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Abstract
Reducing the amount of human supervision is
a key problem in machine learning and a nat-
ural approach is that of exploiting the relations
(structure) among different tasks. This is the idea
at the core of multi-task learning. In this con-
text a fundamental question is how to incorporate
the tasks structure in the learning problem. We
tackle this question by studying a general compu-
tational framework that allows to encode a-priori
knowledge of the tasks structure in the form of a
convex penalty; in this setting a variety of pre-
viously proposed methods can be recovered as
special cases, including linear and non-linear ap-
proaches. Within this framework, we show that
tasks and their structure can be efficiently learned
considering a convex optimization problem that
can be approached by means of block coordinate
methods such as alternating minimization and for
which we prove convergence to the global mini-
mum.

1. Introduction
Current machine learning systems achieve remarkable re-
sults in several challenging tasks, but are limited by the
amount of human supervision required. Leveraging sim-
ilarity among different problems is widely acknowledged
to be a key approach to reduce the need for supervised
data. Indeed, this idea is at the basis of multi-task learn-
ing, where the joint solution of different problems (tasks)
has the potential to exploit tasks relatedness (structure) to
improve learning accuracy. This idea has motivated a vari-
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ety of methods, including frequentist (Micchelli & Pontil,
2004; Argyriou et al., 2008a;b) and Bayesian methods (see
e.g. (Álvarez et al., 2012) and references therein), with con-
nections to structured learning (Bakir et al., 2007; Tsochan-
taridis et al., 2004).
The focus of our study is the development of a general regu-
larization framework to learn multiple tasks as well as their
structure. Following (Micchelli & Pontil, 2004; Evgeniou
et al., 2005) we consider a setting where tasks are modeled
as the components of a vector-valued function and their
structure corresponds to the choice of suitable functional
spaces. Exploiting the theory of reproducing kernel Hilbert
spaces for vector-valued functions (RKHSvv) (Micchelli
& Pontil, 2004), we consider and analyze a flexible regu-
larization framework, within which a variety of previously
proposed approaches can be recovered as special cases, see
e.g. (Jacob et al., 2008; Lozano & Sindhwani, 2011; Minh
& Sindhwani, 2011; Zhang & Yeung, 2010; Dinuzzo et al.,
2011; Sindhwani et al., 2012). Our main technical con-
tribution is a unifying study of the minimization problem
corresponding to such a regularization framework. More
precisely, we devise an optimization approach that can effi-
ciently compute a solution and for which we prove conver-
gence under weak assumptions. Our approach is based on a
barrier method that is combined with block coordinate de-
scent techniques (Tseng, 2001; Razaviyayn et al., 2013). In
this sense our analysis generalizes the results in (Argyriou
et al., 2008a) for which a low-rank assumption was consid-
ered; however the extension is not straightforward, since
we consider a much larger class of regularization schemes
(any convex penalty). Up to our knowledge, this is the first
result in multi-task learning proving the convergence of al-
ternating minimization schemes for such a general family
of problems.
The RKHSvv setting allows to naturally deal both with lin-
ear and non-linear models and the approach we propose
provides a general computational framework for learning
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output kernels as formalized in (Dinuzzo et al., 2011).
The rest of the paper is organized as follows: in Sec 2
we review basic ideas of regularization in RKHSvv. In
Sec. 2.3 we discuss the equivalence of different approaches
to encode known structures among multiple tasks. In
Sec. 3 we discuss a general framework for learning multiple
tasks and their relations where we consider a wide family
of structure-inducing penalties and study an optimization
strategy to solve them. This setting allows us, in Sec. 4, to
recover several previous methods as special cases. Finally
in Sec. 5 we evaluate the performance of the optimization
method proposed.

Notation. With Sn++ ⊂ Sn+ ⊂ Sn ⊂ Rn×n we denote re-
spectively the space of positive definite, positive semidefi-
nite (PSD) and symmetric n× n real-valued matrices. On

denotes the space of orthonormal n × n matrices. For
any square matrix M ∈ Rn×n and p ≥ 1, we denote by
‖M‖p = (

∑n
i=1 σi(M)p)1/p the p-Schatten norm of M ,

where σi(M) is the i-th largest singular value of M . For
any M ∈ Rn×m, M> denotes the transpose of M . For any
PSD matrix A ∈ Sn+, A† denotes the pseudoinverse of A.
We denote by In ∈ Sn++ the n × n identity matrix. The
notation Ran(M) ⊆ Rm identifies the range of columns of
a matrix M ∈ Rm×n.

2. Background
We study the problem of jointly learning multiple tasks by
modeling individual task-predictors as the components of a
vector-valued function. Let us assume to have T supervised
scalar learning problems (or tasks), each with a “training”
set of input-output observations St = {(xit, yit)}nt

i=1 with
xit ∈ X input space and yit ∈ Y output space1. Given
a loss function L : R × R → R+ that measures the per-
task prediction errors, we want to solve the following joint
regularized learning problem

minimize
f∈H

T∑
t=1

1

nt

nt∑
i=1

L(y
(t)
i , ft(x

(t)
i )) + λ‖f‖2H (1)

where H is an Hilbert space of vector-valued functions
f : X → YTwith scalar components ft : X → Y . In
order to define a suitable space of hypotheses H, in this
section we briefly recall concepts from the theory of re-
producing kernel Hilbert spaces for vector-valued functions
(RKHSvv) and corresponding regularization theory, which
plays a key role in our work. In particular, we focus on a
class of reproducing kernels (known as separable kernels)
that can be designed to encode specific tasks structures (see
(Evgeniou et al., 2005; Argyriou et al., 2013) and Sec. 2.3).

1To avoid clutter in the notation, we have restricted ourselves
to the typical situation where all tasks share same input and output
spaces, i.e. Xt = X and Yt ⊆ R.

Interestingly, separable kernels are related to ideas such as
defining a metric on the output space or a label encoding in
multi-label problems (see Sec. 2.3)

Remark 2.1 (Multi-task and multi-label learning). Multi-
label learning is a class of supervised learning problems in
which the goal is to associate input examples with a label
or a set of labels chosen from a discrete set. In general,
due to discrete nature of the output space, these problems
cannot be solved directly; hence, a so-called surrogate
problem is often introduced, which is computationally
tractable and whose solution allows to recover the solution
of the original problem (Steinwart & Christmann, 2008;
Bartlett et al., 2006; Mroueh et al., 2012).
Multi-label learning and multi-task learning are strongly
related. Indeed, surrogate problems typically consist in
a set of distinct supervised learning problems (or tasks)
that are solved simultaneously and therefore have a natural
formulation in the multi-task setting. For instance, in
multi-class classification problems the “One vs All”
strategy is often adopted, which consists in solving a set of
multiple binary classification problems, one for each class.

2.1. Learning Multiple Tasks with RKHSvv

In the scalar setting, reproducing kernel Hilbert spaces have
already been proved to be a powerful tool for machine
learning applications. Interestingly, the theory of RKHSvv
and corresponding Tikhonov regularization scheme follow
closely the derivation in the scalar case.

Definition 2.2. Let (H, 〈·, ·〉H) be a Hilbert space of func-
tions from X to RT . A symmetric, positive definite, matrix-
valued function Γ : X × X → RT×T is called a repro-
ducing kernel for H if for all x ∈ X , c ∈ RT and f ∈ H
we have that Γ(x, ·)c ∈ H and the following reproducing
property holds 〈f(x), c〉RT = 〈f,Γ(x, ·)c〉H.

In analogy to the scalar setting, it can be proved (see (Mic-
chelli & Pontil, 2004)) that the Representer Theorem holds
also for regularization in RKHSvv. In particular we have
that any solution of the learning problem introduced in
Eq. (1) can be written in the form

f(x) =

T∑
t=1

nt∑
i=1

Γ(x, x
(t)
i )c

(t)
i (2)

with c(t)i ∈ RT coefficient vectors.
The choice of kernel Γ induces a joint representation of
the inputs as well as a structure among the output compo-
nents (Álvarez et al., 2012); In the rest of the paper we will
focus on so-called separable kernels, where these two as-
pects are factorized. In Section 3, we will see how separa-
ble kernels provide a natural way to learn the tasks structure
as well as the tasks.
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2.2. Separable Kernels

Separable (reproducing) kernels are functions of the form
Γ(x, x′) = k(x, x′)A ∀x, x′ ∈ X where k : X × X → R
is a scalar reproducing kernel and A ∈ ST+ is a positive
semi-definite (PSD) matrix. In this case, the representer
theorem allows to rewrite problem (1) in a more compact
matrix notation as

minimize
C∈Rn×T

V (Y,KCA) + λ tr(AC>KC). (P)

Here Y ∈ Rn×T is a matrix with n =
∑T
t=1 nt rows con-

taining the output points; K ∈ Sn+ is the empirical kernel
matrix associated to k and V : Rn×T × Rn×T → R+

generalizes the loss in (1) and consists in a linear combi-
nation of the entry-wise application of L. Notice that this
formulation accounts also the situation where not all train-
ing outputs y(t) are observed when a given input x ∈ X is
provided: in this case the functional V weights 0 the loss
values of those entries of Y (and the associated entries of
KCA) that are not available in training.
Finally, the second term in (P) follows by observ-
ing that, for all f ∈ H of the form f(·) =∑n
i=1 k(xi, ·)Aci, the squared norm can be written as

‖f‖2H =
∑n
i,j k(xi, xj)c

>
i Acj = tr(AC>KC) where

C ∈ Rn×T is the matrix with i-th row corresponding to
the coefficient vector ci ∈ RT of f . Notice that we have
re-ordered the index i to be in {1, . . . , n} to ease the nota-
tion.

2.3. Incorporating Known Tasks Structure

Separable kernels provide a natural way to incorporate the
task structure when the latter is known a priori. This strat-
egy is quite general and indeed in the following we com-
ment on how the matrix A can be chosen to recover several
multi-task methods previously proposed in contexts such as
regularization, coding/embeddings or output metric learn-
ing, postponing a more detailed discussion in the supple-
mentary material. These observations motivate the exten-
sion in Sec. 3 of the learning problem (P) to a setting where
it is possible to infer A from the data.

Regularizers. Tasks relations can be enforced by devis-
ing suitable regularizers (Evgeniou et al., 2005). Interest-
ingly, for a large class of such methods it can be shown that
this is equivalent to the choice of the matrix A (or rather its
pseudoinverse) (Micchelli & Pontil, 2004). If we consider
the squared norm of a function f =

∑n
i=1 k(xi, ·)Aci ∈ H

we have (see (Evgeniou et al., 2005))

‖f‖2H =
T∑

t,s=1

A†ts〈ft, fs〉Hk
(3)

where At is the t-th column of A, Hk is the RKHS associ-
ated to the scalar kernel k and ft =

∑n
i=1 k(xi, ·)A>t ci ∈

Hk is the t-th component of f . The above equation sug-
gests to interpret A† as the matrix that models the struc-
tural relations between tasks by directly coupling different
predictors. For instance, by setting A† = IT + γ(11>)/T ,
with 1 ∈ RT the vector of all 1s, we have that the parameter
γ controls the variance

∑T
t=1 ‖f̄ − ft‖2Hk

of the tasks with
respect to their mean f̄ = 1

T

∑T
t=1 ft. If we have access

to some notion of similarity among tasks in the form of a
graph with adjacency matrix W ∈ ST , we can consider the
regularizer

∑T
t,s=1Wt,s‖ft−fs‖2Hk

+γ
∑T
t ‖ft‖2Hk

which
corresponds to A† = L + γIT with L the graph Laplacian
induced by W .

Output Metric. A different approach to model tasks re-
latedness consists in choosing a suitable metric on the out-
put space to reflect the tasks structure (Lozano & Sind-
hwani, 2011). Clearly a change of metric on the output
space with the standard inner product 〈y, y′〉RT between
two output points y, y′ ∈ YT corresponds to the choice of
a different inner product 〈y, y′〉Θ = 〈y, θy′〉RT for some
positive definite matrix Θ ∈ ST++. Indeed this can be di-
rect related to the choice of a suitable separable kernel. In
particular, for the least squares loss function a direct equiv-
alence holds between choosing a metric deformation asso-
ciated to a Θ ∈ ST++ and a separable kernel k(·, ·)IT or
use the canonical metric (i.e. with Θ = IT the identity)
and kernel k(·, ·)Θ. The details of this equivalence can be
found in the supplementary material.

Output Representation. The tasks structure can also be
modeled by designing an ad-hoc embedding for the output
space. This approach is particularly useful for multi-label
scenarios, where output embedding can be designed to en-
code complex structures such as (e.g. trees, strings, graphs,
etc.) (Fergus et al., 2010; Joachims et al., 2009; Crammer &
Singer, 2000). Interestingly in these cases, or more gener-
ally whenever the embedding map L : YT → Ỹ , from the
original to the new output space, is linear, then it is possible
to show that the learning problem with new code is equiv-
alent to (1) for a suitable choice of separable kernel with
A = L>L. We refer again to the supplementary material
for the details of this equivalence.

3. Learning the Tasks and their Structure
Clearly, an interesting setting occurs when knowledge of
the tasks structure is not available and therefore it is not
possible to design a suitable separable kernel. In this case
a favorable approach is to infer the tasks relations directly
from the data. To this end we propose to consider the fol-
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lowing extension of problem (P)

minimize
C∈Rn×T ,A∈ST

+

V (Y,KCA) + λtr(AC>KC) + F (A),

(Q)
where the penalty F : ST+ → R+ is designed to learn spe-
cific tasks structures encoded in the matrix A. The above
regularization is general enough to encompass a large num-
ber of previously proposed approaches by simply specify-
ing a choice of the scalar kernel and the penalty F . A de-
tailed discussion of these connections is postponed to Sec-
tion 4. In this section, we focus on computational aspects.
Throughout, we restrict ourselves to convex loss functions
V and convex (and coercive) penalties F . In this case, the
objective function in (Q) is separately convex in C and A
but not jointly convex. Hence, block coordinate methods,
which are often used in practice, e.g. alternating minimiza-
tion over C and A, are not guaranteed to converge to a
global minimum. Our study provides a general framework
to provably compute a solution to problem (Q). First, In
Section 3.1, we prove our main results providing a charac-
terization of the solutions of Problem (Q) and studying a
barrier method to cast their computation as a convex opti-
mization problem. Second, in Section 3.2, we discuss how
block coordinate methods can be naturally used to solve
such a problem, analyze their convergence properties and
discuss some general cases of interest.

3.1. Characterization of Minima and A Barrier
Method

We begin, in Section 3.1.1, providing a characterization
of the solutions to Problem (Q) by showing that it has an
equivalent formulation in terms of the minimization of a
convex objective function, namely Problem (R). Depend-
ing on the behavior of the objective function on the bound-
ary of the optimization domain, Problem (R) might not be
solved using standard optimization techniques. This possi-
ble issue motivates the introduction, in Section 3.1.2, of
a barrier method; a family of “perturbated” convex pro-
grams is introduced whose solutions are shown to converge
to those of Problem (R) (and hence of the original (Q)).

3.1.1. AN EQUIVALENT FORMULATION FOR (Q)

The objective functional in (Q) is not convex, therefore in
principle it is hard to find a global minimizer. As it turns
out however, it is possible to circumvent this issue and ef-
ficiently find a global solution to (Q). The following result
represents a first step in this direction.

Theorem 3.1. Let K ∈ Sn+ and consider the convex set

C =
{

(C,A) ∈ Rn×T × ST+ | Ran(C>KC) ⊆ Ran(A)
}
.

Then, for any F : ST+ → R+ convex and coercive, problem

minimize
(C,A) ∈ C

V (Y,KC) + λtr
(
A†C>KC

)
+ F (A) (R)

has convex objective function and it is equivalent to (Q).
In particular, the two problems achieve the same minimum
value and, given a solution (CR, AR) for (R), the couple
(CRA

†
R, AR) is a minimizer for (Q). Vice-versa, given a

solution (CQ, AQ) for (Q), the couple (CQAQ, AQ) is a
minimizer for (R).

The above result highlights a remarkable connection be-
tween the problems (Q) (non-convex) and (R) (convex). In
particular, we have the following Corollary, which provides
us with a useful characterization of the local minimizers of
problem (Q).
Corollary 3.2. Let Q : Rn×T × ST+ → R be the objective
function of problem (Q). Then, every local minimizer for
Q on the open set Rn×T ×ST++ is also a global minimizer.

Corollary 3.2 follows from Theorem 3.1 and the fact that,
on the restricted domain Rn×T × ST++, the map Q is the
combination of the objective functional of (R) and the in-
vertible function (C,A) 7−→ (CA,A). Moreover, if Q is
differentiable, i.e. V and the penalty F are differentiable,
this is exactly the definition of a convexifiable function,
which in particular implies invexity (Craven, 1995). The
latter property ensures that, in the differentiable case, all
the stationary points (rather than only local minimizers)
are global minimizers. This result was originally proved
in (Dinuzzo et al., 2011) for the special case of V the least-
squares loss and F (·) = ‖ · ‖2F the Frobenius norm; Here
we have proved its generalization to all convex losses V
and penalties F .
We end this section adding two comments. First, we note
that, while the objective function in Problem (R) is con-
vex, the corresponding minimization problem might not be
a convex program (in the sense that the feasible set C is
not identified by a set of linear equalities and non-linear
convex inequalities (Boyd & Vandenberghe, 2004)). Sec-
ond, Corollary (3.2) holds only on the interior of the mini-
mization domain Rn×T ×ST+ and does not characterize the
behavior of the target functional on its boundary. In fact,
one can see that both issues can be tackled defining a per-
turbed objective functional having a suitable behavior on
the boundary of the minimization domain. This is the key
motivation for the barrier method we discuss in the next
section.

3.1.2. A BARRIER METHOD TO OPTIMIZE (R)

Here we propose a barrier approach inspired by the work
in (Argyriou et al., 2008a) by introducing a perturbation
of problem (R) that enforces the objective functions to be
equal to +∞ on the boundary of Rn×T × ST+. As a conse-
quence, each perturbed problem can be solved as a convex
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optimization constrained on a closed cone. The latter com-
ment is made more precise in the following result that we
prove in the supplementary material.
Theorem 3.3. Consider the family of optimization prob-
lems

minimize
C∈Rn×T ,

A∈ST
+

V (Y,KC) + λtr(A−1(C>KC + δ2IT )) + F (A)

(Sδ)
with IT ∈ ST++ the identity matrix. Then, for each δ > 0
the problem (Sδ) admits a minimum. Furthermore, the set
of minimizers for (Sδ) converges to the set of minimizers
for (R) as δ tends to zero. More precisely, given any se-
quence δm > 0 such that δm → 0 and a sequence of min-
imizers (Cm, Am) ∈ Rn×T × ST+ for (Sδ), there exists a
sequence (C∗m, A

∗
m) ∈ Rn×T × ST+ of minimizers for (R)

such that ‖Cm−C∗m‖F +‖Am−A∗m‖F → 0 asm→ +∞.

The barrier δ2tr(A−1) is fairly natural and can be seen as
preconditioning of the problem leading to favorable com-
putations. The proposed barrier method is similar in spirit
to the approach developed in (Argyriou et al., 2008a) and
indeed Theorem 3.3 and next Corollary 3.4 are a gener-
alization over the two main results in (Argyriou et al.,
2008a) to any convex penalty F on the cone of PSD matri-
ces. However, notice that since we are considering a much
wider family of penalties (than the trace norm as in (Ar-
gyriou et al., 2008a)) our results cannot directly derived
from those in (Argyriou et al., 2008a). In the next section
we discuss how to compute the solution of Problem (Sδ)
considering a block coordinate approach.

3.2. Block Coordinate Descent Methods

The block variable structure of the objective function in
(Sδ), suggests that it might be beneficial to use block coor-
dinate methods (BCM) (see (Beck & Tetruashvili, 2011))
to solve it. Here with BCM we identify a large class of
methods that, in our setting, iterate steps of an optimiza-
tion on C, with A fixed, followed by an optimization of A,
for C fixed.
A meta block coordinate algorithm to solve (Sδ) is reported
in in Alg. 1. Here we interpret each optimization step
over C as a supervised step, and each optimization step
over A as a an unsupervised step (in the sense that it in-
volves the inputs but not the outputs). Several optimization
methods can be used as for SUPERVISEDSTEP and UN-
SUPERVISEDSTEP in Alg. 1. In particular, the term Block
Coordinate Descent (BCD) identifies a wide class of iter-
ative methods that perform (typically inexact) minimiza-
tion of the objective function one block of variables at the
time. Different strategies to choose which direction mini-
mize at each step have been proposed: pre-fixed cyclic or-
der, greedy search (Razaviyayn et al., 2013) or randomly,
according to a predetermined distribution (Nesterov, 2012).

Algorithm 1 CONVEX MULTI-TASK LEARNING

Input: K,Y, ε tolerance, δ perturbation parameter, S ob-
jective functional of (Sδ), V loss, F structure penalty.
Initialize: (C,A) = (C0, A0), t = 0
repeat

Ct+1 ← SUPERVISEDSTEP (V,K, Y,Ct, At)
At+1 ← UNSUPERVISEDSTEP(F,K, δ, Ct+1, At)
t← t+ 1

until |S(Ct+1, At+1)− S(Ct, At)| < ε

For a review of several BCD algorithms we refer the reader
to (Razaviyayn et al., 2013) and references therein.
A second class of methods is called alternating minimiza-
tion and corresponds to the situation where at each step in
Alg. 1 and exact minimization is performed. This latter ap-
proach is favorable when a closed form solution exists for
at least one block of variables (see Section 3.2.1) and has
been studied extensively in (Tseng, 2001) in the abstract
setting where an oracle provides a block-wise minimizer at
each iteration. The following Corollary describes the con-
vergence properties of BCD and Alternate minimization se-
quences provided by applying Alg. 1 to (Sδ).
Corollary 3.4. Let the Problem (Sδ) be defined as in The-
orem 3.3 then:

(a) Alternating Minimization: Let the two procedures
in Alg. 1 each provide a block-wise minimizer of the
functional with the other block held fixed. Then every
limiting point of a minimization sequence provided by
Alg. 1, is a global minimizer for (Sδ).

(b) Block Coordinate Descent: Let the two procedures in
Alg. 1 each consist in a single step of a first order op-
timization method (e.g. Projected Gradient Descent,
Proximal methods, etc.). Then every limiting point of
a minimizing sequence provided by Alg. 1 is a global
minimizer for (Sδ).

Corollary (3.4) follows by applying previous results on
BCD and Alternate minimization. In particular, for the
proof of part (a) we refer to Theorem 4.1 in (Tseng, 2001),
while for part (b) we refer to Theorem 2 in (Razaviyayn
et al., 2013).
In the following we discuss the actual implementation of
both SUPERVISED and UNSUPERVISED procedures in the
case where V is chosen to be least-squares loss and the
penalty F to be a spectral p-Schatten norm. This should
provide the reader with a practical example of how the
meta-algorithm introduced in this section can be special-
ized to a specific multi-task learning setting.

Remark 3.5. (Convergence of Block Coordinate Meth-
ods) Several works in multi-task learning have proposed
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some form of BCM strategy to solve the learning prob-
lem. However, up to our knowledge, so far only the authors
in (Argyriou et al., 2008a) have considered the issue of con-
vergence to a global optimum. Their results where proved
for a specific choice of structure penalty in a framework
similar to that of problem (R) (see Section 4) but do not ex-
tend straightforwardly to other settings. Corollary 3.4 aims
to fill this gap, providing convergence guarantees for block
coordinate methods for a large class of multi-task learning
problems.

3.2.1. CLOSED FORM SOLUTIONS FOR ALTERNATING
MINIMIZATION: EXAMPLES

Here we focus on the alternating minimization case and
discuss some settings in which it is possible to obtain a
closed form solution for the procedures SUPERVISEDSTEP
and UNSUPERVISEDSTEP.

(SUPERVISEDSTEP) Least Squares. Let V be the least
squares loss and let the structure matrix A be fixed. A
closed form solution for the coefficient matrix C returned
by the SUPERVISEDSTEP is (see for instance (Álvarez
et al., 2012)):

vec(C) = (IT ⊗K + λA−1 ⊗ In)−1vec(Y ),

with ⊗ the Kronecker product, and ∀M ∈ Rn×m,
vec(M) ∈ Rnm identifies the concatenation of the
columns of M .

(UNSUPERVISEDSTEP) p-Schatten penalties. We con-
sider the case in which F is chosen to be a spectral penalty
of the form F (·) = ‖·‖pp with p ≥ 1. Also in this setting the
optimization problem has a closed form solution, as shown
in the following.

Proposition 3.6. Let the penalty of problem (Sδ) be F =
‖ · ‖pp with p ≥ 1. Then, for any C ∈ Rn×T fixed, the
optimization problem (Sδ) in the block variable A has a
minimizer of the form

AδC = p+1

√
(C>KC + δ2IT )/λ. (4)

Proposition 3.6 generalizes a similar result originally
proved in in (Argyriou et al., 2008a) for the special case
p = 1 and provides an explicit formula for the UNSUPER-
VISEDSTEP of Alg. 1. We report the proof in the supple-
mentary material.

4. Previous Work: Comparison and
Discussion

Framework (Q) accounts for several choices of losses and
task-structural priors. While Sec. 3 has been devoted to

deriving optimization procedures to solve such a problem,
here we focus on modeling aspects. In particular, we will
briefly review some multi-task learning method previously
proposed, discussing how they can be formulated as special
cases of (Q) (or, equivalently, (R)).

Spectral Penalties. The penalty F = ‖ · ‖2F was consid-
ered in (Dinuzzo et al., 2011), together with a least squares
loss function and the non convex problem (Q) is solved
directly by alternating minimization. However, as pointed
out in Sec. 3, solving the non convex problem (although
invex, see the discussion on Corollary 3.2) directly could
in principle become problematic when the alternating
minimization sequence gets close to the boundary of
Rn×T × ST++. A related idea is that of considering
F (A) = tr(A) (i.e. the 1-Schatten norm). This latter
approach can shown to be equivalent to the Multi-Task
Feature Learning setting of (Argyriou et al., 2008a) (see
supplementary material).

Cluster Tasks Learning. In (Jacob et al., 2008), the au-
thors studied a multi-task setting where tasks are assumed
to be organized in a fixed number r of unknown disjoint
clusters. While the original formulation was conceived for
linear setting, it can be easily extended to non-linear ker-
nels and cast in our framework. Let E ∈ {0, 1}T×r be the
binary matrix whose entry Est has value 1 or 0 depending
on whether task s is in cluster t or not. SetM = I−E†E>,
and U = 1

T 11>. In (Jacob et al., 2008) the authors consid-
ered a regularization setting of the form of (R) where the
structure matrixA is parametrized by the matrixM in order
to reflect the cluster structure of the tasks. More precisely:

A−1(M) = εMU + εB(M − U) + εW (I −M)

where the first term characterizes a global penalty on
the average of all tasks predictors, the second term pe-
nalizes the between-clusters variance, and the third term
controls the tasks variance within each cluster. Clearly,
it would be ideal to identify an optimal matrix A(M)
minimizing problem (R). However, M belongs to a
discrete non convex set, therefore authors propose a
convex relaxation by constraining M to be in a convex
set Sc = {M ∈ ST+, 0 � M � I, tr(M) = r}. In our
notations F (A) is therefore the indicator function over the
set of all matrices A = A(M) such that M ∈ Sc. The
authors propose a pseudo gradient descent method to solve
the problem jointly.

Convex Multi-task Relation Learning. Starting from
a multi-task Gaussian Process setting, in (Zhang & Ye-
ung, 2010), authors propose a model where the covariance
among the coefficient vectors of the T individual tasks is
controlled by a matrix A ∈ ST++ in the form of a prior. The
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Figure 1. Comparison of the computational performance of the alternating minimization strategy studied in this paper with respect to the
optimization methods proposed for MTCL in (Jacob et al., 2008) and MTFL (Argyriou et al., 2008a) in the original papers. Experiments
are repeated for different number of tasks and input-space dimensions as described in Sec. 5.1.

initial maximum likelihood estimation problem is relaxed
to a convex optimization with target functional of the form

‖Y −KC‖2F +λ1 tr(C
>KC) +λ2 tr(A

−1C>KC) (5)

constrained to the set A = {A | A ∈ ST++, tr(A) = 1).
This setting is equivalent to problem (R) (by choosing F
to be the indicator function of A) with the addition of the
term tr(C>KC).
Non-Convex Penalties. Often times, interesting structural
assumptions require to impose non-convex penalties to re-
cover interpretable relations among tasks. For instance (Ar-
gyriou et al., 2013) requires A to be a graph Laplacian,
or (Dinuzzo, 2013) imposes a low-rank factorization of A
in two smaller matrices. In (Mroueh et al., 2011; Kumar &
Daume III, 2012) different sparsity models are proposed.
Most of these methods can be naturally cast in the form (Q)
or (R). Unfortunately our analysis of the barrier method
does not necessarily hold and Alternating Minimization is
not guaranteed to lead to a stationary point.

5. Experiments
We empirically evaluated the efficacy of the block coor-
dinate optimization strategy proposed in this paper on both
artificial and real datasets. Synthetic experiments were per-
formed to assess the computational aspects of the approach,
while we evaluated the quality of solutions found by the
system on realistic settings.

5.1. Computational Times

As discussed in Sec. 4, several methods previously pro-
posed in the literature, such as Multi-task Cluster Learn-
ing (MTCL) (Jacob et al., 2008) and Multi-task Feature
Learning (MTFL (Argyriou et al., 2008a)]), can be formu-
lated as special cases of problem (Q) or (R). It is natural
to compare the proposed alternating minimization strategy
with the optimization solution originally proposed for each
method. To assess the system’s performance with respect
to varying dimensions of the feature space and an increas-

ing number of tasks, we chose to perform this comparison
in an artificial setting.
We considered a linear setting where the input data lie in Rd
and are distributed according to a normal distribution with
zero mean and identity covariance matrix. T linear models
wt ∈ Rd for t = 1, . . . , T were then generated according to
a normal distribution in order to sample T distinct training
sets, each comprising of 30 examples (x

(t)
i , y

(t)
i ) such that

y
(t)
i = 〈wt, x(t)

i 〉+ ε with ε Gaussian noise with zero mean
and 0.1 standard deviation. On these learning problems we
compared the computational performance of our alternat-
ing minimization strategy and the original optimization al-
gorithms originally proposed for MTCL and MTFL and for
which the code has been made available by the authors’. In
our algorithm we used A0 = I identity matrix as initializa-
tion for the alternating minimization procedure. We used a
least-squares loss for all experiments.
Figure 1 reports the comparison of computational times of
alternating minimization and the original methods to con-
verge to the same minima (of respectively the functional of
MTCL and MTFL). We considered two settings: one where
the number of tasks was fixed to T = 100 and d increased
from 5 to 150 and a second one wher dwas fixed to 100 and
T varied bewteen 5 and 150. To account for statistical sta-
bility we repeated the experiments for each couple (T, d)
and different choices of hyperparameters while generating
a new random datasets at each time. We can make two ob-
servations from these results: 1) in the setting where T is
kept fixed we observe a linear increase in the computational
times for both original MTCL and MTFL methods, while
alternating minimization is almost constant with respect to
the input space dimension. 2) When d is fixed and the num-
ber of tasks increases, all optimization strategies require
more time to converge. This shows that in general alternat-
ing minimization is a viable option to solve these problems
and in particular, when T << min(d, n) – which is often
the case in non-linear settings –this method is particularly
efficient.
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50 tr. samples per class 100 tr. samples per class 150 tr. samples per class 200 tr. samples per class

nMSE (± std) nI nMSE (± std) nI nMSE (± std) nI nMSE (± std) nI

STL 0.2436± 0.0268 0 0.1723± 0.0116 0 0.1483± 0.0077 0 0.1312± 0.0021 0

MTFL 0.2333± 0.0213 0.0416 0.1658± 0.0107 0.0379 0.1428± 0.0083 0.0281 0.1311± 0.0055 0.0003

MTRL 0.2314± 0.0217 0.0404 0.1653± 0.0112 0.0401 0.1421± 0.0081 0.0288 0.1303± 0.0058 0.0071

OKL 0.2284± 0.0232 0.0630 0.1604± 0.0123 0.0641 0.1410± 0.0087 0.0350 0.1301± 0.0073 0.0087

Table 1. Comparison of Multi-task learning methods on the Sarcos dataset. The advantage of learning the tasks jointly decreases as more
training examples became available.

5.2. Real dataset

We assessed the benefit of adopting multi-task learning
approaches on two real dataset. In particular we con-
sidered the following algorithms: Single Task Learn-
ing (STL) as a baseline, Multi-task Feature Learning
(MTFL) (Argyriou et al., 2008a), Multi-task Relation
Learning (MTRL) (Zhang & Yeung, 2010), Output Ker-
nel Learning (OKL) (Dinuzzo et al., 2011). We used least
squares loss for all experiments.
Sarcos. Sarcos2 is a dataset for regression problems (21-
dimensional inputs and 7 outputs), which report the corre-
sponding torques measured at each joint.
For each task, we randomly sampled 50, 100, 150 and 200
training examples while we kept a test set of 5000 examples
in common for all tasks. We used a linear kernel and per-
formed 5-fold crossvalidation to find the best regularization
parameter according to the normalized mean squared error
(nMSE) of predicted torques. We averaged the results over
10 repetitions of these experiments. The results, reported
in Table 1, show clearly that to adopt a multi-task approach
in this setting is favorable; however, in order to quantify
more clearly such improvement, we report in Table 1 also
the normalized improvement (nI) over single-task learning
(STL). For each multi-task method MTL, the normalized
improvement nI(MTL) is computed as the average

nI(MTL) =
1

nexp

nexp∑
i=1

nMSEi(STL)− nMSEi(MTL)√
nMSEi(STL) · nMSEi(MTL)

over all the nexp = 10 experiments of the normalized dif-
ferences between the nMSE achieved by respectively the
STL approach and the given multi-task method MTL.
15-Scenes. 15-Scenes3 is a dataset designed for scene

recognition, consisting in a 15-class classification problem.
We represented images using LLC coding (Wang et al.,
2010) and trained the system on a training set compris-
ing 50, 100 and 150 examples per class. The test set con-
sisted in 7500 images evenly divided with respect to the
15 scenes. Table 2 reports the mean classification accu-
racy on 20 repetitions of the experiments. It can be noticed
that while all multi-task approach seem to achieve approx-

2urlhttp://www.gaussianprocess.org/gpml/data/
3http://www-cvr.ai.uiuc.edu/ponce grp/data/

Accuracy (%) per # tr. samples per class
50 100 150

STL 72.23 ±0.04 76.61 ±0.02 79.23 ±0.01

MTFL 73.23 ±.08 77.24 ±.05 80.11 ±.03

MTRL 73.13 ±0.08 77.53 ±0.04 80.21 ±0.05

OKL 72.25 ±0.03 77.06 ±0.01 80.03 ±0.01

Table 2. Classification results on the 15-scene dataset.

imately similar performance, these are consistently outper-
forming the STL baseline.

6. Conclusions
We have studied a general multi-task learning framework
where the tasks structure can be modeled compactly in
a matrix. For a wide family of models, the problem of
jointly learning the tasks and their relations can be cast as
a convex program, generalizing previous results for special
cases (Argyriou et al., 2008a; Dinuzzo et al., 2011). Such
an optimization can be naturally approached by block co-
ordinate minimization, which can be seen as alternating be-
tween supervised and unsupervised learning steps optimiz-
ing respectively the tasks or their structure. We evaluated
our method real data, confirming the benefit of multi-task
learning when tasks share similar properties.
From an optimization perspective, future work will focus
on studying the theoretical properties of block coordinate
methods, in particular regarding convergence rates. In-
deed, the empirical evidence we report suggests that simi-
lar strategies can be remarkably efficient in the multi-task
setting. From a modeling perspective, future work will fo-
cus on studying wider families of matrix-valued kernels,
overcoming the limitations of separable ones. Indeed, this
would allow to account also for structures in the interaction
space between the input and output domains jointly, which
is not the case for separable models.
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