1. Proof of Theorem 1

1.1. Proving Theorem 1 to Any Interval in \mathcal{I}

Proof (of Lemma 1) The proof is by induction on t. For $t = 1$, we have

$$\hat{W}_1 = \hat{w}_1([1, 1]) = 1 .$$

Next, we assume that the claim holds for any $t' \leq t$ and prove it for $t + 1$. Since $|\{[q, s] \in \mathcal{I} : q = t\}| \leq \lceil \log(t) \rceil + 1$ for all $t \geq 1$, we have

$$\hat{W}_{t+1} = \sum_{I=[q,s] \in \mathcal{I} : q \leq t} \hat{w}_{t+1}(I)$$

$$= \sum_{I=[q,s] \in \mathcal{I} : q \leq t} \hat{w}_{t+1}(I) + \sum_{I=[q,s] \in \mathcal{I} : q \leq t} \hat{w}_{t+1}(I)$$

$$\leq \log(t) + 1 + \sum_{I=[q,s] \in \mathcal{I} : q \leq t} \hat{w}_{t+1}(I) .$$

Next, according to the induction hypothesis, we have

$$\sum_{I=[q,s] \in \mathcal{I} : q \leq t} \hat{w}_{t+1}(I) = \sum_{I=[q,s] \in \mathcal{I} : q \leq t} \hat{w}_t(I)(1 + \eta_I \cdot I(t) \cdot r_t(I))$$

$$= \hat{W}_t + \sum_{I \in \mathcal{I}} \eta_I \cdot I(t) \cdot r_t(I) \cdot \hat{w}_t(I)$$

$$\leq t(\log(t) + 1) + \sum_{I \in \mathcal{I}} w_t(I) \cdot r_t(I) .$$

Hence,

$$\hat{W}_{t+1} \leq t(\log(t) + 1) + \log(t + 1) + 1 + \sum_{I \in \mathcal{I}} w_t(I) \cdot r_t(I)$$

$$\leq (t + 1)(\log(t + 1) + 1) + \sum_{I \in \mathcal{I}} w_t(I) \cdot r_t(I) .$$

We complete the proof by showing that $\sum_{I \in \mathcal{I}} w_t(I) \cdot r_t(I) = 0$. Since $x_t = x_{t,t}$ with probability $p_t(I)$ for every $I \in \mathcal{I}$, we obtain

$$\sum_{I \in \mathcal{I}} w_t(I) \cdot r_t(I) = W_t \sum_{I \in \mathcal{I}} p_t(I)(\ell_t(x_t) - \ell_t(x_t(I)))$$

$$= W_t(\ell_t(x_t) - \ell_t(x_t(I)))$$

$$= 0 .$$

Combining the above inequalities, we conclude the lemma.

Proof (of Lemma 2) Fix some $I = [q, s] \in \mathcal{I}$. We need to show that

$$\sum_{t=q}^s r_t(I) \leq 5 \log(s + 1) \sqrt{|I|} .$$

Since weights are non-negative, using Lemma 1, we obtain

$$\hat{w}_{s+1}(I) \leq \hat{W}_{s+1} \leq (s + 1)(\log(s + 1) + 1) ,$$

Hence,

$$\ln(\hat{w}_{s+1}(I)) \leq \ln(s + 1) + \ln(\log(s + 1) + 1) . \quad (1)$$

Next, we note that

$$\hat{w}_{s+1}(I) = \prod_{t=q}^s (1 + \eta_I \cdot I(t) \cdot r_t(I)) = \prod_{t=q}^s (1 + \eta_I \cdot r_t(I)) .$$

Noting that $\eta_I \in (0, 1/2)$ and using the inequality $\ln(1 + x) \geq x - x^2$ which holds for every $x \geq -1/2$, we obtain

$$\ln(\hat{w}_{s+1}(I)) = \sum_{t=q}^s \ln(1 + \eta_I \cdot r_t(I))$$

$$\geq \sum_{t=q}^s \eta_I \cdot r_t(I) - \sum_{t=q}^s (\eta_I \cdot r_t(I))^2$$

$$\geq \eta_I \sum_{t=q}^s r_t(I) - \eta_I |I| . \quad (2)$$

Combining Equation (2) and Equation (1) and dividing by
\(\eta_I \), we obtain
\[
\sum_{t=q}^{s} r_t(I) \leq \eta_I |I| + \eta_I^{-1} (\ln(s + 1) + \ln(\log(s + 1) + 1)) \\
\leq \eta_I |I| + \eta_I^{-1} (\ln(s + 1) + \log(s + 1)) \\
\leq \eta_I |I| + 2\eta_I^{-1} \log(s + 1) ,
\]
where the second inequality follows from the inequality \(x \geq \ln(1 + x) \). Substituting \(\eta_I := \min \left\{ \frac{1}{2}, \frac{1}{\sqrt{|I|}} \right\} \), we conclude the lemma.

1.2. Extending Theorem to Any Interval

In the next part we complete the proof of Theorem 1 by extending Lemma 2 to every interval.

Before proceeding, we set up an additional notation and also make some simple but useful observations regarding the properties of the set \(I \) (defined in Section 2).

For an interval \(J \subseteq \mathbb{N} \), we define the restriction of \(I \) to \(J \) by \(I|_J \). That is, \(I|_J = \{ I \in I : I \subseteq J \} \). We next list some useful properties of the set \(I \) that follow immediately from its definition (thus, we do not prove these claims).

Lemma 1.1

1. The size of every interval \(I \in \mathcal{I} \) is \(2^j \) for some \(j \in \mathbb{N} \cup \{0\} \).
2. For every \(j \in \mathbb{N} \cup \{0\} \), the left endpoint of the leftmost interval \(I \) whose size is \(2^j \) is \(2^j \). Thus, the size of every interval which is located to the left of \(I \) is smaller than \(|I| = 2^j \).
3. Let \(I = [q, s] \in \mathcal{I} \) be an interval and let \(I' = [q', q-1] \) be another interval of size \(2^j |I| \) for some \(j \leq 0 \). Then, \(I' \in \mathcal{I} \).
4. Let \(I = [q, s] \in \mathcal{I} \) be an interval and let \(I' = [s+1, s'] \) be a consecutive interval of size \(2^j |I| \) for some \(j \leq 0 \). Then, \(I' \in \mathcal{I} \).
5. Let \(I = [q, s] \in \mathcal{I} \) be an interval of size \(2^j \) for some \(j \in \mathbb{N} \cup \{0\} \). Then, (exactly) one of the intervals \([q, q + 2^{j+1} - 1], [s+1, s+2^{j+1}] \) (whose size is \(2^{j+1} \)) belongs to \(\mathcal{I} \).

The following lemma is a key tool for extending Lemma 2 to any interval.

Lemma 1.2 Let \(I = [q, s] \subseteq \mathbb{N} \) be an arbitrary interval. Then, the interval \(I \) can be partitioned into two finite sequences of disjoint and consecutive intervals, denoted \((I_{-k}, \ldots, I_0) \subseteq \mathcal{I}|_I \) and \((I_1, I_2, \ldots, I_p) \subseteq \mathcal{I}|_I \), such that
\[
(\forall i \geq 1) \quad |I_{i-1}|/|I_{i+1}| \leq 1/2.
\]

The lemma is illustrated in Figure 1.2. We next prove the lemma. Whenever we mention Property 1, \ldots, 5, we refer to Property 1, \ldots, 5 of Lemma 1.1.

Proof Let \(b_0 = \max\{ |I'| : I' \in \mathcal{I}|_I \} \) be the maximal size of any interval \(I' \in \mathcal{I} \) that is contained in \(I \). Among all of these intervals, let \(I_0 \) be the leftmost interval, i.e., we define
\[
q_0 := \arg \min \{ q' : |I'| < \sqrt{|I|} \} \\
\]
\[
s_0 = q_0 + b_0 - 1 \\
I_0 = [q_0, s_0] .
\]

Starting from \(q_0 - 1 \), we define a sequence of disjoint and consecutive intervals (in a reversed order), denoted \((I_{-1}, \ldots, I_{-k}) \), as follows:
\[
[q_{-1}, s_{-1}] := I_{-1} \\
= \arg \max_{I' = [q', s'] \in \mathcal{I}|_I : q' < q_0 - 1} |I'| \\
= \arg \max_{I' = [q', s'] \in \mathcal{I}|_I : q' < q_0 - 1} |I'| \\
\]
\[
[q_{-i}, s_{-i}] := I_{-i} \\
\]
\[
[s_{-i+1}, q_{-i+1}] := I_{-i+1} \\
\]
\[
|I_{-i}| \leq 2b_{-i} \\
\]
\[
|I_{-i}| \leq 2b_{-i} \\
\]

Clearly, this sequence is finite and the left endpoint of the leftmost interval, \(I_{-k} \), is \(q \). Denote the size of \(I_{-1} \) by \(b_{-1} \). We next prove that for every \(i \geq 1 \), \(b_{-i}/b_{-i+1} = 2^i \) for some \(j \leq -1 \). We note that according to Property 1, it suffices to show that \(b_{-i} < b_{-i+1} \) for every \(i \geq 1 \). We use induction. The base case follows from the minimality of \(I_0 \). We next assume that the claim holds for every \(i \in \{1, \ldots, k-1\} \) and prove for \(k \). Assume by contradiction that \(b_{-k} \geq b_{-k+1} \). Consider the interval \(I_{-k+1} \) which is obtained by concatenating a copy of \(I_{-k+1} \) to its left\(^1\). It follows that \(I_{-k+1} \) is an interval of size \(2b_{-k+1} \) which is contained in \([q, q_{-k+2} - 1] \) and its right endpoint is \(q_{-k+2} - 1 \). According to the induction hypothesis, \(|I_{-k+1}| = 2b_{-k+1} = 2^j \cdot b_{-k+2} \) for some \(j \leq 0 \). It follows from Property 3 that \(I_{-k+1} \in \mathcal{I}|_I \), contradicting the maximality of \(I_{-k+1} \).

Similarly, starting from \(s_0 + 1 \), we define a sequence of
\[1\text{Formally, } I_{-k+1} := [q_{-k+1} + b_{-k+1}, q_{-k+1} + 1] \cup I_{-k+1} .
\]
disjoint and consecutive intervals, denoted \((I_1, \ldots, I_p)\):

\[
[q_1, s_1] := I_1 \\
:= \arg \max_{i' = [q', s'] \in \mathcal{I}, q' = s_{i+1}} |I'_i| \\
\vdots \\
[q_i, s_i] := I_i \\
:= \arg \max_{i' = [q', s'] \in \mathcal{I}, q' = s_{i+1}} |I'_i| \\
\vdots
\]

Clearly, this sequence is finite and the right endpoint of the rightmost interval, \(I_p\), is \(s\). Denote the size of \(I_i\) by \(b_i\). We next prove that for every \(i \geq 2\), \(b_i/b_{i-1} = 2^j\) for some \(j \leq -1\). According to Property 1, it suffices to prove that \(b_i < b_{i-1}\) for every \(i \geq 2\). For this purpose, we first note that \(b_1 \leq b_0\); this follows immediately from the definition of \(b_0\). Hence, we may assume that \(b_i/b_{i-1} \in \{2^j : j \leq 0\}\) for every \(i \in \{1, \ldots, p-1\}\) and prove that \(b_p < b_{p-1}\). Assume by contradiction that \(b_p \geq b_{p-1}\). Consider the interval \(\hat{I}_{p-1}\) which is obtained by concatenating a copy of \(I_{p-1}\) to its right. It follows that \(\hat{I}_{p-1}\) is an interval of size \(2b_{p-1}\) which is contained in \([s_{p-2} + 1, s]\) and its left endpoint is \(s_{p-2} + 1\). According to the induction hypothesis, \(|\hat{I}_{p-1}| = 2b_{p-1} = 2^j \cdot b_{p-2}\) for some \(j \leq 1\). We need to consider the following two cases:

- Assume first that \(j \leq 0\) (thus, \(b_{p-1}/b_{p-2} \leq 1/2\)). Then, it follows from Property 4 that \(\hat{I}_{p-1} \in \mathcal{I}_j\), contradicting the maximality of \(I_{p-1}\).

- Assume that \(j = 1\) (i.e., \(b_{p-1} = b_{p-2}\)). Then, using Property 5, we obtain a contradiction to the maximality of \(I_{k-2}\).

We are now ready to complete the proof of Theorem 1.

Proof (of Theorem 1) Consider an arbitrary interval \(I = [q, s] \subseteq [T]\), and let \(I = \bigcup_{i=-k}^{p} I_i\) be the partition described in Lemma 1.2. Then,

\[
R_{\text{SAOL}}(I) \leq \sum_{i \leq 0} R_{\text{SAOL}}(I_i) \\
+ \sum_{i \geq 1} R_{\text{SAOL}}(I_i).
\]

We next bound the first term in the right-hand side of Equation (3). According to Lemma 2, we obtain that

\[
\sum_{i \leq 0} R_{\text{SAOL}}(I_i) \leq C \sum_{i \leq 0} |I_i|^\alpha \\
+ 5 \sum_{i \leq 0} \log(s_i + 1)|I_i|^{1/2} \\
\leq C \sum_{i \leq 0} |I_i|^\alpha \\
+ 5 \log(s + 1) \sum_{i \leq 0} |I_i|^{1/2}.
\]

According to Lemma 1.2,

\[
\sum_{i \leq 0} |I_i|^\alpha \leq \sum_{i = 0}^\infty (2^{-i} |I|)^\alpha \\
= \frac{2^\alpha}{2^\alpha - 1} |I|^\alpha \\
\leq \frac{2}{2^\alpha - 1} |I|^\alpha.
\]

Similarly, we have

\[
\sum_{i \leq 0} |I_i|^{1/2} \leq \frac{\sqrt{2}}{\sqrt{2} - 1} |I|^{1/2} \leq 4 |I|^{1/2}.
\]

Combining the last three inequalities, we obtain that

\[
\sum_{i \leq 0} R_{\text{SAOL}}(I_i) \leq \frac{2}{2^\alpha - 1} C |I|^\alpha + 20 \log(s + 1)|I|^{1/2}.
\]

The second term of the right-hand side of Equation (3) is bounded identically. Hence,

\[
R_{\text{SAOL}}(I) \leq \frac{4}{2^\alpha - 1} C |I|^\alpha + 40 \log(s + 1)|I|^{1/2}.
\]