
Compressing Neural Networks with the Hashing Trick

Wenlin Chen∗ WENLINCHEN@WUSTL.EDU
James T. Wilson∗ J.WILSON@WUSTL.EDU
Stephen Tyree∗† STYREE@NVIDIA.COM
Kilian Q. Weinberger∗ KILIAN@WUSTL.EDU
Yixin Chen∗ CHEN@CSE.WUSTL.EDU
∗ Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
† NVIDIA, Santa Clara, CA, USA

Abstract
As deep nets are increasingly used in applica-
tions suited for mobile devices, a fundamen-
tal dilemma becomes apparent: the trend in
deep learning is to grow models to absorb ever-
increasing data set sizes; however mobile devices
are designed with very little memory and cannot
store such large models. We present a novel net-
work architecture, HashedNets, that exploits in-
herent redundancy in neural networks to achieve
drastic reductions in model sizes. HashedNets
uses a low-cost hash function to randomly group
connection weights into hash buckets, and all
connections within the same hash bucket share
a single parameter value. These parameters are
tuned to adjust to the HashedNets weight sharing
architecture with standard backprop during train-
ing. Our hashing procedure introduces no ad-
ditional memory overhead, and we demonstrate
on several benchmark data sets that HashedNets
shrink the storage requirements of neural net-
works substantially while mostly preserving gen-
eralization performance.

1. Introduction
In the past decade deep neural networks have set new
performance standards in many high-impact applications.
These include object classification (Krizhevsky et al., 2012;
Sermanet et al., 2013), speech recognition (Hinton et al.,
2012), image caption generation (Vinyals et al., 2014;
Karpathy & Fei-Fei, 2014) and domain adaptation (Glo-
rot et al., 2011b). As data sets increase in size, so do
the number of parameters in these neural networks in or-

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

der to absorb the enormous amount of supervision (Coates
et al., 2013). Increasingly, these networks are trained on
industrial-sized clusters (Le, 2013) or high-performance
graphics processing units (GPUs) (Coates et al., 2013).

Simultaneously, there has been a second trend as applica-
tions of machine learning have shifted toward mobile and
embedded devices. As examples, modern smart phones are
increasingly operated through speech recognition (Schus-
ter, 2010), robots and self-driving cars perform object
recognition in real time (Montemerlo et al., 2008), and
medical devices collect and analyze patient data (Lee &
Verma, 2013). In contrast to GPUs or computing clus-
ters, these devices are designed for low power consumption
and long battery life. Most importantly, they typically have
small working memory. For example, even the top-of-the-
line iPhone 6 only features a mere 1GB of RAM.1

The disjunction between these two trends creates a
dilemma when state-of-the-art deep learning algorithms are
designed for deployment on mobile devices. While it is
possible to train deep nets offline on industrial-sized clus-
ters (server-side), the sheer size of the most effective mod-
els would exceed the available memory, making it pro-
hibitive to perform testing on-device. In speech recog-
nition, one common cure is to transmit processed voice
recordings to a computation center, where the voice recog-
nition is performed server-side (Chun & Maniatis, 2009).
This approach is problematic, as it only works when suf-
ficient bandwidth is available and incurs artificial delays
through network traffic (Kosner, 2012). One solution is to
train small models for the on-device classification; how-
ever, these tend to significantly impact accuracy (Chun &
Maniatis, 2009), leading to customer frustration.

This dilemma motivates neural network compression. Re-
cent work by Denil et al. (2013) demonstrates that there
is a surprisingly large amount of redundancy among the

1http://en.wikipedia.org/wiki/IPhone_6

http://en.wikipedia.org/wiki/IPhone_6

Compressing Neural Networks with the Hashing Trick

weights of neural networks. The authors show that a small
subset of the weights are sufficient to reconstruct the entire
network. They exploit this by training low-rank decompo-
sitions of the weight matrices. Ba & Caruana (2014) show
that deep neural networks can be successfully compressed
into “shallow” single-layer neural networks by training the
small network on the (log-) outputs of the fully trained deep
network (Bucilu et al., 2006). Courbariaux et al. (2014)
train neural networks with reduced bit precision, and, long
predating this work, LeCun et al. (1989) investigated drop-
ping unimportant weights in neural networks. In summary,
the accumulated evidence suggests that much of the infor-
mation stored within network weights may be redundant.

In this paper we propose HashedNets, a novel network
architecture to reduce and limit the memory overhead of
neural networks. Our approach is compellingly simple:
we use a hash function to group network connections into
hash buckets uniformly at random such that all connec-
tions grouped to the ith hash bucket share the same weight
value wi. Our parameter hashing is akin to prior work in
feature hashing (Weinberger et al., 2009; Shi et al., 2009;
Ganchev & Dredze, 2008) and is similarly fast and requires
no additional memory overhead. The backpropagation al-
gorithm (LeCun et al., 2012) can naturally tune the hash
bucket parameters and take into account the random weight
sharing within the neural network architecture.

We demonstrate on several real world deep learning bench-
mark data sets that HashedNets can drastically reduce the
model size of neural networks with little impact in predic-
tion accuracy. Under the same memory constraint, Hashed-
Nets have more adjustable free parameters than the low-
rank decomposition methods suggested by Denil et al.
(2013), leading to smaller drops in descriptive power.

Similarly, we also show that for a finite set of parameters
it is beneficial to “inflate” the network architecture by re-
using each parameter value multiple times. Best results are
achieved when networks are inflated by a factor 8–16×.
The “inflation” of neural networks with HashedNets im-
poses no restrictions on other network architecture design
choices, such as dropout regularization (Srivastava et al.,
2014), activation functions (Glorot et al., 2011a; LeCun
et al., 2012), or weight sparsity (Coates et al., 2011).

2. Feature Hashing
Learning under memory constraints has previously been
explored in the context of large-scale learning for sparse
data sets. Feature hashing (or the hashing trick) (Wein-
berger et al., 2009; Shi et al., 2009) is a technique to
map high-dimensional text documents directly into bag-of-
word (Salton & Buckley, 1988) vectors, which would oth-
erwise require use of memory consuming dictionaries for

storage of indices corresponding with specific input terms.

Formally, an input vector x ∈ Rd is mapped into a feature
space with a mapping function φ :Rd → Rk where k�d.
The mapping φ is based on two (approximately uniform)
hash functions h :N→ {1, . . . , k} and ξ :N→ {−1,+1}
and the kth dimension of the hashed input x is defined as
φk(x) =

∑
i:h(i)=k xiξ(i).

The hashing trick leads to large memory savings for two
reasons: it can operate directly on the input term strings
and avoids the use of a dictionary to translate words into
vectors; and the parameter vector of a learning model lives
within the much smaller dimensional Rk instead of Rd.
The dimensionality reduction comes at the cost of colli-
sions, where multiple words are mapped into the same
dimension. This problem is less severe for sparse data
sets and can be counteracted through multiple hashing (Shi
et al., 2009) or larger hash tables (Weinberger et al., 2009).

In addition to memory savings, the hashing trick has the ap-
pealing property of being sparsity preserving, fast to com-
pute and storage-free. The most important property of the
hashing trick is, arguably, its (approximate) preservation
of inner product operations. The second hash function,
ξ, guarantees that inner products are unbiased in expecta-
tion (Weinberger et al., 2009); that is,

E[φ(x)>φ(x′)]φ = x>x′. (1)

Finally, Weinberger et al. (2009) also show that the hash-
ing trick can be used to learn multiple classifiers within
the same hashed space. In particular, the authors use it
for multi-task learning and define multiple hash functions
φ1, . . . , φT , one for each task, that map inputs for their re-
spective tasks into one joint space. Let w1, . . . ,wT denote
the weight vectors of the respective learning tasks, then if
t′ 6= t a classifier for task t′ does not interfere with a hashed
input for task t; i.e. w>t φt′(x) ≈ 0.

3. Notation
Throughout this paper we type vectors in bold (x), scalars
in regular (C or b) and matrices in capital bold (X). Spe-
cific entries in vectors or matrices are scalars and follow the
corresponding convention, i.e. the ith dimension of vector
x is xi and the (i, j)th entry of matrix V is Vij .

Feed Forward Neural Networks. We define the forward
propagation of the `th layer in a neural networks as,

a`+1
i = f(z`+1

i), where z`+1
i =

n`∑
j=0

V `ija
`
j , (2)

where V` is the (virtual) weight matrix in the `th layer.
The vectors z`, a` ∈ Rn`

denote the activation units be-

Compressing Neural Networks with the Hashing Trick

fore and after transformation through the transition func-
tion f(·). Typical activation functions are rectifier linear
unit (ReLU) (Nair & Hinton, 2010), sigmoid or tanh (Le-
Cun et al., 2012).

4. HashedNets
In this section we present HashedNets, a novel variation of
neural networks with drastically reduced model sizes (and
memory demands). We first introduce our approach as a
method of random weight sharing across the network con-
nections and then describe how to facilitate it with the hash-
ing trick to avoid any additional memory overhead.

4.1. Random weight sharing

In a standard fully-connected neural network, there are
(n`+1)×n`+1 weighted connections between a pair of lay-
ers, each with a corresponding free parameter in the weight
matrix V`. We assume a finite memory budget per layer,
K` � (n` + 1)× n`+1, that cannot be exceeded. The ob-
vious solution is to fit the neural network within budget by
reducing the number of nodes n`, n`+1 in layers `, `+ 1 or
by reducing the bit precision of the weight matrices (Cour-
bariaux et al., 2014). However if K` is sufficiently small,
both approaches significantly reduce the ability of the neu-
ral network to generalize (see Section 6). Instead, we pro-
pose an alternative: we keep the size of V` untouched but
reduce its effective memory footprint through weight shar-
ing. We only allow exactly K` different weights to occur
within V`, which we store in a weight vector w` ∈ RK`

.
The weights within w` are shared across multiple randomly
chosen connections within V`. We refer to the resulting
matrix V` as virtual, as its size could be increased (i.e.
nodes are added to hidden layer) without increasing the ac-
tual number of parameters of the neural network.

Figure 1 shows a neural network with one hidden layer,
four input units and two output units. Connections are
randomly grouped into three categories per layer and their
weights are shown in the virtual weight matrices V1 and
V2. Connections belonging to the same color share the
same weight value, which are stored in w1 and w2, respec-
tively. Overall, the entire network is compressed by a fac-
tor 1/4, i.e. the 24 weights stored in the virtual matrices
V1 and V2 are reduced to only six real values in w1 and
w2. On data with four input dimensions and two output di-
mensions, a conventional neural network with six weights
would be restricted to a single (trivial) hidden unit.

4.2. Hashed Neural Nets (HashedNets)

A naı̈ve implementation of random weight sharing can be
trivially achieved by maintaining a secondary matrix con-
sisting of each connection’s group assignment. Unfortu-

2.5 -0.7 -0.7 1.3

1.3 1.3 2.5 2.5

2.5 -0.7 1.3

real weights

virtual weight matrix

3.2 1.1 -0.5

real weights

1.1 3.2 3.2 -0.5

3.2 1.1 3.2 3.2

-0.5 1.1 3.2 1.1

3.2 -0.5 1.1 -0.5

virtual weight matrix

input

output

hidden
layer

V1

V2

w1 w2

h1 h2

a1
1

a1
2

a1
3

a1
4 a2

4

a2
3

a2
2

a2
1

a3
1

a3
2

Figure 1. An illustration of a neural network with random weight
sharing under compression factor 1

4
. The 16+9 = 24 virtual

weights are compressed into 6 real weights. The colors represent
matrix elements that share the same weight value.

nately, this explicit representation places an undesirable
limit on potential memory savings.

We propose to implement the random weight sharing as-
signments using the hashing trick. In this way, the shared
weight of each connection is determined by a hash function
that requires no storage cost with the model. Specifically,
we assign to V `ij an element of w` indexed by a hash func-
tion h`(i, j), as follows:

V `ij = w`h`(i,j), (3)

where the (approximately uniform) hash function h`(·, ·)
maps a key (i, j) to a natural number within {1, . . . ,K`}.
In the example of Figure 1, h1(2, 1) = 1 and therefore
V 1
2,1=w

1=3.2. For our experiments we use the open-
source implementation xxHash.2

4.3. Feature hashing versus weight sharing

This section focuses on a single layer throughout and to
simplify notation we will drop the super-scripts `. We will
denote the input activation as a = a` ∈Rm of dimension-
ality m=n`. We denote the output as z= z`+1 ∈Rn with
dimensionality n=n`+1.

To facilitate weight sharing within a feed forward neural
network, we can simply substitute Eq. (3) into Eq. (2):

zi =

m∑
j=1

Vijaj =

m∑
j=1

wh(i,j)aj . (4)

Alternatively and more in line with previous work (Wein-
berger et al., 2009), we may interpret HashedNets in terms
of feature hashing. To compute zi, we first hash the acti-
vations from the previous layer, a, with the hash mapping

2https://code.google.com/p/xxhash/

https://code.google.com/p/xxhash/

Compressing Neural Networks with the Hashing Trick

function φi(·) :Rm → RK . We then compute the inner
product between the hashed representation φi(a) and the
parameter vector w,

zi = w>φi(a). (5)

Both w and φi(a) areK-dimensional, whereK is the num-
ber of hash buckets in this layer. The hash mapping func-
tion φi is defined as follows. The kth element of φi(a), i.e.
[φi(a)]k, is the sum of variables hashed into bucket k:

[φi(a)]k =
∑

j:h(i,j)=k

aj . (6)

Starting from Eq. (5), we show that the two interpretations
(Eq. (4) and (5)) are equivalent:

zi =

K∑
k=1

wk [φi(a)]k =

K∑
k=1

wk
∑

j:h(i,j)=k

aj

=

m∑
j=1

K∑
k=1

wkajδ[h(i,j)=k]

=

m∑
j=1

wh(i,j)aj .

The final term is equivalent to Eq. (4).

Sign factor. With this equivalence between random
weight sharing and feature hashing on input activations,
HashedNets inherit several beneficial properties of the fea-
ture hashing. Weinberger et al. (2009) introduce an ad-
ditional sign factor ξ(i, j) to remove the bias of hashed
inner-products due to collisions. For the same reasons we
multiply (3) by the sign factor ξ(i, j) for parameterizing
V (Weinberger et al., 2009):

Vij = wh(i,j)ξ(i, j), (7)

where ξ(i, j) : N → ±1 is a second hash function inde-
pendent of h. Incorporating ξ(i, j) to feature hashing and
weight sharing does not change the equivalence between
them as the proof in the previous section still holds with
the sign term (details omitted for improved readability).

Sparsity. As pointed out in Shi et al. (2009) and Wein-
berger et al. (2009), feature hashing is most effective on
sparse feature vectors since the number of hash collisions is
minimized. We can encourage this effect in the hidden lay-
ers with sparsity inducing transition functions, e.g. rectified
linear units (ReLU) (Glorot et al., 2011a) or through spe-
cialized regularization (Chen et al., 2014a; Boureau et al.,
2008). In our implementation, we use ReLU transition
functions throughout, as they have also been shown to often
result in superior generalization performance in addition to
their sparsity inducing properties (Glorot et al., 2011a).

Alternative neural network architectures. While this
work focuses on general, fully connected feed forward neu-
ral networks, the technique of HashedNets could naturally
be extended to other kinds of neural networks, such as re-
current neural networks (Pineda, 1987) or others (Bishop,
1995). It can also be used in conjunction with other ap-
proaches for neural network compression. All weights can
be stored with low bit precision (Courbariaux et al., 2014;
Gupta et al., 2015), edges could be removed (Cireşan et al.,
2011) and HashedNets can be trained on the outputs of
larger networks (Ba & Caruana, 2014) — yielding further
reductions in memory requirements.

4.4. Training HashedNets

Training HashedNets is equivalent to training a standard
neural network with equality constraints for weight shar-
ing. Here, we show how to (a) compute the output of a
hash layer during the feed-forward phase, (b) propagate
gradients from the output layer back to input layer, and (c)
compute the gradient over the shared weights w` during the
back propagation phase. We use dedicated hash functions
between layers ` and `+ 1, and denote them as h` and ξ`.

Output. Adding the hash functions h`(·, ·) and ξ`(·) and
the weight vectors w` into the feed forward update (2) re-
sults in the following forward propagation rule:

a`+1
i = f

 n`∑
j

w`h`(i,j)ξ
`(i, j)a`j

 . (8)

Error term. Let L denote the loss function for training
the neural network, e.g. cross entropy or the quadratic
loss (Bishop, 1995). Further, let δ`j denote the gradient of
L over activation j in layer `, also known as the error term.
Without shared weights, the error term can be expressed as
δ`j =

(∑n`+1

i=1 V `ijδ
`+1
i

)
f ′(z`j), where f ′(·) represents the

first derivative of the transition function f(·). If we substi-
tute Eq. (7) into the error term we obtain:

δ`j =

n`+1∑
i=1

ξ`(i, j)w`h`(i,j)δ
`+1
i

 f ′(z`j). (9)

Gradient over parameters. To compute the gradient of
L with respect to a weight w`k we need the two gradients,

∂L
∂V `ij

= a`jδ
`+1
i and

∂V `ij
∂w`k

= ξ`(i, j)δh`(i,j)=k. (10)

Here, the first gradient is the standard gradient of a (virtual)
weight with respect to an activation unit and the second
gradient ties the virtual weight matrix to the actual weights

Compressing Neural Networks with the Hashing Trick

through the hashed map. Combining these two, we obtain

∂L
∂w`k

=
∑
i,j

∂L
∂V `ij

∂V `ij
∂w`k

(11)

=

n`+1∑
i=1

∑
j

a`jδ
`+1
i ξ`(i, j)δh`(i,j)=k. (12)

5. Related Work
Deep neural networks have achieved great progress on
a wide variety of real-world applications, including im-
age classification (Krizhevsky et al., 2012; Donahue et al.,
2013; Sermanet et al., 2013; Zeiler & Fergus, 2014), ob-
ject detection (Girshick et al., 2014; Vinyals et al., 2014),
image retrieval (Razavian et al., 2014), speech recognition
(Hinton et al., 2012; Graves et al., 2013; Mohamed et al.,
2011), and text representation (Mikolov et al., 2013).

There have been several previous attempts to reduce the
complexity of neural networks under a variety of contexts.
Arguably the most popular method is the widely used con-
volutional neural network (Simard et al., 2003). In the con-
volutional layers, the same filter is applied to every recep-
tive field, both reducing model size and improving gener-
alization performance. The incorporation of pooling layers
(Zeiler & Fergus, 2013) can reduce the number of connec-
tions between layers in domains exhibiting locality among
input features, such as images. Autoencoders (Glorot et al.,
2011b) share the notion of tied weights by using the same
weights for the encoder and decoder (up to transpose).

Other methods have been proposed explicitly to reduce the
number of free parameters in neural networks, but not nec-
essarily for reducing memory overhead. Nowlan & Hin-
ton (1992) introduce soft weight sharing for regulariza-
tion in which the distribution of weight values is modeled
as a Gaussian mixture. The weights are clustered such
that weights in the same group have similar values. Since
weight values are unknown before training, weights are
clustered during training. This approach is fundamentally
different from HashedNets since it requires auxiliary pa-
rameters to record the group membership for every weight.

Instead of sharing weights, LeCun et al. (1989) intro-
duce “optimal brain damage” to directly drop unimpor-
tant weights. This approach requires auxiliary parameters
for storing the sparse weights and needs retraining time to
fine-tune the resulting architecture. Cireşan et al. (2011)
demonstrate in their experiments that randomly remov-
ing connections leads to superior empirical performance,
which shares the same spirit of HashedNets.

Courbariaux et al. (2014) and Gupta et al. (2015) learn
networks with reduced numerical precision for storing
model parameters (e.g. 16-bit fixed-point representation

(Gupta et al., 2015) for a compression factor of 1
4 over

double-precision floating point). Experiments indicate lit-
tle reduction in accuracy compared with models trained
with double-precision floating point representation. These
methods can be readily incorporated with HashedNets, po-
tentially yielding further reduction in model storage size.

A recent study by Denil et al. (2013) demonstrates sig-
nificant redundancy in neural network parameters by di-
rectly learning a low-rank decomposition of the weight ma-
trix within each layer. They demonstrate that networks
composed of weights recovered from the learned decom-
positions are only slightly less accurate than networks
with all weights as free parameters, indicating heavy over-
parametrization in full weight matrices. A follow-up work
by Denton et al. (2014) uses a similar technique to speed up
test-time evaluation of convolutional neural networks. The
focus of this line of work is not on reducing storage and
memory overhead, but evaluation speed during test time.
HashedNets is complementary to this research, and the two
approaches could be used in combination.

Following the line of model compression, Bucilu et al.
(2006), Hinton et al. (2014) and Ba & Caruana (2014) re-
cently introduce approaches to learn a “distilled” model,
training a more compact neural network to reproduce the
output of a larger network. Specifically, Hinton et al.
(2014) and Ba & Caruana (2014) train a large network on
the original training labels, then learn a much smaller “dis-
tilled” model on a weighted combination of the original la-
bels and the (softened) softmax output of the larger model.
The authors show that the distilled model has better gen-
eralization ability than a model trained on just the labels.
In our experimental results, we show that our approach is
complementary by learning HashedNets with soft targets.
Rippel et al. (2014) propose a novel dropout method, nested
dropout, to give an order of importance for hidden neurons.
Hypothetically, less important hidden neurons could be re-
moved after training, a method orthogonal to HashedNets.

Ganchev & Dredze (2008) are among the first to recognize
the need to reduce the size of natural language process-
ing models to accommodate mobile platform with limited
memory and computing power. They propose random fea-
ture mixing to group features at random based on a hash
function, which dramatically reduces both the number of
features and the number of parameters. With the help of
feature hashing (Weinberger et al., 2009), Vowpal Wabbit,
a large-scale learning system, is able to scale to terafeature
datasets (Agarwal et al., 2014).

6. Experimental Results
We conduct extensive experiments to evaluate HashedNets
on eight benchmark datasets.

Compressing Neural Networks with the Hashing Trick

1/64 1/32 1/16 1/8 1/4 1/2 1
0

2

4

6

8

10
Dataset: MNIST, Layers=3, Hidden Units=1000

 Compression Factor

T
e

s
t

E
rr

o
r

(i
n

 %
)

Low−Rank Decomposition (LRD)
Random Edge Removal (RER)
Neural Network, Equiv. Size (NN)

Dark Knowledge (DK)
HashNet
HashNetDK

1/64 1/32 1/16 1/8 1/4 1/2 1
0

10

20

30

40
Dataset: ROT, Layers=3, Hidden Units=1000

 Compression Factor

T
e

s
t

E
rr

o
r

(i
n

 %
)

Figure 2. Test error rates under varying compression factors with 3-layer networks on MNIST (left) and ROT (right).

1/64 1/32 1/16 1/8 1/4 1/2 1
0

1

2

3

4
Dataset: MNIST, Layers=5, Hidden Units=1000

 Compression Factor

T
e

s
t

E
rr

o
r

(i
n

 %
)

Low−Rank Decomposition (LRD)
Random Edge Removal (RER)
Neural Network, Equiv. Size (NN)

Dark Knowledge (DK)
HashNet
HashNetDK

1/64 1/32 1/16 1/8 1/4 1/2 1
0

10

20

30

40
Dataset: ROT, Layers=5, Hidden Units=1000

 Compression Factor

T
e

s
t

E
rr

o
r

(i
n

 %
)

Figure 3. Test error rates under varying compression factors with 5-layer networks on MNIST (left) and ROT (right).

Datasets. Datasets consist of the original MNIST hand-
written digit dataset, along with four challenging variants
(Larochelle et al., 2007). Each variation amends the orig-
inal through digit rotation (ROT), background superimpo-
sition (BG-RAND and BG-IMG), or a combination thereof
(BG-IMG-ROT). In addition, we include two binary im-
age classification datasets: CONVEX and RECT (Larochelle
et al., 2007). All data sets have pre-specified training and
testing splits. Original MNIST has splits of sizes n=60000
(training) and n = 10000 (testing). CONVEX and RECT
have 8000 and 1200 training images, respectively. And
they both have 50000 testing images. Each MNIST varia-
tion set has n=12000 (training) and n=50000 (testing).

Baselines and method. We compare HashedNets with
several existing techniques for size-constrained, feed-
forward neural networks. Random Edge Removal (RER)
(Cireşan et al., 2011) reduces the total number of model
parameters by randomly removing weights prior to train-
ing. Low-Rank Decomposition (LRD) (Denil et al., 2013)
decomposes the weight matrix into two low-rank matrices.
One of these component matrices is fixed while the other
is learned. Elements of the fixed matrix are generated ac-
cording to a zero-mean Gaussian distribution with standard
deviation 1√

n`
with n` inputs to the layer.

Each model is compared against a standard neural network
with an equivalent number of stored parameters, Neural

Network (Equivalent-Size) (NN). For example, for a net-
work with a single hidden layer of 1000 units and a stor-
age compression factor of 1

10 , we adopt a size-equivalent
baseline with a single hidden layer of 100 units. For deeper
networks, all hidden layers are shrunk at the same rate until
the number of stored parameters equals the target size. In a
similar manner, we examine Dark Knowledge (DK) (Hin-
ton et al., 2014; Ba & Caruana, 2014) by training a distilled
model to optimize the cross entropy with both the original
labels and soft targets generated by the corresponding full
neural network (compression factor 1). The distilled model
structure is chosen to be same as the “equivalent-sized” net-
work (NN) at the corresponding compression rate.

Finally, we examine our method under two settings:
learning hashed weights with the original training labels
(HashNet) and with combined labels and DK soft targets
(HashNetDK). In all cases, memory and storage consump-
tion is defined strictly in terms of free parameters. As such,
we count the fixed low rank matrix in the Low-Rank De-
composition method as taking no memory or storage (pro-
viding this baseline a slight advantage).

Experimental setting. HashedNets and all accompany-
ing baselines were implemented using Torch7 (Collobert
et al., 2011) and run on NVIDIA GTX TITAN graphics
cards with 2688 cores and 6GB of global memory. We use
32 bit precision throughout but note that the compression

Compressing Neural Networks with the Hashing Trick

3 Layers 5 Layers
RER LRD NN DK HashNet HashNetDK RER LRD NN DK HashNet HashNetDK

MNIST 2.19 1.89 1.69 1.71 1.45 1.43 1.24 1.77 1.35 1.26 1.22 1.29
BASIC 3.29 3.73 3.19 3.18 2.91 2.89 2.87 3.54 2.73 2.87 2.62 2.85

ROT 14.42 13.41 12.65 11.93 11.17 10.34 9.89 11.98 9.61 9.46 8.87 8.61
BG-RAND 18.16 45.12 13.00 12.41 13.38 12.27 11.31 45.02 11.19 10.91 10.76 10.96

BG-IMG 24.18 38.83 20.93 19.31 22.57 18.92 19.81 35.06 19.33 18.94 19.07 18.49
BG-IMG-ROT 59.29 67.00 52.90 53.01 51.96 50.05 45.67 64.28 48.47 48.22 46.67 46.78

CONVEX 27.32 32.73 23.91 24.74 27.06 22.93 27.13 35.79 24.58 23.86 29.58 25.99
RECT 3.69 4.56 4.24 3.07 3.23 2.96 3.92 7.09 3.43 2.37 3.92 2.36

Table 1. Test error rates (in %) with a compression factor of 1
8

across all data sets. Best results are printed in blue.

3 Layers 5 Layers
RER LRD NN DK HashNet HashNetDK RER LRD NN DK HashNet HashNetDK

MNIST 15.03 28.99 6.28 6.32 2.79 2.65 3.20 28.11 2.69 2.16 1.99 1.92
BASIC 13.95 26.95 7.67 8.44 4.17 3.79 5.31 27.21 4.55 4.07 3.49 3.19

ROT 49.20 52.18 35.60 35.94 18.04 17.62 25.87 52.03 16.16 15.30 12.38 11.67
BG-RAND 44.90 76.21 43.04 53.05 21.50 20.32 90.28 76.21 16.60 14.57 16.37 13.76

BG-IMG 44.34 71.27 32.64 41.75 26.41 26.17 55.76 70.85 22.77 23.59 22.22 20.01
BG-IMG-ROT 73.17 80.63 79.03 77.40 59.20 58.25 88.88 80.93 53.18 53.19 51.93 54.51

CONVEX 37.22 39.93 34.37 31.85 31.77 30.43 50.00 39.65 29.76 26.95 29.70 32.04
RECT 18.23 23.67 5.68 5.78 3.67 3.37 50.03 23.95 4.28 3.10 5.67 2.64

Table 2. Test error rates (in %) with a compression factor of 1
64

across all data sets. Best results are printed in blue.

rates of all methods may be improved with lower preci-
sion (Courbariaux et al., 2014; Gupta et al., 2015). We
verify all implementations by numerical gradient checking.
Models are trained via stochastic gradient descent (mini-
batch size of 50) with dropout and momentum. ReLU is
adopted as the activation function for all models. Hyper-
parameters are selected for all algorithms with Bayesian
optimization (Snoek et al., 2012) and hand tuning on 20%
validation splits of the training sets. We use the open
source Bayesian Optimization MATLAB implementation
“bayesopt.m” from Gardner et al. (2014).3

Results with varying compression. Figures 2 and 3
show the performance of all methods on MNIST and the
ROT variant with different compression factors on 3-layer
(1 hidden layer) and 5-layer (3 hidden layers) neural net-
works, respectively. Each hidden layer contains 1000 hid-
den units. The x-axis in each figure denotes the fractional
compression factor. For HashedNets and the low rank de-
composition and random edge removal compression base-
lines, this means we fix the number of hidden units (n`) and
vary the storage budget (K`) for the weights (w`).

We make several observations: The accuracy of HashNet
and HashNetDK outperforms all other baseline methods, es-
pecially in the most interesting case when the compression
factor is small (i.e. very small models). Both compres-
sion baseline algorithms, low rank decomposition and ran-
dom edge removal, tend to not outperform a standard neural

3http://tinyurl.com/bayesopt

network with fewer hidden nodes (black line), trained with
dropout. For smaller compression factors, random edge re-
moval likely suffers due to a significant number of nodes
being entirely disconnected from neighboring layers. The
size-matched NN is consistently the best performing base-
line, however its test error is significantly higher than that
of HashNet especially at small compression rates. The use
of Dark Knowledge training improves the performance of
HashedNets and the standard neural network. Of all meth-
ods, only HashNet and HashNetDK maintain performance
for small compression factors.

For completeness, we show the performance of all meth-
ods on all eight datasets in Table 1 for compression fac-
tor 1

8 and Table 2 for compression factor 1
64 . HashNet and

HashNetDK outperform other baselines in most cases, espe-
cially when the compression factor is very small (Table 2).
With a compression factor of 1

64 on average only 0.5 bits
of information are stored per (virtual) parameter. Also note
that non-neural network classifiers (Xu et al., 2015; Chen
et al., 2014b) with the same model size cannot compete
with this result either.

Results with fixed storage. We also experiment with the
setting where the model size is fixed and the virtual network
architecture is “inflated”. Essentially we are fixing K` (the
number of “real” weights in w`), and vary the number of
hidden nodes (n`). An expansion factor of 1 denotes the
case where every virtual weight has a corresponding “real”
weight, (n` + 1)n`+1 =K`. Figure 4 shows the test error
rate under various expansion rates of a network with one

https://bitbucket.org/mlcircus/bayesopt.m
http://tinyurl.com/bayesopt

Compressing Neural Networks with the Hashing Trick

1 2 4 8 16 32 64
1

2

3

4

T
e

s
t

E
rr

o
r

(i
n

 %
)

Expansion Factor

Dataset: MNIST, Layers=3, Hidden Units=50

Neural Network, Equiv. Size (NN)

Low−Rank Decomposition (LRD)

Random Edge Removal (RER)

HashNet

1 2 4 8 16 32 64
1

2

3

4

T
e

s
t

E
rr

o
r

(i
n

 %
)

Expansion Factor

Dataset: MNIST, Layers=5, Hidden Units=50

Figure 4. Test error rates with fixed storage but varying expansion factors on MNIST with 3 layers (left) and 5 layers (right).

hidden layer (left) and three hidden layers (right). In both
scenarios we fix the number of real weights to the size of
a standard fully-connected neural network with 50 hidden
units in each hidden layer whose test error is shown by the
black dashed line.

With no expansion (at expansion rate 1), different compres-
sion methods perform differently. At this point edge re-
moval is identical to a standard neural network and matches
its results. If no expansion is performed, the HashNet per-
formance suffers from collisions at no benefit. Similarly
the low-rank method still randomly projects each layer to a
random feature space with same dimensionality.

For expansion rates greater 1, all methods improve over
the fixed-sized neural network. There is a general trend
that more expansion decreases the test error until a “sweet-
spot” after which additional expansion tends to hurt. The
test error of the HashNet neural network decreases sub-
stantially through the introduction of more “virtual” hidden
nodes, despite that no additional parameters are added. In
the case of the 5-layer neural network (right) this trend is
maintained to an expansion factor of 16×. One could hy-
pothetically increase n` arbitrarily for HashNet, however,
in the limit, too many hash collisions would result in in-
creasingly similar gradient updates for all weights in w.

The benefit from expanding a network cannot continue for-
ever. In the random edge removal the network will become
very sparsely connected; the low-rank decomposition ap-
proach will eventually lead to a decomposition into rank-
1 matrices. HashNet also respects this trend, but is much
less sensitive when the expansion goes up. Best results are
achieved when networks are inflated by a factor 8−16×.

7. Conclusion
Prior work shows that weights learned in neural networks
can be highly redundant (Denil et al., 2013). HashedNets
exploit this property to create neural networks with “vir-
tual” connections that seemingly exceed the storage limits
of the trained model. This can have surprising effects. Fig-

ure 4 in Section 6 shows the test error of neural networks
can drop nearly 50%, from 3% to 1.61%, through expand-
ing the number of weights “virtually” by a factor 8×. Al-
though the collisions (or weight-sharing) might serve as
a form of regularization, we can probably safely ignore
this effect as both networks (with and without expansion)
were also regularized with dropout (Srivastava et al., 2014)
and the hyper-parameters were carefully fine-tuned through
Bayesian optimization.

So why should additional virtual layers help? One answer
is that they probably truly increase the expressiveness of the
neural network. As an example, imagine we are provided
with a neural network with 100 hidden nodes. The internal
weight matrix has 10000 weights. If we add another set
of m hidden nodes, this increases the expressiveness of the
network. If we require all weights of connections to these
m additional nodes to be “re-used” from the set of exist-
ing weights, it is not a strong restriction given the large
number of weights in existence. In addition, the backprop
algorithm can adjust the shared weights carefully to have
useful values for all their occurrences.

As future work we plan to further investigate model com-
pression for neural networks. One particular direction of
interest is to optimize HashedNets for GPUs. GPUs are
very fast (through parallel processing) but usually feature
small on-board memory. We plan to investigate how to use
HashedNets to fit larger networks onto the finite memory
of GPUs. A specific challenge in this scenario is to avoid
non-coalesced memory accesses due to the pseudo-random
hash functions—a sensitive issue for GPU architectures.

Acknowledgements. WC and YC are supported by NSF
grants CCF-1215302, IIS-1343896, DBI-1356669, CNS-
1320921, and a Microsoft Research New Faculty Fellow-
ship. KQW is supported by NSF grants IIA-1355406, IIS-
1149882, EFRI-1137211. The authors thank Wenlin Wang
for many helpful discussions.

Compressing Neural Networks with the Hashing Trick

References
Agarwal, Alekh, Chapelle, Olivier, Dudı́k, Miroslav, and

Langford, John. A reliable effective terascale linear
learning system. The Journal of Machine Learning Re-
search, 15(1):1111–1133, 2014.

Ba, Jimmy and Caruana, Rich. Do deep nets really need to
be deep? In NIPS, pp. 2654–2662, 2014.

Bishop, Christopher M. Neural Networks for Pattern
Recognition. Oxford University Press, Inc., 1995.

Boureau, Y-lan, Cun, Yann L, et al. Sparse feature learning
for deep belief networks. In NIPS, pp. 1185–1192, 2008.

Bucilu, Cristian, Caruana, Rich, and Niculescu-Mizil,
Alexandru. Model compression. In KDD, 2006.

Chen, Minmin, Weinberger, Kilian Q., Sha, Fei, and Ben-
gio, Yoshua. Marginalized denoising auto-encoders for
nonlinear representations. In ICML, pp. 1476–1484,
2014a.

Chen, Wenlin, Chen, Yixin, and Weinberger, Kilian Q. Fast
flux discriminant for large-scale sparse nonlinear classi-
fication. In KDD, pp. 621–630, 2014b.

Chun, Byung-Gon and Maniatis, Petros. Augmented
smartphone applications through clone cloud execution.
In HotOS, 2009.

Cireşan, Dan C, Meier, Ueli, Masci, Jonathan, Gam-
bardella, Luca M, and Schmidhuber, Jürgen. High-
performance neural networks for visual object classifi-
cation. arXiv preprint arXiv:1102.0183, 2011.

Coates, Adam, Ng, Andrew Y, and Lee, Honglak. An
analysis of single-layer networks in unsupervised feature
learning. In AISTATS, 2011.

Coates, Adam, Huval, Brody, Wang, Tao, Wu, David,
Catanzaro, Bryan, and Andrew, Ng. Deep learning with
cots hpc systems. In ICML, pp. 1337–1345, 2013.

Collobert, Ronan, Kavukcuoglu, Koray, and Farabet,
Clément. Torch7: A matlab-like environment for ma-
chine learning. In BigLearn, NIPS Workshop, 2011.

Courbariaux, M., Bengio, Y., and David, J.-P. Low
precision storage for deep learning. arXiv preprint
arXiv:1412.7024, 2014.

Denil, Misha, Shakibi, Babak, Dinh, Laurent, de Freitas,
Nando, et al. Predicting parameters in deep learning. In
NIPS, 2013.

Denton, Emily, Zaremba, Wojciech, Bruna, Joan, LeCun,
Yann, and Fergus, Rob. Exploiting linear structure
within convolutional networks for efficient evaluation.
arXiv preprint arXiv:1404.0736, 2014.

Donahue, Jeff, Jia, Yangqing, Vinyals, Oriol, Hoffman,
Judy, Zhang, Ning, Tzeng, Eric, and Darrell, Trevor. De-
caf: A deep convolutional activation feature for generic
visual recognition. arXiv preprint arXiv:1310.1531,
2013.

Ganchev, Kuzman and Dredze, Mark. Small statistical
models by random feature mixing. In Workshop on Mo-
bile NLP at ACL, 2008.

Gardner, Jacob, Kusner, Matt, Weinberger, Kilian, Cun-
ningham, John, et al. Bayesian optimization with in-
equality constraints. In ICML, 2014.

Girshick, Ross, Donahue, Jeff, Darrell, Trevor, and Malik,
Jitendra. Rich feature hierarchies for accurate object de-
tection and semantic segmentation. In CVPR, 2014.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua.
Deep sparse rectifier networks. In AISTATS, 2011a.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Do-
main adaptation for large-scale sentiment classification:
A deep learning approach. In ICML, pp. 513–520,
2011b.

Graves, Alex, Mohamed, A-R, and Hinton, Geoffrey.
Speech recognition with deep recurrent neural networks.
In ICASSP, 2013.

Gupta, Suyog, Agrawal, Ankur, Gopalakrishnan, Kailash,
and Narayanan, Pritish. Deep learning with limited nu-
merical precision. arXiv preprint arXiv:1502.02551,
2015.

Hinton, Geoffrey, Deng, Li, Yu, Dong, Dahl, George E,
Mohamed, Abdel-rahman, Jaitly, Navdeep, Senior, An-
drew, Vanhoucke, Vincent, Nguyen, Patrick, Sainath,
Tara N, et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four
research groups. Signal Processing Magazine, IEEE, 29
(6):82–97, 2012.

Hinton, Geoffrey, Vinyals, Oriol, and Dean, Jeff. Distill-
ing the knowledge in a neural network. NIPS workshop,
2014.

Karpathy, Andrej and Fei-Fei, Li. Deep visual-semantic
alignments for generating image descriptions. arXiv
preprint arXiv:1412.2306, 2014.

Kosner, A.W. Client vs. server architecture: Why
google voice search is also much faster than siri @ON-
LINE, October 2012. URL http://tinyurl.com/
c2d2otr.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In NIPS, 2012.

http://tinyurl.com/c2d2otr
http://tinyurl.com/c2d2otr

Compressing Neural Networks with the Hashing Trick

Larochelle, Hugo, Erhan, Dumitru, Courville, Aaron C,
Bergstra, James, and Bengio, Yoshua. An empirical eval-
uation of deep architectures on problems with many fac-
tors of variation. In ICML, pp. 473–480, 2007.

Le, Quoc V. Building high-level features using large
scale unsupervised learning. In ICASSP, pp. 8595–8598.
IEEE, 2013.

LeCun, Yann, Denker, John S, Solla, Sara A, Howard,
Richard E, and Jackel, Lawrence D. Optimal brain dam-
age. In NIPS, 1989.

LeCun, Yann A, Bottou, Léon, Orr, Genevieve B, and
Müller, Klaus-Robert. Efficient backprop. In Neural net-
works: Tricks of the trade, pp. 9–48. Springer, 2012.

Lee, Kyong Ho and Verma, Naveen. A low-power proces-
sor with configurable embedded machine-learning accel-
erators for high-order and adaptive analysis of medical-
sensor signals. Solid-State Circuits, IEEE Journal of, 48
(7):1625–1637, 2013.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado,
Greg S, and Dean, Jeff. Distributed representations of
words and phrases and their compositionality. In NIPS,
2013.

Mohamed, Abdel-rahman, Sainath, Tara N, Dahl, George,
Ramabhadran, Bhuvana, Hinton, Geoffrey E, and
Picheny, Michael A. Deep belief networks using dis-
criminative features for phone recognition. In ICASSP,
2011.

Montemerlo, Michael, Becker, Jan, Bhat, Suhrid,
Dahlkamp, Hendrik, Dolgov, Dmitri, Ettinger, Scott,
Haehnel, Dirk, Hilden, Tim, Hoffmann, Gabe, Huhnke,
Burkhard, et al. Junior: The stanford entry in the ur-
ban challenge. Journal of field Robotics, 25(9):569–597,
2008.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units
improve restricted boltzmann machines. In ICML, pp.
807–814, 2010.

Nowlan, Steven J and Hinton, Geoffrey E. Simplifying
neural networks by soft weight-sharing. Neural compu-
tation, 4(4):473–493, 1992.

Pineda, Fernando J. Generalization of back-propagation to
recurrent neural networks. Physical review letters, 59
(19):2229, 1987.

Razavian, Ali Sharif, Azizpour, Hossein, Sullivan,
Josephine, and Carlsson, Stefan. Cnn features off-the-
shelf: an astounding baseline for recognition. In CVPR
Workshop, 2014.

Rippel, Oren, Gelbart, Michael A, and Adams, Ryan P.
Learning ordered representations with nested dropout.
arXiv preprint arXiv:1402.0915, 2014.

Salton, Gerard and Buckley, Christopher. Term-weighting
approaches in automatic text retrieval. Information pro-
cessing & management, 24(5):513–523, 1988.

Schuster, Mike. Speech recognition for mobile devices at
google. In PRICAI 2010: Trends in Artificial Intelli-
gence, pp. 8–10. Springer, 2010.

Sermanet, Pierre, Eigen, David, Zhang, Xiang, Mathieu,
Michaël, Fergus, Rob, and LeCun, Yann. Overfeat: Inte-
grated recognition, localization and detection using con-
volutional networks. arXiv preprint arXiv:1312.6229,
2013.

Shi, Qinfeng, Petterson, James, Dror, Gideon, Langford,
John, Smola, Alex, and Vishwanathan, S.V.N. Hash ker-
nels for structured data. Journal of Machine Learning
Research, 10:2615–2637, December 2009.

Simard, Patrice Y, Steinkraus, Dave, and Platt, John C. Best
practices for convolutional neural networks applied to vi-
sual document analysis. In ICDAR, volume 2, pp. 958–
958. IEEE Computer Society, 2003.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P.
Practical bayesian optimization of machine learning al-
gorithms. In NIPS, 2012.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
A simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Vinyals, Oriol, Toshev, Alexander, Bengio, Samy, and Er-
han, Dumitru. Show and tell: A neural image caption
generator. arXiv preprint arXiv:1411.4555, 2014.

Weinberger, Kilian, Dasgupta, Anirban, Langford, John,
Smola, Alex, and Attenberg, Josh. Feature hashing for
large scale multitask learning. In ICML, 2009.

Xu, Zhixiang, Gardner, Jacob R, Tyree, Stephen, and Wein-
berger, Kilian Q. Compressed support vector machines.
arXiv preprint arXiv:1501.06478, 2015.

Zeiler, Matthew D and Fergus, Rob. Stochastic pooling
for regularization of deep convolutional neural networks.
arXiv preprint arXiv:1301.3557, 2013.

Zeiler, Matthew D and Fergus, Rob. Visualizing and un-
derstanding convolutional networks. In ECCV, 2014.

