Supplementary material: Following the Perturbed Leader for Online Structured Learning

7. Appendix

7.1. Additional proofs

7.1.1. MAXIMA OF NORMAL RANDOM VARIABLES

Lemma 9. Suppose the conditions of Theorem 1 hold, then

$$\mathbb{E}\left[\max_{x \in \mathcal{X}} \langle x, \gamma \rangle\right] \leq \sqrt{2k \log |\mathcal{X}|}$$

Proof. First, we upper bound the expectation by

$$\mathbb{E}_{\gamma} \left[\max_{x \in \mathcal{X}} \langle x, \gamma \rangle \right] \leq \inf_{s > 0} \frac{1}{s} \log \left(\sum_{x \in \mathcal{X}} \mathbb{E}[\exp(s \langle x, \gamma \rangle)] \right)$$

Notice that $\langle x, \gamma \rangle$ is a normal random variable with mean 0 and variance $||x||^2 \le k$. As such,

$$\mathbb{E}[\exp(s\langle x,\gamma\rangle)] = \exp\left(\frac{s^2\|x\|^2}{2}\right) \leq \exp\left(\frac{ks^2}{2}\right)$$

Then,

$$\mathbb{E}_{\gamma} \left[\max_{x \in \mathcal{X}} \langle x, \gamma \rangle \right] \leq \inf_{s > 0} \frac{1}{s} \log \left(|\mathcal{X}| \exp \left(\frac{ks^2}{2} \right) \right)$$
$$= \inf_{s > 0} \left\{ \frac{\log |\mathcal{X}|}{s} + \frac{ks}{2} \right\}$$
$$= \sqrt{2k \log |\mathcal{X}|}$$

7.1.2. BOUNDING THE HESSIAN

Lemma 10. Suppose that the conditions of Theorem 1 hold. Let H denote the Hessian of Φ_{η} at an arbitrary θ . Fix some $j \in [d]$. Then,

$$\sum_{i=1}^{d} |H_{i,j}| \le \frac{k}{\eta} \sum_{x \in \mathcal{X}} |\mathbb{E} \left[\gamma_j \mathbb{1}[\hat{x} = x] \right]|$$

Proof. Recall the definition of the Hessian:

$$H_{i,j} = \frac{1}{n} \mathbb{E} \left[\hat{x} (\tilde{\theta}_t + \eta \gamma)_i \gamma_j \right]$$

Let us abbreviate $\hat{x}(\theta + \eta \gamma)$ as \hat{x} . Then,

$$\begin{split} \eta \sum_{i=1}^{d} |H_{i,j}| &= \eta \sum_{i:H_{i,j}>0} H_{i,j} - \eta \sum_{i:H_{i,j}\leq0} H_{i,j} \\ &= \mathbb{E}\left[\left(\sum_{i:H_{i,j}>0} \hat{x}_i - \sum_{i:H_{i,j}\leq0} \hat{x}_i\right) \gamma_j\right] \\ &= \sum_{x \in \mathcal{X}} \mathbb{E}\left[\left(\sum_{i:H_{i,j}>0} \hat{x}_i - \sum_{i:H_{i,j}\leq0} \hat{x}_i\right) \gamma_j \mathbb{1}_{[\hat{x}=x]}\right] \\ &= \sum_{x \in \mathcal{X}} \left(\sum_{i:H_{i,j}>0} x_i - \sum_{i:H_{i,j}\leq0} x_i\right) \mathbb{E}\left[\gamma_j \mathbb{1}_{[\hat{x}=x]}\right] \\ &\leq k \sum_{x \in \mathcal{X}} |\mathbb{E}\left[\gamma_j \mathbb{1}[\hat{x}=x]\right]| \end{split}$$

as
$$\left|\sum_{i:H_{i,j}>0} x_i - \sum_{i:H_{i,j}\leq 0} x_i\right| \leq k$$
 by assumption.

7.1.3. Bounding the Hessian for the k-sets problem

Proof of lemma 3. Let $H = \nabla^2 \Phi_n(\tilde{\theta})$. We have that,

$$H_{i,j} = \frac{1}{\eta} \mathbb{E} \left[\hat{x} (\tilde{\theta} + \eta \gamma)_i \gamma_j \right]$$

with $\hat{x}(z) \in \arg\min_{x \in \mathcal{X}} \langle x, z \rangle$ (Abernethy et al., 2014, Lemma 7). We shall abbreviate \hat{x} for $\hat{x}(\tilde{\theta} + \eta \gamma)$ in the remainder of the proof.

First, notice that

$$\sum_{i,j} H_{i,j} = \frac{1}{\eta} \sum_{i,j} \mathbb{E}[\gamma_j \hat{x}_i] = \frac{k}{\eta} \sum_{j=1}^d \mathbb{E}[\gamma_j] = 0$$

Secondly, we argue about the sign of $\mathbb{E}[\gamma_j \hat{x}_i]$. We claim that it is negative if i=j and positive otherwise. To see that, notice that γ_j is a symmetric random variable, so that for each $\alpha>0$ the density of γ_j at α and at $-\alpha$ is the same. If $i\neq j$, the event $\hat{x}_i=1$ is more probable if $\gamma_j=\alpha$ than when $\gamma_j=-\alpha$. If i=j then the opposite is true.

We have.

$$\sum_{i,j} H_{i,j} = \sum_{i,j:H_{i,j} \ge 0} H_{i,j} - \sum_{i,j:H_{i,j} < 0} H_{i,j}$$
$$= -2 \sum_{i,j:H_{i,j} < 0} H_{i,j}$$
$$= -2 \operatorname{Tr}(H)$$

The rest of the proof follows that of lemma 2.

7.1.4. TECHNICAL LEMMA

Lemma 11. We have,

$$\max \left\{ \min \left\{ \frac{Td}{16}, \frac{d\eta\sqrt{2}}{32} \right\}, \frac{Td}{16} \operatorname{erf} \left(-\frac{\sqrt{d}}{4\eta} \right) \right\}$$
$$\geq \min \left\{ 0.02Td, 0.05d^{5/4}\sqrt{T} \right\}$$

Proof. We get,

$$\begin{split} \max \left\{ \min \left\{ \frac{Td}{16}, \frac{d\eta\sqrt{2}}{32} \right\}, \frac{Td}{16} \operatorname{erf} \left(\frac{\sqrt{d}}{4\eta} \right) \right\} \\ & \geq \min \left\{ \frac{Td}{16}, \right. \\ & \max \left\{ \frac{d\eta\sqrt{2}}{32}, \frac{Td}{16} \operatorname{erf} \left(\frac{\sqrt{d}}{4\eta} \right) \right\} \right\} \end{split}$$

Notice that erf is nondecreasing and concave on \mathbb{R}_+ . Then,

$$\inf_{\eta>0} \max \left\{ \frac{d\eta\sqrt{2}}{32}, \frac{Td}{16} \operatorname{erf}\left(\frac{\sqrt{d}}{4\eta}\right) \right\}$$

$$\geq \min \left\{ \inf_{\eta<\sqrt{d}/4} \frac{Td}{16} \operatorname{erf}\left(\frac{\sqrt{d}}{4\eta}\right), \right.$$

$$\inf_{\eta\geq\sqrt{d}/4} \max \left\{ \frac{d\eta\sqrt{2}}{32}, \frac{Td}{16} \operatorname{erf}\left(\frac{\sqrt{d}}{4\eta}\right) \right\} \right\}$$

$$\geq \min \left\{ \frac{Td}{16} \operatorname{erf}(1), \right.$$

$$\inf_{\eta\geq\sqrt{d}/4} \max \left\{ \frac{d\eta\sqrt{2}}{32}, \frac{Td}{16} \frac{\sqrt{d}}{4\eta} \operatorname{erf}(1) \right\} \right\}$$

$$\geq \min \left\{ \frac{Td}{16} \operatorname{erf}(1), \sqrt{\frac{d\sqrt{2}}{32} \frac{Td}{16} \frac{\sqrt{d}}{4}} \operatorname{erf}(1) \right\}$$

$$\geq \min \left\{ 0.05Td, 0.02d^{5/4}\sqrt{T} \right\}$$

as required.

7.2. Lipschitz property of certain distributions

7.2.1. Uniform over the cube

Remember that we had required the marginals to have a variance of 1. Therefore WLOG we will take the cube to be $C=[0,1/\sqrt{3}]^d$. Then,

$$TV(P,Q) = \sup_{A} \left| \Pr_{P}[A] - \Pr_{Q}[A] \right|$$

$$= \sup_{A} \left| \frac{1}{Vol(C)} \int_{x \in A} \mathbb{1}_{[x \in C + \{\mu_{P}\}]} - \mathbb{1}_{[x \in C + \{\mu_{Q}\}]} \right|$$

$$\leq \sup_{A} \frac{1}{Vol(C)} \int_{x \in A} \left| \mathbb{1}_{[x \in C + \{\mu_{P}\}]} - \mathbb{1}_{[x \in C + \{\mu_{Q}\}]} \right|$$

$$\leq \frac{1}{Vol(C)} \int_{x \in \mathbb{R}^{d}} \left| \mathbb{1}_{[x \in C + \{\mu_{P}\}]} - \mathbb{1}_{[x \in C + \{\mu_{Q}\}]} \right|$$

$$= \frac{Vol((C + \{\mu_{P}\}) \triangle (C + \{\mu_{Q}\}))}{Vol(C)}$$

$$\leq \frac{2(1/\sqrt{3})^{d-1} \|\mu_{P} - \mu_{Q}\|_{1}}{(1/\sqrt{3})^{d}} = 2\sqrt{3} \|\mu_{P} - \mu_{Q}\|_{1}$$

so that $L=2\sqrt{3}$.

We now explain the above bound. Suppose that $C+\{\mu_P\}$ and $C+\{\mu_Q\}$ do not intersect. Then we must have $\|\mu_P-\mu_Q\|_\infty>1/\sqrt{3}$.

$$Vol((C + {\mu_P}) \triangle (C + {\mu_Q})) = 2 \left(\frac{1}{\sqrt{3}}\right)^d$$

$$< 2 \left(\frac{1}{\sqrt{3}}\right)^{d-1} \|\mu_P - \mu_Q\|_{\infty}$$

$$\leq 2 \left(\frac{1}{\sqrt{3}}\right)^{d-1} \|\mu_P - \mu_Q\|_1$$

If $C + \{\mu_P\}$ and $C + \{\mu_Q\}$ do intersect, then $\|\mu_P - \mu_Q\|_{\infty} \le 1/\sqrt{3}$ and we have

$$Vol((C + {\mu_P}) \cap (C + {\mu_Q}))$$

$$= \prod_{i=1}^{d} \left(\frac{1}{\sqrt{3}} - |\mu_{P,i} - \mu_{Q,i}|\right)$$

so that

$$Vol((C + {\mu_P}) \triangle (C + {\mu_Q}))$$

$$= Vol(C + {\mu_P}) + Vol(C + {\mu_Q})$$

$$- 2Vol((C + {\mu_P}) \cap (C + {\mu_Q}))$$

$$= 2\left(\left(\frac{1}{\sqrt{3}}\right)^d - \prod_{i=1}^d \left(\frac{1}{\sqrt{3}} - |\mu_{P,i} - \mu_{Q,i}|\right)\right)$$

$$= 2\left(\frac{1}{\sqrt{3}}\right)^d \left(1 - \prod_{i=1}^d \left(1 - \sqrt{3}|\mu_{P,i} - \mu_{Q,i}|\right)\right)$$

$$\leq 2\left(\frac{1}{\sqrt{3}}\right)^d \sqrt{3}||\mu_P - \mu_Q||_1$$

$$= 2\left(\frac{1}{\sqrt{3}}\right)^{d-1}||\mu_P - \mu_Q||_1$$

7.2.2. LAPLACE AND NEGATIVE EXPONENTIAL

We will show that for the Laplace distribution we have $L=\sqrt{2}$. For the exponential distribution the proof is similar except with L=1. Once again, recall that we had required the marginals to have a variance of 1, and therefore the PDF of the Laplace distribution is $\exp(-\sqrt{2}|x-\mu|)/\sqrt{2}$. In this case,

We want to bound

$$TV(P,Q) = \sup_{A} \left| \Pr_{P}[A] - \Pr_{Q}[A] \right|$$
$$= \sup_{A} \left| \int_{A} \frac{1}{\sqrt{2}} \exp(-\sqrt{2} ||x - \mu_{P}||_{1}) - \frac{1}{\sqrt{2}} \exp(-\sqrt{2} ||x - \mu_{Q}||_{1}) \right|$$

We have,

$$\int_{A} \frac{1}{\sqrt{2}} \exp(-\sqrt{2} \|x - \mu_{P}\|_{1})
- \frac{1}{\sqrt{2}} \exp(-\sqrt{2} \|x - \mu_{Q}\|_{1})
= \int_{A} \frac{1}{\sqrt{2}} \exp(-\sqrt{2} \|x - \mu_{P}\|_{1})
\cdot \left(1 - \exp(\sqrt{2} \|x - \mu_{P}\|_{1} - \sqrt{2} \|x - \mu_{Q}\|_{1})\right)
\leq \int_{A} \frac{1}{\sqrt{2}} \exp(-\sqrt{2} \|x - \mu_{P}\|_{1})
\cdot \left(\sqrt{2} \|x - \mu_{Q}\|_{1} - \sqrt{2} \|x - \mu_{P}\|_{1}\right)
\leq \int_{A} \frac{1}{\sqrt{2}} \exp(-\sqrt{2} \|x - \mu_{P}\|_{1}) \left(\sqrt{2} \|\mu_{P} - \mu_{Q}\|_{1}\right)
\leq \sqrt{2} \|\mu_{P} - \mu_{Q}\|_{1}$$

Similarly, one can bound

$$\int_{A} \frac{1}{\sqrt{2}} \exp(-\sqrt{2} \|x - \mu_{Q}\|_{1})$$
$$-\frac{1}{\sqrt{2}} \exp(-\sqrt{2} \|x - \mu_{P}\|_{1}) \le \sqrt{2} \|\mu_{P} - \mu_{Q}\|_{1}$$

and thus

$$TV(P,Q) \le \sqrt{2} \|\mu_P - \mu_Q\|_1$$

as claimed.

References

Abernethy, Jacob, Lee, Chansoo, Sinha, Abhinav, and Tewari, Ambuj. Online linear optimization via smoothing. *The Journal of Machine Learning Research*, 35: 807–823, 2014.