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7. Appendix
7.1. Additional proofs
7.1.1. MAXIMA OF NORMAL RANDOM VARIABLES

Lemma 9. Suppose the conditions of Theorem I hold, then
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Proof. First, we upper bound the expectation by
< —
E, {glg;( 7)} Inf - L 1og (;{ Elexp(s{z, 7))])

Notice that (x, ) is a normal random variable with mean 0
and variance ||z||?> < k. As such,
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7.1.2. BOUNDING THE HESSIAN

Lemma 10. Suppose that the conditions of Theorem 1
hold. Let H denote the Hessian of ®, at an arbitrary 0.
Fix some j € [d]. Then,
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Proof. Recall the definition of the Hessian:
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Let us abbreviate Z(0 + 1y) as Z. Then,
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< k by assumption.
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7.1.3. BOUNDING THE HESSIAN FOR THE k-SETS
PROBLEM

Proof of lemma 3. Let H = V2®, (). We have that,
1.1 -
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with #(z) € argmingcy(x,2) (Abernethy et al., 2014,
Lemma 7). We shall abbreviate & for &(6 + 7y) in the
remainder of the proof.

First, notice that

d

> H;= L > Elydi) = b > E[y]l=0
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Secondly, we argue about the sign of E[y;Z;]. We claim
that it is negative if ¢ = j and positive otherwise. To see
that, notice that v; is a symmetric random variable, so that
for each o > 0 the density of «y; at o and at —ov is the same.
If i # 7, the event £; = 1 is more probable if v; = « than
when v; = —a. If 7 = j then the opposite is true.
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We have,
ZHi,j: Z H;; — Z H; ;
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The rest of the proof follows that of lemma 2.

7.1.4. TECHNICAL LEMMA

Lemma 11. We have,
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Notice that erf is nondecreasing and concave on R .. Then,
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as required.

7.2. Lipschitz property of certain distributions
7.2.1. UNIFORM OVER THE CUBE

Remember that we had required the marginals to have a
variance of 1. Therefore WLOG we will take the cube to
be C = [0,1/+/3]%. Then,
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so that L = 2+/3.

We now explain the above bound. Suppose that C' + {up}
and C' + {ug} do not intersect. Then we must have ||pup —

nallso > 1/V3.
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If C + {pup} and C + {pq} do intersect, then ||up —
1Qlee < 1/4/3 and we have
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so that Similarly, one can bound
Vol((C + {ur}) & (C + {ng})) L exn(vale — oy
— Vol(C + {p}) + VOI(C + {siq}) f,7gee( /Al =l
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7.2.2. LAPLACE AND NEGATIVE EXPONENTIAL

We will show that for the Laplace distribution we have L =
V2. For the exponential distribution the proof is similar
except with L = 1. Once again, recall that we had required
the marginals to have a variance of 1, and therefore the PDF
of the Laplace distribution is exp(—+/2|x — p|)/+/2. In this
case,
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