Supplement: Strongly Adaptive Online Learning

Amit Daniely Alon Gonen Shai Shalev-Shwartz The Hebrew University

1. Proof of Theorem 1

1.1. Proving Theorem 1 to Any Interval in \mathcal{I}

Proof (of Lemma 1) The proof is by induction on t. For t = 1, we have

$$\tilde{W}_1 = \tilde{w}_1([1,1]) = 1$$

Next, we assume that the claim holds for any $t' \leq t$ and prove it for t+1. Since $|\{[q,s] \in \mathcal{I} : q = t\}| \leq \lfloor \log(t) \rfloor + 1$ for all $t \geq 1$, we have

$$\tilde{W}_{t+1} = \sum_{I = [q,s] \in \mathcal{I}} \tilde{w}_{t+1}(I)$$

= $\sum_{I = [t+1,s] \in \mathcal{I}} \tilde{w}_{t+1}(I) + \sum_{\substack{I = [q,s] \in \mathcal{I}: \\ q \le t}} \tilde{w}_{t+1}(I)$
 $\leq \log(t+1) + 1 + \sum_{\substack{I = [q,s] \in \mathcal{I}: \\ q \le t}} \tilde{w}_{t+1}(I) .$

Next, according to the induction hypothesis, we have

$$\sum_{\substack{I=[q,s]\in\mathcal{I}:\\q\leq t}} \tilde{w}_{t+1}(I) = \sum_{\substack{I=[q,s]\in\mathcal{I}:\\q\leq t}} \tilde{w}_t(I)(1+\eta_I \cdot I(t) \cdot r_t(I))$$
$$= \tilde{W}_t + \sum_{I\in\mathcal{I}} \eta_I \cdot I(t) \cdot r_t(I) \cdot \tilde{w}_t(I)$$
$$\leq t(\log(t)+1) + \sum_{I\in\mathcal{I}} w_t(I) \cdot r_t(I) .$$

Hence,

$$\tilde{W}_{t+1} \le t(\log(t) + 1) + \log(t+1) + 1 + \sum_{I \in \mathcal{I}} w_t(I) \cdot r_t(I)$$
$$\le (t+1)(\log(t+1) + 1) + \sum_{I \in \mathcal{I}} w_t(I) \cdot r_t(I) .$$

We complete the proof by showing that $\sum_{I\in\mathcal{I}}w_t(I)\cdot r_t(I)=0$. Since $x_t=x_{I,t}$ with probability $p_t(I)$ for

AMIT.DANIELY @MAIL.HUJI.AC.IL ALONGNN @CS.HUJI.AC.IL SHAIS @CS.HUJI.AC.IL

every $I \in \mathcal{I}$, we obtain

$$\sum_{I \in \mathcal{I}} w_t(I) \cdot r_I(t) = W_t \sum_{I \in \mathcal{I}} p_t(I)(\ell_t(x_t) - \ell_t(x_t(I)))$$
$$= W_t(\ell_t(x_t) - \ell_t(x_t))$$
$$= 0.$$

Combining the above inequalities, we conclude the lemma.

Proof (of Lemma 2) Fix some $I = [q, s] \in \mathcal{I}$. We need to show that

$$\sum_{t=q}^{s} r_t(I) \le 5\log(s+1)\sqrt{|I|} \ .$$

Since weights are non-negative, using Lemma 1, we obtain

$$\tilde{w}_{s+1}(I) \le \tilde{W}_{s+1} \le (s+1)(\log(s+1)+1)$$
,

Hence,

$$\ln(\tilde{w}_{s+1}(I)) \le \ln(s+1) + \ln(\log(s+1) + 1).$$
 (1)

Next, we note that

$$\tilde{w}_{s+1}(I) = \prod_{t=q}^{s} (1 + \eta_I \cdot I(t) \cdot r_t(I)) = \prod_{t=q}^{s} (1 + \eta_I \cdot r_t(I))$$

Noting that $\eta_I \in (0, 1/2)$ and using the inequality $\ln(1 + x) \ge x - x^2$ which holds for every $x \ge -1/2$, we obtain

$$\ln(\tilde{w}_{s+1}(I)) = \sum_{t=q}^{s} \ln(1 + \eta_{I} \cdot r_{t}(I))$$

$$\geq \sum_{t=q}^{s} \eta_{I} \cdot r_{t}(I) - \sum_{t=q}^{s} (\eta_{I} \cdot r_{t}(I))^{2}$$

$$\geq \eta_{I}(\sum_{t=q}^{s} r_{t}(I) - \eta_{I}|I|).$$
(2)

Combining Equation (2) and Equation (1) and dividing by

 η_I , we obtain

$$\sum_{t=q}^{s} r_t(I) \le \eta_I |I| + \eta_I^{-1} (\ln(s+1) + \ln(\log(s+1) + 1))$$
$$\le \eta_I |I| + \eta_I^{-1} (\log(s+1) + \log(s+1))$$
$$\le \eta_I |I| + 2\eta_I^{-1} \log(s+1) ,$$

where the second inequality follows from the inequality $x \ge \ln(1+x)$. Substituting $\eta_I := \min\left\{1/2, \frac{1}{\sqrt{|I|}}\right\}$, we conclude the lemma.

1.2. Extending The Theorem to Any Interval

In the next part we complete the proof of Theorem 1 by extending Lemma 2 to every interval.

Before proceeding, we set up an additional notation and also make some simple but useful observations regarding the properties of the set \mathcal{I} (defined in Section 2).

For an interval $J \subseteq \mathbb{N}$, we define the restriction of \mathcal{I} to J by $\mathcal{I}|_J$. That is, $\mathcal{I}|_J = \{I \in \mathcal{I} : I \subseteq J\}$. We next list some useful properties of the set \mathcal{I} that follow immediately from its definition (thus, we do not prove these claims).

Lemma 1.1

- 1. The size of every interval $I \in \mathcal{I}$ is 2^j for some $j \in \mathbb{N} \cup \{0\}$.
- 2. For every $j \in \mathbb{N} \cup \{0\}$, the left endpoint of the leftmost interval I whose size is 2^j is 2^j . Thus, the size of every interval which is located to the left of I is smaller than $|I| = 2^j$.
- 3. Let $I = [q, s] \in \mathcal{I}$ be an interval and let I' = [q', q-1]be another interval of size $2^j |I|$ for some $j \leq 0$. Then, $I' \in \mathcal{I}$.
- 4. Let $I = [q, s] \in \mathcal{I}$ be an interval and let I' = [s+1, s']be a consecutive interval of size $2^j |I|$ for some $j \leq 0$. Then, $I' \in \mathcal{I}$.
- 5. Let $I = [q, s] \in \mathcal{I}$ be an interval of size 2^{j} for some $j \in \mathbb{N} \cup \{0\}$. Then, (exactly) one of the intervals $[q, q+2^{j+1}-1]$, $[s+1, s+2^{j+1}]$ (whose size is 2^{j+1}) belongs to \mathcal{I} .

The following lemma is a key tool for extending Lemma 2 to any interval.

Lemma 1.2 Let $I = [q, s] \subseteq \mathbb{N}$ be an arbitrary interval. Then, the interval I can be paritioned into two finite sequences of disjoint and consecutive intervals, denoted $(I_{-k}, \ldots, I_0) \subseteq \mathcal{I}|_I$ and $(I_1, I_2, \ldots, I_p) \subseteq \mathcal{I}|_I$, such that

$$(\forall i \ge 1) \quad |I_{-i}|/|I_{-i+1}| \le 1/2$$

$$(\forall i \ge 2) \quad |I_i|/|I_{i-1}| \le 1/2 .$$

The lemma is illustrated in Figure 1.2. We next prove the lemma. Whenever we mention Property $1, \ldots, 5$, we refer to Property $1, \ldots, 5$ of Lemma 1.1.

Proof Let $b_0 = \max\{|I'| : I' \in \mathcal{I}|_I\}$ be the maximal size of any interval $I' \in \mathcal{I}$ that is contained in I. Among all of these intervals, let I_0 be the leftmost interval, i.e., we define

$$q_0 := \arg\min\{q' : [q', q' + b_0 - 1] \in \mathcal{I}|_I\}$$

$$s_0 = q_0 + b_0 - 1$$

$$I_0 = [q_0, s_0].$$

Starting from $q_0 - 1$, we define a sequence of disjoint and consecutive intervals (in a reversed order), denoted (I_{-1}, \ldots, I_{-k}) , as follows:

$$\begin{split} [q_{-1}, s_{-1}] &:= I_{-1} \\ &:= \mathop{\arg\max}_{I' = [q', s'] \in \mathcal{I}|_{[q, q_0 - 1]}:} |I'| \\ &:= i \\ [q_{-i}, s_{-i}] &:= I_{-i} \\ &:= \mathop{\arg\max}_{I' = [q', s'] \in \mathcal{I}|_{[q, q_{-i+1} - 1]}:} |I'| \\ &:= i \\ &:= i \\ \end{split}$$

Clearly, this sequence is finite and the left endpoint of the leftmost interval, I_{-k} , is q. Denote the size of I_{-i} by b_{-i} . We next prove that for every $i \ge 1$, $b_{-i}/b_{-i+1} = 2^j$ for some $j \leq -1$. We note that according to Property 1, it suffices to show that $b_{-i} < b_{-i+1}$ for every $i \ge 1$. We use induction. The base case follows from the minimality of I_0 . We next assume that the claim holds for every $i \in \{1, \ldots, k-1\}$ and prove for k. Assume by contradiction that $b_{-k} \geq b_{-k+1}$. Consider the interval I_{-k+1} which is obtained by concatenating a copy of I_{-k+1} to its left¹. It follows that I_{-k+1} is an interval of size $2b_{-k+1}$ which is contained in $[q, q_{-k+2} - 1]$ and its right endpoint is $q_{-k+2} - 1$. According to the induction hypothesis, $|\hat{I}_{-k+1}| = 2b_{-k+1} = 2^j \cdot b_{-k+2}$ for some $j \leq 0$. It follows from Property 3 that $\hat{I}_{-k+1} \in \mathcal{I}|_I$, contradicting the maximality of I_{-k+1} .

Similarly, starting from $s_0 + 1$, we define a sequence of

¹Formally,
$$\hat{I}_{-k+1} := [q_{-k+1} - b_{-k+1}, q_{-k+1} - 1] \cup I_{-k+1}.$$

disjoint and consecutive intervals, denoted (I_1, \ldots, I_p) :

$$\begin{split} [q_1, s_1] &:= I_1 \\ &:= \mathop{\arg\max}_{I' = [q', s'] \in \mathcal{I}|_{[s_0+1, s]}:} |I'| \\ &:= \mathop{\arg\max}_{q' = s_0+1} |I'| \\ &\vdots \\ [q_i, s_i] &:= I_i \\ &:= \mathop{\arg\max}_{I' = [q', s'] \in \mathcal{I}|_{[s_i-1}+1, s]:} |I'| \\ &: \\ &: \end{split}$$

Clearly, this sequence is finite and the right endpoint of the rightmost interval, I_p , is s. Denote the size of I_i by b_i . We next prove that for every $i \ge 2$, $b_i/b_{i-1} = 2^j$ for some $j \le -1$. According to Property 1, it suffices to prove that $b_i < b_{i-1}$ for every $i \ge 2$. For this purpose, we first note that $b_1 \le b_0$; this follows immediately from the definition of b_0 . Hence, we may assume that $b_i/b_{i-1} \in \{2^j : j \le 0\}$ for every $i \in \{1, \ldots, p-1\}$ and prove that $b_p < b_{p-1}$. Assume by contradiction that $b_p \ge b_{p-1}$. Consider the interval \hat{I}_{p-1} which is obtained by concatenating a copy of I_{p-1} to its right. It follows that \hat{I}_{p-1} is an interval of size $2b_{p-1}$ which is contained in $[s_{p-2}+1, s]$ and its left endpoint is $s_{p-2}+1$. According to the induction hypothesis, $|\hat{I}_{p-1}| = 2b_{p-1} = 2^j \cdot b_{p-2}$ for some $j \le 1$. We need to consider the following two cases:

- Assume first that $j \leq 0$ (thus, $b_{p-1}/b_{p-2} \leq 1/2$). Then, it follows from Property 4 that $\hat{I}_{p-1} \in \mathcal{I}|_I$, contradicting the maximality of I_{p-1} .
- Assume that j = 1 (i.e., $b_{p-1} = b_{p-2}$). Then, using Property 5, we obtain a contradiction to the maximality of I_{k-2} .

We are now ready to complete the proof of Theorem 1.

Proof (of Theorem 1) Consider an arbitrary interval $I = [q, s] \subseteq [T]$, and let $I = \bigcup_{i=-k}^{p} I_i$ be the partition described in Lemma 1.2. Then,

$$R_{\text{SAOL}^{\mathcal{B}}}(I) \leq \sum_{i \leq 0} R_{\text{SAOL}^{\mathcal{B}}}(I_i) + \sum_{i \geq 1} R_{\text{SAOL}^{\mathcal{B}}}(I_i) .$$
(3)

We next bound the first term in the the right-hand side of

[•] [] [•	•] [• •	• • • • •] [• • • • • •	·] [• •] [] []
$12 \ 4$	78	16	24	$28 \ 30$

Figure 1. Geometric Covering of Interval: The interval I = [1, 30] is partitioned into the sequences $(I_{-1} = [1], I_{-2} = [2, 3], I_{-1} = [4, 7], I_0 = [8, 15])$ and $(I_1 = [16, 23], I_2 = [24, 27], I_3 = [28, 29], I_4 = [30])$

Equation (3). According to Lemma 2, we obtain that

$$\begin{split} \sum_{i \leq 0} R_{\text{SAOL}^{\mathcal{B}}}(I_i) &\leq C \sum_{i \leq 0} |I_i|^{\alpha} \\ &+ 5 \sum_{i \leq 0} \log(s_i + 1) |I_i|^{1/2} \\ &\leq C \sum_{i \leq 0} |I_i|^{\alpha} \\ &+ 5 \log(s + 1) \sum_{i \leq 0} |I_i|^{1/2} \end{split}$$

According to Lemma 1.2,

$$\sum_{i \le 0} |I_i|^{\alpha} \le \sum_{i=0}^{\infty} (2^{-i}|I|)^{\alpha}$$
$$= \frac{2^{\alpha}}{2^{\alpha} - 1} |I|^{\alpha}$$
$$\le \frac{2}{2^{\alpha} - 1} |I|^{\alpha}.$$

Similarly, we have

$$\sum_{i \le 0} |I_i|^{1/2} \le \frac{\sqrt{2}}{\sqrt{2} - 1} |I|^{1/2} \le 4|I|^{\frac{1}{2}} .$$

Combining the three last inequalities, we obtain that

$$\sum_{i \leq 0} R_{\text{SAOL}^{\mathcal{B}}}(I_i) \leq \frac{2}{2^{\alpha} - 1} C |I|^{\alpha} + 20 \log(s+1) |I|^{\frac{1}{2}} .$$

The second term of the right-hand side of Equation (3) is bounded identically. Hence,

$$R_{\text{SAOL}^{\mathcal{B}}}(I) \leq \frac{4}{2^{\alpha} - 1} C |I|^{\alpha} + 40 \log(s+1) |I|^{\frac{1}{2}}.$$