
Structural Maxent Models

A. Duality
The following is a version of the Fenchel duality theorem
(see (Rockafellar, 1997)).

Theorem 5. LetX and Y be Banach spaces, and f : X →
R ∪ {+∞} and g : Y → R ∪ {+∞} convex functions. Let
A : X → Y be a bounded linear map. If g is continuous at
some point y ∈ A dom(f), then the following holds:

inf
x∈X

(f(x) + g(Ax)) = sup
y∗∈Y ∗

(−f∗(A∗y∗)− g∗(−y∗)),

(16)
where f∗ and g∗ are conjugate functions of f and g respec-
tively, andA∗ the adjoint ofA. Furthermore, the supremum
in (16) is attained if it is finite.

The following lemma gives the expression of the conjugate
function of the (extended) relative entropy, which is a stan-
dard result (Boyd & Vandenberghe, 2004).

Lemma 6 (Conjugate function of the relative entropy). Let
f : RX → R be defined by f(p) = D(p ‖ p0) if p ∈ ∆ and
f(p) = +∞ elsewhere. Then, the conjugate function of f
is the function f∗ : RX → R defined for all q ∈ RX by

f∗(q) = log
(∑
x∈X

p0[x]eq[x]
)

= log
(

E
x∼p0

[eq[x]]
)
.

Proof. By definition of f , for any q ∈ RX , we can write

sup
p∈RX

(
〈p, q〉 −D(p ‖ p0)

)
= sup

p∈∆

(
〈p, q〉 −D(p ‖ p0)

)
.

Fix q ∈ RX and let q̄ ∈ ∆ be defined for all x ∈ X by

q̄[x] =
p0[x]eq[x]∑
x∈X p0[x]eq[x]

=
p0[x]eq[x]

Ep0 [eq]
. (17)

Then, the following holds for all p ∈ ∆:

〈p, q〉 −D(p ‖ p0) = E
p
[log(eq)]− E

p

[
log

p

p0

]
= E

p

[
log

p0e
q

p

]
= −D(p ‖ q̄) + log E

p0

[eq].

Since D(p ‖ q̄) ≥ 0 and D(p ‖ q̄) = 0 for p = q̄, this
shows that supp∈∆

(
p · q −D(p ‖ p0)

)
= log

(
Ep0

[eq]
)

and concludes the proof.

Theorem 1. Problem (2) and (3) are equivalent to the dual
optimization problem supw∈RN G(w):

sup
w∈RN

G(w) = min
p
F (p). (18)

Furthermore, let p∗ = argminp F (p), then, for any ε > 0
and any w such that |G(w) − supw∈RN G(w)| < ε, the
following inequality holds: D(p∗ ‖ pw) ≤ ε.

Proof. The proof follows by application of the Fenchel du-
ality theorem (Theorem 5, Appendix A) to the optimization
problem (3) with the functions f and g defined for all p and
u by f(p) = D(p ‖ p0) + I∆(p) and g(u) = IC(u) and
with A the linear map defined by Ap = Ep[Φ].

A is a bounded linear map since ‖A‖ ≤ ‖Φ‖∞ ≤ Λ
and A∗w = w · Φ. Furthermore, define u ∈ F by
uk = Ep̂[Φk]. Then, u is in A domf and is in C. Since
βk > 0 for all k, u is contained in int(C). g = IC equals
zero over int(C) and is therefore continuous over int(C),
thus g is continuous at u ∈ A domf .

By Lemma 6, the conjugate of f is the function f∗ : RX →
R defined by f∗(q) = log

(∑
x∈X p0[x]eq[x]

)
for all q ∈

RX . The conjugate function of g = IC is the function g∗

defined for all w ∈ RN by

g∗(w) = sup
u∈C

(
w · u− IC(u)

)
= sup

u∈C
(w · u)

= sup
u∈C

( p∑
k=1

wk · uk
)

=

p∑
k=1

sup
‖uk−ES [Φk]‖∞≤βk

(wk · uk)

=

p∑
k=1

wk · E
S

[Φk] +

p∑
k=1

sup
‖uk‖∞≤βk

(wk · uk)

= E
S

[w ·Φ] +

p∑
k=1

βk‖wk‖1,

where the penultimate equality holds by definition of the
dual norm. In view of these identities, we can write

− f∗(A∗w)− g∗(−w)

= − log
(∑
x∈X

p0[x]ew·Φ(x)
)

+ E
S

[w ·Φ]−
p∑
k=1

βk‖wk‖1

= − logZw +
1

m

m∑
i=1

w ·Φ(xi)−
p∑
k=1

βk‖wk‖1

=
1

m

m∑
i=1

log
ew·Φ(xi)

Zw
−

p∑
k=1

βk‖wk‖1

=
1

m

m∑
i=1

log

[
pw[xi]

p0[xi]

]
−

p∑
k=1

βk‖wk‖1 = G(w),

which proves that supw∈RN G(w) = minp F (p). For any
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w ∈ RN , we can write

G(w)−D(p∗ ‖ p0)

= E
x∼p̂

[
log

pw[x]

p0[x]

]
−

p∑
k=1

βk‖wk‖1 − E
x∼p∗

[
log

p∗[x]

p0[x]

]

= E
x∼p̂

[
log

pw[x]

p0[x]

]
−

p∑
k=1

βk‖wk‖1−

E
x∼p∗

[
log

p∗[x]

pw[x]

pw[x]

p0[x]

]
= −D(p∗ ‖ pw)−

p∑
k=1

βk‖wk‖1

+ E
x∼p̂

[
log

pw[x]

p0[x]

]
− E
x∼p∗

[
log

pw(x)

p0(x)

]
.

The difference of the last two terms can be expressed as
follows

E
x∼p̂

[
log

pw[x]

p0[x]

]
− E
x∼p∗

[
log

pw[x]

p0[x]

]
= E
x∼p̂

[w ·Φ(x)− logZw]− E
x∼p∗

[w ·Φ(x)− logZw]

= E
x∼p̂

[w ·Φ(x)]− E
x∼p∗

[w ·Φ(x)] .

Plugging back this equality and rearranging yields

D(p∗ ‖ pw) = D(p∗ ‖ p0)−G(w)

−
p∑
k=1

βk‖wk‖1 + w ·
(

E
x∼p̂

[Φ(x)]− E
x∼p∗

[Φ(x)]

)
.

The solution of the primal optimization, p∗, verifies the
constraint IC(Ep∗ [Φ]) = 0, that is ‖Ex∼p̂[Φk(x)] −
Ex∼p∗ [Φk(x)]‖∞ ≤ βk for all k ∈ [1, p]. By Hölder’s
inequality, this implies that

−
p∑
k=1

βk‖wk‖1 + w ·
(

E
x∼p̂

[Φ(x)]− E
x∼p∗

[Φ(x)]

)

= −
p∑
k=1

βk‖wk‖1 +

p∑
k=1

wk ·
(

E
x∼p̂

[Φk(x)]− E
x∼p∗

[Φk(x)]

)

≤ −
p∑
k=1

βk‖wk‖1 +

p∑
k=1

βk‖wk‖1 = 0.

Thus, we can write, for any w ∈ RN ,

D(p∗ ‖ pw) ≤ D(p∗ ‖ p0)−G(w).

Now, assume that w verifies |G(w) − supw∈RN G(w)| ≤
ε for some ε > 0. Then, D(p∗ ‖ p0) − G(w) =
supw G(w) − G(w) ≤ ε implies D(p∗ ‖ pw) ≤ ε. This
concludes the proof of the theorem.

Theorem 4. Problem (10) is equivalent to dual optimiza-
tion problem supw∈RN G̃(w):

sup
w∈RN

G̃(w) = min
p
F̃ (p). (19)

Furthermore, let p∗ = argminp F̃ (p). Then, for any ε > 0

and any w such that |G̃(w) − supw∈RN G̃(w)| < ε, we

have Ex∼p̂

[
D
(
p∗[·|x] ‖ p0[·|x]

)]
≤ ε.

Proof. The proof follows by application of the Fenchel du-
ality theorem (Theorem 5, Appendix A) to the optimization
problem (11) with the functions f̃ and g̃ defined for all p
and u by f̃(p) = Ex∼p̂

[
D
(
p[·|x] ‖ p0[·|x]

)
+ I∆

(
p[·|x]

)]
and g̃(u) = IC(u) and with A the linear map defined by
Ap = E x∼p̂

y∼p[·|x]

[Φ(x, y)].

A is a bounded linear map since ‖A‖ ≤ ‖Φ‖∞ ≤ Λ. Note
that

Ap = E
x∼p̂

y∼p[·|x]

[Φ(x, y)] =
∑
x∈X

∑
y∈Y

Φ(x, y)p̂[x]p[y|x]

=
∑

x∈supp(p̂)

(p̂[x]Φ(x, ·)) · (p[·|x]).

Thus, the conjugate of A is defined for all w ∈ RN by
A∗w = w ·

(
p̂(x)Φ(x, y)

)
. Furthermore, define u ∈ F

by uk = E(x,y)∼S [Φk(x, y)]. Then, u is in A domf and
is in C. Since βk > 0 for all k, u is contained in int(C).
g = IC equals zero over int(C) and is therefore continuous
over int(C), thus g is continuous at u ∈ A domf .

The conjugate function of f̃ is defined for all q =
(q[·|xi])i∈[1,m] by

f̃∗(q) = sup
p[·|x]∈∆

{〈p, q〉 −
∑
x∈X

p̂[x]D(p[·|x] ‖ p0[·|x])}

= sup
p[·|x]∈∆

{ ∑
x∈supp(p̂)

p̂[x]
∑
y∈Y

p[y|x]q[y|x](p̂[x])−1

−
∑

x∈supp(p̂)

p̂[x]D(p[·|x] ‖ p0[·|x])
}

=
∑

x∈supp(p̂)

p̂[x] sup
p[·|x]

{∑
y∈Y

p[y|x]

(
q[y|x]

p̂[x]

)
−D(p[·|x] ‖ p0[·|x])

}
=

∑
x∈supp(p̂)

p̂[x]f∗x

(
q[y|x]

p̂[x]

)

where fx is defined for all x ∈ X and p′ ∈ RY by f(p′) =
D(p′ ‖ p0[·|x]) if p′ ∈ ∆, f(p′) = +∞ otherwise. By
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Lemma 6, f∗x
(

q[y|x]
p̂[x]

)
= log

(∑
y∈Y p0[y|x]e

q[y|x]
p̂[x]

)
, thus,

f̃∗ is given by

f̃∗(q) = E
x∼p̂

[
log
(∑
y∈Y

p0[y|x]e
q[y|x]
p̂[x]

)]
.

In view of these identities, we can write

− f̃∗(A∗w)− g̃∗(−w)

= − E
x∼p̂

[
log
(∑
y∈Y

p0[y|x]ew·Φ(x,y)
)]

+ E
S

[w ·Φ]−
p∑
k=1

βk‖wk‖1

= − E
x∼p̂

[logZw(x)] +
1

m

m∑
i=1

w ·Φ(xi, yi)−
p∑
k=1

βk‖wk‖1

=
1

m

m∑
i=1

log
ew·Φ(xi,yi)

Zw(xi)
−

p∑
k=1

βk‖wk‖1

=
1

m

m∑
i=1

log

[
pw[yi|xi]
p0[yi|xi]

]
−

p∑
k=1

βk‖wk‖1 = G̃(w),

which proves that supw∈RN G̃(w) = minp F̃ (p). The sec-
ond part of the proof is similar to that of Theorem 1. For
any w ∈ RN , we can write

G̃(w)− E
x∼p̂

[D(p∗[·|x] ‖ p0[·|x])]

= E
(x,y)∼S

[
log

pw[y|x]

p0[y|x]

]
−

p∑
k=1

βk‖wk‖1

− E
x∼p̂

y∼p∗[·|x]

[
log

p∗[y|x]

p0[y|x]

]

= E
(x,y)∼S

[
log

pw[y|x]

p0[y|x]

]
−

p∑
k=1

βk‖wk‖1−

E
x∼p̂

y∼p∗[·|x]

[
log

p∗[y|x]

pw[y|x]

pw[y|x]

p0[y|x]

]

= − E
x∼p̂

[D(p∗[·|x] ‖ pw[·|x])]−
p∑
k=1

βk‖wk‖1

+ E
(x,y)∼S

[
log

pw[y|x]

p0[y|x]

]
− E

x∼p̂
y∼p∗[·|x]

[
log

pw[y|x]

p0[y|x]

]
.

The difference of the last two terms can be expressed as

follows

E
(x,y)∼S

[
log

pw[y|x]

p0[y|x]

]
− E

x∼p̂
y∼p∗[·|x]

[
log

pw[y|x]

p0[y|x]

]
= E

(x,y)∼S
[w ·Φ(x, y)− logZw(x)]

− E
x∼p̂

y∼p∗[·|x]

[w ·Φ(x, y)− logZw(x)]

= E
(x,y)∼S

[w ·Φ(x, y)]− E
x∼p̂

y∼p∗[·|x]

[w ·Φ(x, y)] .

Plugging back this equality and rearranging yields

E
x∼p̂

[D(p∗[·|x] ‖ pw[·|x])]

= E
x∼p̂

[D(p∗[·|x] ‖ p0[·|x])]− G̃(w)−
p∑
k=1

βk‖wk‖1

+ w ·
[

E
(x,y)∼S

[w ·Φ(x, y)]− E
x∼p̂

y∼p∗[·|x]

[w ·Φ(x, y)]

]
.

The solution of the primal optimization, p∗, verifies
the constraint IC(E x∼p̂

y∼p∗[·|x]

[Φ(x, y)]) = 0, that is

‖E x∼p̂
y∼p∗[·|x]

[Φk(x, y)] − E(x,y)∼S [Φk(x, y)]‖∞ ≤ βk for

all k ∈ [1, p]. By Hölder’s inequality, this implies that

−
p∑
k=1

βk‖wk‖1

+ w ·
[

E
(x,y)∼S

[w ·Φ(x, y)]− E
x∼p̂

y∼p∗[·|x]

[w ·Φ(x, y)]

]

≤ −
p∑
k=1

βk‖wk‖1 +

p∑
k=1

βk‖wk‖1 = 0.

Thus, we can write, for any w ∈ RN ,

E
x∼p̂

[D(p∗[·|x] ‖ pw[·|x])]

≤ E
x∼p̂

[D(p∗[·|x] ‖ p0[·|x])]− G̃(w).

Now, assume that w verifies |G̃(w) − supw∈RN G̃(w)| ≤
ε for some ε > 0. Then, Ex∼p̂[D(p∗[·|x] ‖
p0[·|x])] − G̃(w) = supw G̃(w) − G̃(w) ≤ ε implies
Ex∼p̂[D(p∗[·|x] ‖ pw[·|x])] ≤ ε. This concludes the proof
of the theorem.

B. Pseudocode of StructMaxent1
Figure 2 shows the pseudocode of StructMaxent1.
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STRUCTMAXENT1(S = (x1, . . . , xm))

1 for t← 1 to T do
2 for k ← 1 to p and j ← 1 to Nk do
3 if (wt−1,k,j 6= 0) then
4 dk,j ← βk sgn(wt−1,k,j) + εt−1,k,j

5 elseif |εt−1,k,j | ≤ βk then
6 dk,j ← 0
7 else dk,j ← −βk sgn(εt−1,k,j) + εt−1,k,j

8 (k, j)← argmax
(k,j)∈[1,p]×[1,Nk]

|dk,j |

9 β ← Φ
+
t−1,k,jΦ

−
k,je

−2wk,jΛ−Φ
+
k,jΦ

−
t−1,k,j

Φ
+
t−1,k,je

−2wk,jΛ−Φ
−
t−1,k,j

10 if (|β| ≤ βk) then
11 η ← −wt−1,k,j

12 elseif (β > βk) then

13 η ← 1
2Λ log

[
Φ
−
t−1,k,j(βk−Φ

+
k,j)

Φ
+
t−1,k,j(βk−Φ

−
k,j)

]
14 else η ← 1

2Λ log

[
Φ
−
t−1,k,j(βk+Φ

+
k,j)

Φ
+
t−1,k,j(βk+Φ

−
k,j)

]
15 wt ← wt−1 + ηek,j

16 pwt
← p0[x]ewt·Φ(x)∑

x∈X p0[x]ewt·Φ(x)

17 return pwt

Figure 2. Pseudocode of the StructMaxent1 algorithm. For all
(k, j) ∈ [1, p] × [1, Nk], βk = 2Rm(Hk) + β, εt−1,k,j =
Epwt−1

[Φk,j ]−ES [Φk,j ] and, for any s ∈ {−1,+1}, Φ
s
t−1,k,j =

Epwt−1
[Φk,j ]+sΛ and Φ

s
k,j = ES [Φk,j ]+sΛ. The closed-form

solutions for the step size given here assume that the conditions
(8) hold.

C. Algorithm
In this section we derive the step size for the StructMaxent1
and StructMaxent2 algorithms presented in Section 2.4 and
Appendix B.

Observe that

F (wt−1 + η ek,j)− F (wt−1) (20)

= βk(|wk,j + η| − |wk,j |)− ηE
S

[Φk,j ] + log
[

E
pwt−1

[eηΦk,j ]
]
.

Since Φk,j ∈ [−Λ,+Λ], by the convexity of x 7→ eηx, we
can write

eηΦk,j ≤ Λ− Φk,j
2Λ

e−ηΛ +
Φk,j + Λ

2Λ
eηΛ.

Taking the expectation and the log yields

log E
pwt−1

[eηΦk,j ] ≤ log

[
Φ

+

t−1,k,je
ηΛ − Φ

−
t−1,k,je

−ηΛ

2Λ

]

= −ηΛ + log

[
Φ

+

t−1,k,je
2ηΛ − Φ

−
t−1,k,j

2Λ

]
,

where we used the following notation:

Φ
s

t−1,k,j = E
pwt−1

[Φk,j ] + sΛ Φ
s

k,j = E
S

[Φk,j ] + sΛ,

for all (k, j) ∈ [1, p]× [1, Nk] and s ∈ {−1,+1}.

Plugging back this inequality in (20) and ignoring constant
terms, minimizing the resulting upper bound on F (wt−1 +
η ek,j)−F (wt−1) becomes equivalent to minimizing ψ(η)
defined for all η ∈ R by

ψ(η) = βk|wk,j+η|−ηΦ
+

k,j+log
[
Φ

+

t−1,k,je
2ηΛ−Φ

−
t−1,k,j

]
.

Let η∗ denote the minimizer of ψ(η). If wt−1,k,j +η∗ = 0,
then the subdifferential of |wt−1,k,j + η| at η∗ is the set
{ν : ν ∈ [−1,+1]}. Thus, in that case, the subdifferential
∂ψ(η∗), contains 0 iff there exists ν ∈ [−1,+1] such that

βkν − Φ
+

k,j +
2ΛΦ

+

t−1,k,je
2η∗Λ

Φ
+

t−1,k,je
2η∗Λ − Φ−t−1,k,j

= 0

⇔ Φ
+

k,j −
2ΛΦ

+

t−1,k,je
−2wt−1,k,jΛ

Φ
+

t−1,k,je
−2wt−1,k,jΛ − Φ−t−1,k,j

= βkν.

Thus, the condition is equivalent to∣∣∣∣∣Φ+

k,j −
2ΛΦ

+

t−1,k,je
−2wt−1,k,jΛ

Φ
+

t−1,k,je
−2wt−1,k,jΛ − Φ−t−1,k,j

∣∣∣∣∣ ≤ βk,
which can be rewritten as∣∣∣∣∣Φ

+

t−1,k,jΦ
−
k,je
−2wk,jΛ − Φ

+

k,jΦ
−
t−1,k,j

Φ
+

t−1,k,je
−2wk,jΛ − Φ

−
t−1,k,j

∣∣∣∣∣ ≤ βk.
If wt−1,k,j + η∗ > 0, then ψ is differentiable at η∗ and
ψ′(η∗) = 0, that is

β − Φ
+

k,j +
2ΛΦ

+

t−1,k,je
2η∗Λ

Φ
+

t−1,k,je
2η∗Λ − Φ

−
t−1,k,j

= 0

⇔ e2η∗Λ =
Φ
−
t−1,k,j(βk − Φ

+

k,j)

Φ
+

t−1,k,j(βk − Φ
−
k,j)

⇔ η∗ =
1

2Λ
log

[
Φ
−
t−1,k,j(βk − Φ

+

k,j)

Φ
+

t−1,k,j(βk − Φ
−
k,j)

]
.

For the step size η∗ to be in R, the following conditions
must be met:

(Φ
−
t−1,k,j 6= 0) ∧ (Φ

+

t−1,k,j 6= 0)∧

((βk − Φ
+

k,j) < 0) ∧ ((βk − Φ
−
k,j) 6= 0),

that is

( E
pwt−1

[Φk,j ] 6∈{−Λ,+Λ})∧(E
S

[Φk,j ] > −Λ+βk). (21)
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The condition wt−1,k,j + η∗ > 0 is equivalent to e2η∗Λ >
e−2wt−1,k,jΛ, which, in view of the expression of e2η∗Λ

given above can be written as

Φ
+

t−1,k,jΦ
−
k,je
−2wk,jΛ − Φ

+

k,jΦ
−
t−1,k,j

Φ
+

t−1,k,je
−2wk,jΛ − Φ

−
t−1,k,j

> βk.

Similarly, if wt−1,k,j + η∗ < 0, ψ is differentiable at η∗

and ψ′(η∗) = 0, which gives

η∗ =
1

2Λ
log

[
Φ
−
t−1,k,j(βk + Φ

+

k,j)

Φ
+

t−1,k,j(βk + Φ
−
k,j)

]
.

Again for the step size η∗ to be in R, the following condi-
tions must be met:

(Φ
−
t−1,k,j 6= 0) ∧ (Φ

+

t−1,k,j 6= 0)∧

((βk + Φ
+

k,j) 6= 0) ∧ ((βk + Φ
−
k,j) < 0),

that is

( E
pwt−1

[Φk,j ] 6∈ {−Λ,+Λ}) ∧ (E
S

[Φk,j ] < Λ − βk).

Combining with condition 21, the following condition on
Φ, Λ and βk must be satisfied:

( E
pwt−1

[Φk,j ] 6∈{−Λ,+Λ})∧

(−Λ + βk < E
S

[Φk,j ] < Λ− βk).

Figure 2 shows the pseudocode of our algorithm using the
closed-form solution for the step size just presented.

An alternative method consists of using a somewhat looser
upper bound for log Epwt−1

[eηΦk,j ] using Hoeffding’s
lemma and Φk,j ∈ [−Λ,+Λ]:

log E
pwt−1

[eηΦk,j ] ≤ η E
pwt−1

[Φk,j ] +
η2Λ2

2
.

Combining this inequality with (20) and disregarding con-
stant terms, minimizing the resulting upper bound on
F (wt−1 + η ek,j)− F (wt−1) becomes equivalent to min-
imizing ϕ(η) defined for all η ∈ R by

ϕ(η) = βk|wk,j + η|+ ηεt−1,k,j +
η2Λ2

2
.

Let η∗ denote the minimizer of ϕ(η). If wt−1,k,j + η∗ = 0,
then the subdifferential of |wt−1,k,j + η| at η∗ is the set
{ν : ν ∈ [−1,+1]}. Thus, in that case, the subdifferential
∂ϕ(η∗) contains 0 iff there exists ν ∈ [−1,+1] such that

βkν+εt−1,k,j+η
∗Λ2 = 0⇔ wt−1,k,jΛ

2−εt−1,k,j = βkν.

The condition is therefore equivalent to

|wt−1,k,jΛ
2 − εt−1,k,j | ≤ βk.

If wt−1,k,j + η∗ > 0, then ϕ is differentiable at η∗ and
ϕ′(η∗) = 0, that is

βk + εt−1,k,j + η∗Λ2 = 0⇔ η∗ =
1

Λ2
[−βk − εt−1,k,j ].

In view of that expression, the condition wt−1,k,j +η∗ > 0
is equivalent to

wt−1,k,jΛ
2 − εt−1,k,j > βk.

Similarly, if wt−1,k,j + η∗ < 0, ϕ is differentiable at η∗

and ϕ′(η∗) = 0, which gives

η∗ =
1

Λ2
[βk − εt−1,k,j ].

Figure 1 shows the pseudocode of our algorithm using the
closed-form solution for the step size just presented.

D. Convergence analysis
In this section, we give convergence guarantees for both
versions of the StructMaxent algorithm.

Theorem 3. Let (wt)t be the sequence of parameter vec-
tors generated by StructMaxent1 or StructMaxent2. Then,
(wt)t converges to the optimal solution w∗ of (6).

Proof. We begin with the proof for StructMaxent2. Our
proof is based on Lemma 19 of (Dudı́k et al., 2007), which
implies that it suffices to show that F (wt) admits a fi-
nite limit and that there exists a sequence ut such that
R(ut,wt) → 0 as t → ∞, where R is some auxiliary
function. A function R is said to be auxiliary if

R(u,w) = IC(u) +

p∑
k=1

βk‖wk‖1 + w · E
S

[Φ] + w · u

+B(u ‖ E
pw

[Φ]),

where B is a Bregman divergences. We will use the Breg-
man divergence based on the squared difference:

B(u ‖ E
pw

[Φ]) =
‖u− Epw [Φ]‖22

2Λ2
.

Let g0(u) = IC(u)+w ·u and observe that using the same
arguments as in the proof of Theorem 1, we can write

g∗0(r) = sup
u∈C

(
(r−w) · u− IC(u)

)
= (r−w) · E

S
[Φ] +

p∑
k=1

βk‖rk −wk‖1.
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Similarly, if f0(u) = B(u ‖ Epw [Φ]), then

f∗0 (r) = sup
u

(r · u−B(u ‖ E
pw

[Φ]))

=
Λ2‖r‖2

2
+ r · E

pw

[Φ].

Therefore, applying Theorem 5 with A = I , we obtain

inf
u
R(u,wt) = sup

r

(
− Λ2‖r‖2

2
− r · E

pwt

[Φ]− r · E
S

[Φ]

+

p∑
k=1

βk(‖wt,k‖1 − ‖rk + wt,k‖1)
)
,

and we define ut to be the solution of this optimization
problem, which, in view of Theorem 5, does exist. We will
now argue that R(ut,wt)→ 0 as t→∞. Note that

R(ut,wt) = −
p∑
k=1

Nk∑
j=1

inf
r

(λ2r

2
+ r( E

pwt

[Φk,j ]− E
S

[Φk,j ])

+ βk|wt,k,j | − βk|r + wt,k,j |
)
.

Recall that, by definition of StructMaxent2, the following
holds for all (k, j) ∈ [1, p]× [1, Nk]:

F (wt)− F (wt+1) (22)

≥ − inf
r

(Λ2r

2
+ r( E

pwt

[Φk,j ]− E
S

[Φk,j ])

+ βk|wt,k,j | − βk|r + wt,k,j |
)

≥ 0,

where the last inequality follows by taking r = 0.
Therefore, to complete the proof, it suffices to show that
limt→∞ F (wt) is finite, since then F (wt)−F (wt+1)→ 0
and R(ut,wt) → 0. By (22), F (wt) is decreasing and
it suffices to show that F (wt) is bounded below. This
is an immediate consequence of the feasibility of the op-
timization problem infw F (w) which was established in
Section 2.2 and the proof for StructMaxent2 is now com-
plete.

The proof for StructMaxent1 requires the use a different
Bregman divergence B defined as follows:

B(u ‖ E
pw

[Φ]) =

p∑
k=1

Nk∑
j=1

D0(ϕkj(u) ‖ ϕkj( E
pw

[Φ])),

where D0 is unnormalized relative entropy, ϕkj(u) =
((Λ − uk,j), (Λ + uk,j)) and ‖u‖∞ ≤ Λ. The rest of the
argument remains the same.

E. Bounds on Rademacher complexities
In this section, we give the proof of the upper bounds on
Rademacher complexities given in (15):

Rm(Hmono
k ) ≤

√
2k log d

m

Rm(H trees
k ) ≤

√
(4k + 2) log2(d+ 2) log(m+ 1)

m
.

The first inequality is an immediate consequence of Mas-
sart’s lemma, which states that

1

m
E
σ

[
sup
x∈A

m∑
i=1

σixi

]
≤
r
√

2 log |A|
m

,

where A ⊂ Rn is a finite set, r = maxx∈A ‖x‖2 and σis
are Rademacher random variables. If we take A to be the
image of the sample under Hmono

k then |A| ≤ |Hmono
k | ≤

dk. Moreover, if the features in Hmono
1 are normalized to

belong to [−1, 1] then Λ = 1 and r =
√
m. Combin-

ing these results with Massart’s lemma leads to the desired
bound.

Now we derive the second bound of (15). Since each binary
decision tree in H trees

k , can be viewed as a binary classifier,
Massart’s lemma yields that

Rm(H trees
k ) ≤

√
2 log ΠH trees

k
(m)

m
,

where ΠH trees
k

(m) is the growth function of H trees
k . We use

Sauer’s lemma to bound the growth function: ΠH trees
k

(m) ≤
(em)VC-dim(H trees

k ). For the family of binary decision trees
in dimension d it is known that VC-dim(H trees

k ) ≤ (2k +
1) log2(d+ 2) (Mansour, 1997) and the desired bound fol-
lows.


