Stochastic Dual Coordinate Ascent with Adaptive Probabilities: Supplementary material

Proofs

We shall need the following inequality.
Lemma 1. Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined in (3) satisfies the following inequality:

$$
\begin{equation*}
f(\alpha+h) \leq f(\alpha)+\langle\nabla f(\alpha), h\rangle+\frac{1}{2 \lambda n^{2}} h^{\top} A^{\top} A h \tag{1}
\end{equation*}
$$

holds for $\forall \alpha, h \in \mathbb{R}^{n}$.

Proof. Since g is 1 -strongly convex, g^{*} is 1 -smooth. Pick $\alpha, h \in \mathbb{R}^{n}$. Since, $f(\alpha)=\lambda g^{*}\left(\frac{1}{\lambda n} A \alpha\right)$, we have

$$
\begin{aligned}
& f(\alpha+h)=\lambda g^{*}\left(\frac{1}{\lambda n} A \alpha+\frac{1}{\lambda n} A h\right) \\
& \leq \lambda\left(g^{*}\left(\frac{1}{\lambda n} A \alpha\right)+\left\langle\nabla g^{*}\left(\frac{1}{\lambda n} A \alpha\right), \frac{1}{\lambda n} A h\right\rangle+\frac{1}{2}\left\|\frac{1}{\lambda n} A h\right\|^{2}\right) \\
& =f(\alpha)+\langle\nabla f(\alpha), h\rangle+\frac{1}{2 \lambda n^{2}} h^{\top} A^{\top} A h
\end{aligned}
$$

Proof of Lemma 3. It can be easily checked that the following relations hold

$$
\begin{align*}
& \nabla_{i} f\left(\alpha^{t}\right)=\frac{1}{n} A_{i}^{\top} w^{t}, \quad \forall t \geq 0, \quad i \in[n] \tag{2}\\
& g\left(w^{t}\right)+g^{*}\left(\bar{\alpha}^{t}\right)=\left\langle w^{t}, \bar{\alpha}^{t}\right\rangle, \quad \forall t \geq 0 \tag{3}
\end{align*}
$$

where $\left\{w^{t}, \alpha^{t}, \bar{\alpha}^{t}\right\}_{t \geq 0}$ is the output sequence of Algorithm 1. Let $t \geq 0$ and $\theta \in\left[0, \min _{i} p_{i}^{t}\right]$. For each $i \in[n]$, since ϕ_{i} is $1 / \gamma$-smooth, ϕ_{i}^{*} is γ-strongly convex and thus for arbitrary $s_{i} \in[0,1]$,

$$
\begin{align*}
& \phi_{i}^{*}\left(-\alpha_{i}^{t}+s_{i} \kappa_{i}^{t}\right) \\
& =\phi_{i}^{*}\left(\left(1-s_{i}\right)\left(-\alpha_{i}^{t}\right)+s_{i} \nabla \phi_{i}\left(A_{i}^{\top} w^{t}\right)\right) \\
& \leq\left(1-s_{i}\right) \phi_{i}^{*}\left(-\alpha_{i}^{t}\right)+s_{i} \phi_{i}^{*}\left(\nabla \phi_{i}\left(A_{i}^{\top} w^{t}\right)\right) \\
& \quad-\frac{\gamma s_{i}\left(1-s_{i}\right)\left|\kappa_{i}^{t}\right|^{2}}{2} \tag{4}
\end{align*}
$$

We have:

$$
\begin{align*}
& f\left(\alpha^{t+1}\right)-f\left(\alpha^{t}\right) \\
& \stackrel{(1)}{\leq}\left\langle\nabla f\left(\alpha^{t}\right), \alpha^{t+1}-\alpha^{t}\right\rangle \\
& \quad+\frac{1}{2 \lambda n^{2}}\left\langle\alpha^{t+1}-\alpha^{t}, A^{\top} A\left(\alpha^{t+1}-\alpha^{t}\right)\right\rangle \\
& =\nabla_{i} f\left(\alpha^{t}\right) \Delta \alpha_{i_{t}}^{t}+\frac{v_{i}}{2 \lambda n^{2}}\left|\Delta \alpha_{i_{t}}^{t}\right|^{2} \\
& \stackrel{(2)}{=} \frac{1}{n} A_{i_{t}}^{\top} w^{t} \Delta \alpha_{i_{t}}^{t}+\frac{v_{i}}{2 \lambda n^{2}}\left|\Delta \alpha_{i_{t}}^{t}\right|^{2} \tag{5}
\end{align*}
$$

Thus,

$$
\begin{aligned}
& D\left(\alpha^{t+1}\right)-D\left(\alpha^{t}\right) \\
& \begin{aligned}
& \stackrel{(5)}{\geq}-\frac{1}{n} A_{i_{t}}^{\top} w^{t} \Delta \alpha_{i_{t}}^{t}-\frac{v_{i_{t}}}{2 \lambda n^{2}}\left|\Delta \alpha_{i_{t}}^{t}\right|^{2}+\frac{1}{n} \sum_{i=1}^{n} \phi_{i}^{*}\left(-\alpha_{i}^{t}\right) \\
& \quad-\frac{1}{n} \sum_{i=1}^{n} \phi_{i}^{*}\left(-\alpha_{i}^{t+1}\right) \\
&=- \frac{1}{n} A_{i_{t}}^{\top} w^{t} \Delta \alpha_{i_{t}}^{t}-\frac{v_{i_{t}}}{2 \lambda n^{2}}\left|\Delta \alpha_{i_{t}}^{t}\right|^{2}+\frac{1}{n} \phi_{i_{t}}^{*}\left(-\alpha_{i_{t}}^{t}\right) \\
& \quad-\frac{1}{n} \phi_{i_{t}}^{*}\left(-\left(\alpha_{i_{t}}^{t}+\Delta \alpha_{i_{t}}^{t}\right)\right) \\
&=\max _{\Delta \in \mathbb{R}}-\frac{1}{n} A_{i_{t}}^{\top} w^{t} \Delta-\frac{v_{i_{t}}^{2}}{2 \lambda n^{2}}|\Delta|^{2}+\frac{1}{n} \phi_{i_{t}}^{*}\left(-\alpha_{i_{t}}^{t}\right) \\
& \quad-\frac{1}{n} \phi_{i_{t}}^{*}\left(-\left(\alpha_{i_{t}}^{t}+\Delta\right)\right)
\end{aligned}
\end{aligned}
$$

where the last equality follows from the definition of $\Delta \alpha_{i_{t}}^{t}$ in Algorithm 1. Then by letting $\Delta=-s_{i} \kappa_{i_{t}}^{t}$ for some arbitrary $s_{i} \in[0,1]$ we get:

$$
\begin{aligned}
& D\left(\alpha^{t+1}\right)-D\left(\alpha^{t}\right) \\
& \begin{array}{l}
\geq \frac{s_{i} A_{i_{t}}^{\top} w^{t} \kappa_{i_{t}}^{t}}{n}-\frac{s_{i}^{2} v_{i_{t}}\left|\kappa_{i_{t}}^{t}\right|^{2}}{2 \lambda n^{2}}+\frac{1}{n} \phi_{i_{t}}^{*}\left(-\alpha_{i_{t}}^{t}\right) \\
\quad-\frac{1}{n} \phi_{i_{t}}^{*}\left(-\alpha_{i_{t}}^{t}+s_{i} \kappa_{i_{t}}^{t}\right) \\
\stackrel{(4)}{\geq} \frac{s_{i}}{n}\left(\phi_{i_{t}}^{*}\left(-\alpha_{i_{t}}^{t}\right)-\phi_{i_{t}}^{*}\left(\nabla \phi_{i_{t}}\left(A_{i_{t}}^{\top} w^{t}\right)\right)+A_{i_{t}}^{\top} w^{t} \kappa_{i_{t}}^{t}\right) \\
\quad-\frac{s_{i}^{2} v_{i_{t}}\left|\kappa_{i_{t}}^{t}\right|^{2}}{2 \lambda n^{2}}+\frac{\gamma s_{i}\left(1-s_{i}\right)\left|\kappa_{i_{t}}^{t}\right|^{2}}{2 n} .
\end{array}
\end{aligned}
$$

By taking expectation with respect to i_{t} we get:

$$
\begin{align*}
& \mathbb{E}_{t}\left[D\left(\alpha^{t+1}\right)-D\left(\alpha^{t}\right)\right] \\
& \geq \sum_{i=1}^{n} \frac{p_{i}^{t} s_{i}}{n}\left[\phi_{i}^{*}\left(-\alpha_{i}^{t}\right)-\phi_{i}^{*}\left(\nabla \phi_{i}\left(A_{i}^{\top} w^{t}\right)\right)+A_{i}^{\top} w^{t} \kappa_{i}^{t}\right] \\
& \quad-\sum_{i=1}^{n} \frac{p_{i}^{t} s_{i}^{2}\left|\kappa_{i}^{t}\right|^{2}\left(v_{i}+\lambda \gamma n\right)}{2 \lambda n^{2}}+\sum_{i=1}^{n} \frac{p_{i}^{t} \gamma s_{i}\left|\kappa_{i}^{t}\right|^{2}}{2 n} \tag{6}
\end{align*}
$$

Set

$$
s_{i}= \begin{cases}0, & i \notin I_{t} \tag{7}\\ \theta / p_{i}^{t}, & i \in I_{t}\end{cases}
$$

Then $s_{i} \in[0,1]$ for each $i \in[n]$ and by plugging it into (6) we get:

$$
\begin{aligned}
& \mathbb{E}_{t}\left[D\left(\alpha^{t+1}\right)-D\left(\alpha^{t}\right)\right] \\
& \geq \frac{\theta}{n} \sum_{i \in I_{t}}\left[\phi_{i}^{*}\left(-\alpha_{i}^{t}\right)-\phi_{i}^{*}\left(\nabla \phi_{i}\left(A_{i}^{\top} w^{t}\right)\right)+A_{i}^{\top} w^{t} \kappa_{i}^{t}\right] \\
& \quad-\frac{\theta}{2 \lambda n^{2}} \sum_{i \in I_{t}}\left(\frac{\theta\left(v_{i}+n \lambda \gamma\right)}{p_{i}^{t}}-n \lambda \gamma\right)\left|\kappa_{i}^{t}\right|^{2}
\end{aligned}
$$

Finally note that:

$$
\begin{aligned}
& P\left(w^{t}\right)-D\left(\alpha^{t}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[\phi_{i}\left(A_{i}^{\top} w^{t}\right)+\phi_{i}^{*}\left(-\alpha_{i}^{t}\right)\right]+\lambda\left(g\left(w^{t}\right)+g^{*}\left(\bar{\alpha}^{t}\right)\right) \\
& \stackrel{(3)}{=} \frac{1}{n} \sum_{i=1}^{n}\left[\phi_{i}^{*}\left(-\alpha_{i}^{t}\right)+\phi_{i}\left(A_{i}^{\top} w^{t}\right)\right]+\frac{1}{n}\left\langle w^{t}, A \alpha^{t}\right\rangle \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[\phi_{i}^{*}\left(-\alpha_{i}^{t}\right)+A_{i}^{\top} w^{t} \nabla \phi_{i}\left(A_{i}^{\top} w^{t}\right)\right. \\
& \left.\quad-\phi_{i}^{*}\left(\nabla \phi_{i}\left(A_{i}^{\top} w^{t}\right)\right)+A_{i}^{\top} w^{t} \alpha_{i}^{t}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[\phi_{i}^{*}\left(-\alpha_{i}^{t}\right)-\phi_{i}^{*}\left(\nabla \phi_{i}\left(A_{i}^{\top} w^{t}\right)\right)+A_{i}^{\top} w^{t} \kappa_{i}^{t}\right] \\
& =\frac{1}{n} \sum_{i \in I_{t}}\left[\phi_{i}^{*}\left(-\alpha_{i}^{t}\right)-\phi_{i}^{*}\left(\nabla \phi_{i}\left(A_{i}^{\top} w^{t}\right)\right)+A_{i}^{\top} w^{t} \kappa_{i}^{t}\right]
\end{aligned}
$$

Proof of Lemma 4. Note that (13) is a standard constrained maximization problem, where everything independent of p can be treated as a constant. We define the Lagrangian

$$
L(p, \eta)=\theta(\kappa, p)-\eta\left(\sum_{i=1}^{n} p_{i}-1\right)
$$

and get the following optimality conditions:

$$
\begin{aligned}
& \frac{\left|\kappa_{i}^{t}\right|^{2}\left(v_{i}+n \lambda \gamma\right)}{p_{i}^{2}}=\frac{\left|\kappa_{j}^{t}\right|^{2}\left(v_{j}+n \lambda \gamma\right)}{p_{j}^{2}}, \forall i, j \in[n] \\
& \sum_{i=1}^{n} p_{i}=1 \\
& p_{i} \geq 0, \quad \forall i \in[n],
\end{aligned}
$$

the solution of which is (14).

Proof of Lemma 5. Note that in the proof of Lemma 3, the condition $\theta \in\left[0, \min _{i \in I_{t}} p_{i}^{t}\right]$ is only needed to ensure that s_{i} defined by (7) is in $[0,1]$ so that (4) holds. If ϕ_{i} is quadratic function, then (4) holds for arbitrary $s_{i} \in \mathbb{R}$. Therefore in this case we only need θ to be positive and the same reasoning holds.

Additional Numerical Experiments

We now provide more numerical experiments.

Figure 10. dorothea dataset $d=100000, n=800$, Quadratic loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 11. mushrooms dataset $d=112, n=8124$, Quadratic loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 12. ijenn1 dataset $d=22, n=49990$, Quadratic loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 13. w8a dataset $d=300, n=49749$, Quadratic loss with L_{2} regularizer, comparing real time with known algorithms

Figure 14. mushrooms dataset $d=112, n=8124$, Quadratic loss with L_{2} regularizer, comparing real time with known algorithms

Figure 15. cov1 dataset $d=54, n=581012$, Quadratic loss with L_{2} regularizer, comparing real time with known algorithms

Figure 16. w8a dataset $d=300, n=49749$, Smooth Hinge loss with L_{2} regularizer, comparing real time with known algorithms

Figure 17. dorothea dataset $d=100000, n=800$, Smooth Hinge loss with L_{2} regularizer, comparing real time with known algorithms

Figure 18. dorothea dataset $d=100000, n=800$, Smooth Hinge loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 19. mushrooms dataset $d=112, n=8124$, Smooth Hinge loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 20. $\operatorname{cov} 1$ dataset $d=54, n=581012$, Smooth Hinge loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 21. ijcnn1 dataset $d=22, n=49990$, Smooth Hinge loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 22. w8a dataset $d=300, n=49749$, Quadratic loss with L_{2} regularizer, comparison of different choices of the constant m

Figure 23. dorothea dataset $d=100000, n=800$, Quadratic loss with L_{2} regularizer, comparison of different choices of the constant m

Figure 24. mushrooms dataset $d=112, n=8124$, Quadratic loss with L_{2} regularizer, comparison of different choices of the constant m

Figure 25. ijenn1 dataset $d=22, n=49990$, Smooth Hinge loss with L_{2} regularizer, comparing real time with known algorithms

Figure 26. w8a dataset $d=300, n=49749$, Quadratic loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 27. dorothea dataset $d=100000, n=800$, Quadratic loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 28. mushrooms dataset $d=112, n=8124$, Quadratic loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 29. cov1 dataset $d=54, n=581012$, Quadratic loss with L_{2} regularizer, comparing number of iterations with known algorithms

Figure 30. ijenn1 dataset $d=22, n=49990$, Quadratic loss with L_{2} regularizer, comparison of different choices of the constant m

Figure 31. w8a dataset $d=300, n=49749$, Smooth Hinge loss with L_{2} regularizer, comparison of different choices of the constant m

Figure 32. dorothea dataset $d=100000, n=800$, Smooth Hinge loss with L_{2} regularizer, comparison of different choices of the constant m

Figure 33. ijcnn1 dataset $d=22, n=49990$, Smooth Hinge loss with L_{2} regularizer, comparison of different choices of the constant m

