥∥∥
∞
≤ 1

2
ξ∞ �

√
log n

npobsL
, t > T0.

This establishes the claim (42) for t > T0, and in turn finishes the proof of the theorem.

3 Minimax Lower Bound
This section establishes the minimax lower limit given in Theorem 2. To bound the minimax probability
of error, we proceed by constructing a finite set of hypotheses, followed by an analysis based on classical
Fano-type argument. For notational simplicity, each hypothesis is represented by a permutation σ over [n],
and we denote by σ(i) and σ ([K]) the index of the ith ranked item and the index set of all top-K items,
respectively.

10



We now single out a set of hypotheses and some prior to be imposed on them. Suppose that the values
of w are fixed up to permutation in such a way that

wσ(i) =

{
wK , 1 ≤ i ≤ K,
wK+1, K < i ≤ n,

where we abuse the notation wK , wK+1 to represent any two values satisfying

wK − wK+1

wmax
= ∆K > 0.

Below we suppose that the ranking scheme is informed of the values wK , wK+1, which only makes the
ranking task easier. In addition, we impose a uniform prior over a collectionM ofM := max {K,n−K}+1
hypotheses regarding the permutation: if K < n/2, then

P {σ ([K]) = S} =
1

M
, if S = {2, · · · ,K} ∪ {i} , (i = 1,K + 1, · · · , n); (53)

if K ≥ n/2, then

P {σ ([K]) = S} =
1

M
, if S = {1, · · · ,K + 1} \ {i} , (i = 1, · · · ,K + 1). (54)

In words, each alternative hypothesis is generated by swapping two indices of the hypothesis obeying
σ ([K]) = [K]. Denoting by Pe,M the average probability of error with respect to the prior we construct, one
can easily verify that the minimax probability of error is at least Pe,M .

This Bayesian probability of error will be bounded using classical Fano-type bounds. To accommodate
partial observation, we introduce an erased version of yi,j := (y

(1)
i,j , · · · , y

(L)
i,j ) such that

zi,j =

{
yi,j , with probability pobs,

erasure, else,

and set Z := {zi,j}1≤i≤j≤n. With a slight abuse of notation, we denote by σ and σ̂ the ground truth
permutation and the output of any ranking procedure, respectively. Making use of (53) and (54) gives

logM = H (σ) = I (σ; σ̂) +H (σ|σ̂)

(a)

≤ I(σ;Z) + 1 + Pe,M logM

(b)

≤ 1

M2

∑
σ1,σ2∈M

KL
(
PZ|σ=σ1

‖ PZ|σ=σ2

)
+ 1 + Pe,M logM

(c)
=

1

M2

∑
σ1,σ2∈M

∑
i6=j

KL
(
Pzi,j |σ=σ1

‖ Pzi,j |σ=σ2

)
+ 1 + Pe,M logM

=
pobs

M2

∑
σ1,σ2∈M

∑
i 6=j

KL
(
Pyi,j |σ=σ1

‖ Pyi,j |σ=σ2

)
+ 1 + Pe,M logM

(d)
=

pobsL

M2

∑
σ1,σ2∈M

∑
i 6=j

KL
(
P
y
(1)
i,j |σ=σ1

‖ P
y
(1)
i,j |σ=σ2

)
+ 1 + Pe,M logM

(e)

≤ 2w4
max

w4
min

npobsL∆2
K + 1 + Pe,M logM,

where H (X), I (X;Y ), and KL (P ‖ Q) denote the entropy, mutual information, and Kullback–Leibler (KL)
divergence, respectively. Here, (a) results from the data processing inequality and Fano’s inequality [4];
(b) arises from Lemma 2 (see below); (c) follows from the independence assumption of the zi,j ’s; (d) is a
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consequence of the fact that y(`)
i,j (1 ≤ l ≤ L) are i.i.d.; and (e) follows from Lemma 3 (see below). This

immediately yields

Pe,M ≥
logM − 2w4

max

w4
min

npobsL∆2
K − 1

logM
.

Consequently, one would have Pe ≥ Pe,M ≥ ε if

2w4
max

w4
min

npobsL∆2
K ≤ (1− ε) logM − 1.

Since |M| = M ≥ n
2 , the above condition is necessarily satisfied when

2w4
max

w4
min

npobsL∆2
K ≤ (1− ε) log n− 2 ⇐⇒ L ≤ w4

min

2w4
max

· (1− ε) log n− 2

npobs∆2
K

,

which finishes the proof.

Lemma 2. Under the prior (53) and (54), one has

I(σ; z) ≤ 1

M2

∑
σ1,σ2∈M

KL
(
PZ|σ=σ1

‖ PZ|σ=σ2

)
. (55)

Proof. It follows from the definition of mutual information that

I(σ; z) =
∑
σ1∈M

∑
z

P (σ = σ1,Z = z) log
P (Z = z | σ = σ1)

P (Z = z)

=
1

M

∑
σ1∈M

∑
z

P (Z = z | σ = σ1) log

{
P (Z = z | σ = σ1)

1
M

∑
σ2∈M P (Z = z | σ = σ2)

}

≤ 1

M

∑
σ1∈M

∑
z

P (Z = z | σ = σ1)

{
1

M

∑
σ2∈M

log
P (Z = z | σ = σ1)

P (Z = z | σ = σ2)

}

=
1

M2

∑
σ1,σ2∈M

KL
(
PZ|σ=σ1

‖ PZ|σ=σ2

)
,

where the inequality is due to Jensen’s inequality.

Lemma 3. If wK , wK+1 ∈ [wmin, wmax], then for any σ1, σ2 ∈M:

∑
i 6=j

KL
(
P
y
(1)
i,j |σ=σ1

‖ P
y
(1)
i,j |σ=σ2

)
≤ 2w4

max

w4
min

n∆2
K . (56)

Proof. To start with, for any two measures P ∼ Bernoulli (p) and Q ∼ Bernoulli (q), one has [5, Eqn. (7)]

KL (P ‖ Q) ≤ χ2 (P ‖ Q) =
(p− q)2

q
+

(p− q)2

1− q
=

(p− q)2

q (1− q)
. (57)

where χ2 (P ‖ Q) denotes the χ2 divergence.
Recall that given σ = σ1 (resp. σ = σ2), y

(1)
i,j is Bernoulli distributed with mean r1 :=

wσ1(i)

wσ1(i)+wσ1(j)
(resp.

r2 :=
wσ2(i)

wσ2(i)+wσ2(j)
). If we set δ = r1 − r2, then (57) yields

KL
(
P
y
(1)
i,j |σ=σ1

‖ P
y
(1)
i,j |σ=σ2

)
≤ δ2

r2 (1− r2)
≤ 4w2

max

w2
min

δ2,
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where the last inequality follows since

r2 (1− r2) =
wσ2(i)wσ2(j)(

wσ2(i) + wσ2(j)

)2 ≥ w2
min

4w2
max

.

By construction, conditional on any hypotheses σ1, σ2 ∈M, the resulting yi,j are different over at most
2n locations. For each of these O (n) locations, our construction ofM ensures that

|δ| = |r2 − r1| ≤
wK

wK + wK+1
− wK+1

wK + wK+1
=
wK − wK+1

wK + wK+1
≤ wmax

2wmin
∆K .

As a result, the total contribution is bounded above by∑
i 6=j

KL
(
P
y
(1)
i,j |σ=σ1

‖ P
y
(1)
i,j |σ=σ2

)
≤ 2n ·

(
max
i,j

δ2

)
4w2

max

w2
min

≤ 2w4
max

w4
min

n∆2
K .

A Bernstein Inequality
Our analysis relies on the Bernstein inequality. To simplify presentation, we state below a user-friendly
version of Bernstein inequality.

Lemma 4. Consider n independent random variables zl (1 ≤ l ≤ n), each satisfying |zl| ≤ B. Then there
exists a universal constant c0 > 0 such that for any a ≥ 2,∣∣∣∣∣

n∑
l=1

zl − E

[
n∑
l=1

zl

]∣∣∣∣∣ ≤
√√√√2a log n

n∑
l=1

E [z2
l ] +

2a

3
B log n (58)

with probability at least 1− 2
na .

This is an immediate consequence of the well-known Bernstein inequality

P

{∣∣∣∣∣
n∑
l=1

zl − E

[
n∑
l=1

zl

]∣∣∣∣∣ > t

}
≤ 2 exp

(
−

1
2 t

2∑n
l=1 E [z2

l ] + 1
3Bt

)
. (59)

References
[1] R. W. Yeung, Information theory and network coding. Springer, 2008. 2.1

[2] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized algorithms and probabilistic
analysis. Cambridge University Press, 2005. 2.1

[3] S. Negahban, S. Oh, and D. Shah, “Rank centrality: Ranking from pair-wise comparisons,” 2012.
[Online]. Available: http://arxiv.org/abs/1209.1688 2.2

[4] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012. 3

[5] T. van Erven and P. Harremoes, “Renyi divergence and Kullback-Leibler divergence,” IEEE Transactions
on Information Theory, vol. 60, no. 7, pp. 3797–3820, July 2014. 3

13

http://arxiv.org/abs/1209.1688

	Main Theorems
	Performance Guarantees of Spectral MLE
	Proof of Theorem 4
	Proof of Theorem 3

	Minimax Lower Bound 
	Bernstein Inequality

