Supplement: Strongly Adaptive Online Learning

Amit Daniely

Alon Gonen
Shai Shalev-Shwartz
The Hebrew University

AMIT.DANIELY@MAIL.HUJI.AC.IL
ALONGNN@CS.HUJI.AC.IL
SHAIS@CS.HUJI.AC.IL

1. Proof of Theorem 1

1.1. Proving Theorem 1 to Any Interval in \mathcal{I}

Proof (of Lemma 1) The proof is by induction on t. For $t=1$, we have

$$
\tilde{W}_{1}=\tilde{w}_{1}([1,1])=1
$$

Next, we assume that the claim holds for any $t^{\prime} \leq t$ and prove it for $t+1$. Since $|\{[q, s] \in \mathcal{I}: q=t\}| \leq\lfloor\log (t)\rfloor+$ 1 for all $t \geq 1$, we have

$$
\begin{aligned}
\tilde{W}_{t+1} & =\sum_{I=[q, s] \in \mathcal{I}} \tilde{w}_{t+1}(I) \\
& =\sum_{I=[t+1, s] \in \mathcal{I}} \tilde{w}_{t+1}(I)+\sum_{\substack{I=[q, s] \in \mathcal{I}: \\
q \leq t}} \tilde{w}_{t+1}(I) \\
& \leq \log (t+1)+1+\sum_{\substack{I=[q, s] \in \mathcal{I}: \\
q \leq t}} \tilde{w}_{t+1}(I)
\end{aligned}
$$

Next, according to the induction hypothesis, we have

$$
\begin{aligned}
\sum_{\substack{I=[q, s] \in \mathcal{I}: \\
q \leq t}} \tilde{w}_{t+1}(I) & =\sum_{\substack{I=[q, s] \in \mathcal{I}: \\
q \leq t}} \tilde{w}_{t}(I)\left(1+\eta_{I} \cdot I(t) \cdot r_{t}(I)\right) \\
& =\tilde{W}_{t}+\sum_{I \in \mathcal{I}} \eta_{I} \cdot I(t) \cdot r_{t}(I) \cdot \tilde{w}_{t}(I) \\
& \leq t(\log (t)+1)+\sum_{I \in \mathcal{I}} w_{t}(I) \cdot r_{t}(I)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\tilde{W}_{t+1} & \leq t(\log (t)+1)+\log (t+1)+1+\sum_{I \in \mathcal{I}} w_{t}(I) \cdot r_{t}(I) \\
& \leq(t+1)(\log (t+1)+1)+\sum_{I \in \mathcal{I}} w_{t}(I) \cdot r_{t}(I)
\end{aligned}
$$

We complete the proof by showing that $\sum_{I \in \mathcal{I}} w_{t}(I)$. $r_{t}(I)=0$. Since $x_{t}=x_{I, t}$ with probability $p_{t}(I)$ for
every $I \in \mathcal{I}$, we obtain

$$
\begin{aligned}
\sum_{I \in \mathcal{I}} w_{t}(I) \cdot r_{I}(t) & =W_{t} \sum_{I \in \mathcal{I}} p_{t}(I)\left(\ell_{t}\left(x_{t}\right)-\ell_{t}\left(x_{t}(I)\right)\right) \\
& =W_{t}\left(\ell_{t}\left(x_{t}\right)-\ell_{t}\left(x_{t}\right)\right) \\
& =0
\end{aligned}
$$

Combining the above inequalities, we conclude the lemma.
Proof (of Lemma 2) Fix some $I=[q, s] \in \mathcal{I}$. We need to show that

$$
\sum_{t=q}^{s} r_{t}(I) \leq 5 \log (s+1) \sqrt{|I|}
$$

Since weights are non-negative, using Lemma 1, we obtain

$$
\tilde{w}_{s+1}(I) \leq \tilde{W}_{s+1} \leq(s+1)(\log (s+1)+1)
$$

Hence,

$$
\begin{equation*}
\ln \left(\tilde{w}_{s+1}(I)\right) \leq \ln (s+1)+\ln (\log (s+1)+1) \tag{1}
\end{equation*}
$$

Next, we note that

$$
\tilde{w}_{s+1}(I)=\prod_{t=q}^{s}\left(1+\eta_{I} \cdot I(t) \cdot r_{t}(I)\right)=\prod_{t=q}^{s}\left(1+\eta_{I} \cdot r_{t}(I)\right)
$$

Noting that $\eta_{I} \in(0,1 / 2)$ and using the inequality $\ln (1+$ $x) \geq x-x^{2}$ which holds for every $x \geq-1 / 2$, we obtain

$$
\begin{align*}
\ln \left(\tilde{w}_{s+1}(I)\right) & =\sum_{t=q}^{s} \ln \left(1+\eta_{I} \cdot r_{t}(I)\right) \\
& \geq \sum_{t=q}^{s} \eta_{I} \cdot r_{t}(I)-\sum_{t=q}^{s}\left(\eta_{I} \cdot r_{t}(I)\right)^{2} \\
& \geq \eta_{I}\left(\sum_{t=q}^{s} r_{t}(I)-\eta_{I}|I|\right) \tag{2}
\end{align*}
$$

Combining Equation (2) and Equation (1) and dividing by
η_{I}, we obtain

$$
\begin{aligned}
\sum_{t=q}^{s} r_{t}(I) & \leq \eta_{I}|I|+\eta_{I}^{-1}(\ln (s+1)+\ln (\log (s+1)+1)) \\
& \leq \eta_{I}|I|+\eta_{I}^{-1}(\log (s+1)+\log (s+1)) \\
& \leq \eta_{I}|I|+2 \eta_{I}^{-1} \log (s+1)
\end{aligned}
$$

where the second inequality follows from the inequality $x \geq \ln (1+x)$. Substituting $\eta_{I}:=\min \left\{1 / 2, \frac{1}{\sqrt{|I|}}\right\}$, we conclude the lemma.

1.2. Extending The Theorem to Any Interval

In the next part we complete the proof of Theorem 1 by extending Lemma 2 to every interval.
Before proceeding, we set up an additional notation and also make some simple but useful observations regarding the properties of the set \mathcal{I} (defined in Section 2).

For an interval $J \subseteq \mathbb{N}$, we define the restriction of \mathcal{I} to J by $\left.\mathcal{I}\right|_{J}$. That is, $\left.\mathcal{I}\right|_{J}=\{I \in \mathcal{I}: I \subseteq J\}$. We next list some useful properties of the set \mathcal{I} that follow immediately from its definition (thus, we do not prove these claims).

Lemma 1.1

1. The size of every interval $I \in \mathcal{I}$ is 2^{j} for some $j \in$ $\mathbb{N} \cup\{0\}$.
2. For every $j \in \mathbb{N} \cup\{0\}$, the left endpoint of the leftmost interval I whose size is 2^{j} is 2^{j}. Thus, the size of every interval which is located to the left of I is smaller than $|I|=2^{j}$.
3. Let $I=[q, s] \in \mathcal{I}$ be an interval and let $I^{\prime}=\left[q^{\prime}, q-1\right]$ be another interval of size $2^{j}|I|$ for some $j \leq 0$. Then, $I^{\prime} \in \mathcal{I}$.
4. Let $I=[q, s] \in \mathcal{I}$ be an interval and let $I^{\prime}=\left[s+1, s^{\prime}\right]$ be a consecutive interval of size $2^{j}|I|$ for some $j \leq 0$. Then, $I^{\prime} \in \mathcal{I}$.
5. Let $I=[q, s] \in \mathcal{I}$ be an interval of size 2^{j} for some $j \in \mathbb{N} \cup\{0\}$. Then, (exactly) one of the intervals $\left[q, q+2^{j+1}-1\right],\left[s+1, s+2^{j+1}\right]$ (whose size is 2^{j+1}) belongs to \mathcal{I}.

The following lemma is a key tool for extending Lemma 2 to any interval.

Lemma 1.2 Let $I=[q, s] \subseteq \mathbb{N}$ be an arbitrary interval. Then, the interval I can be paritioned into two finite sequences of disjoint and consecutive intervals, denoted $\left.\left(I_{-k}, \ldots, I_{0}\right) \subseteq \mathcal{I}\right|_{I}$ and $\left.\left(I_{1}, I_{2}, \ldots, I_{p}\right) \subseteq \mathcal{I}\right|_{I}$, such that

$$
(\forall i \geq 1) \quad\left|I_{-i}\right| /\left|I_{-i+1}\right| \leq 1 / 2
$$

$$
(\forall i \geq 2) \quad\left|I_{i}\right| /\left|I_{i-1}\right| \leq 1 / 2 .
$$

The lemma is illustrated in Figure 1.2. We next prove the lemma. Whenever we mention Property $1, \ldots, 5$, we refer to Property $1, \ldots, 5$ of Lemma 1.1.

Proof Let $b_{0}=\max \left\{\left|I^{\prime}\right|:\left.I^{\prime} \in \mathcal{I}\right|_{I}\right\}$ be the maximal size of any interval $I^{\prime} \in \mathcal{I}$ that is contained in I. Among all of these intervals, let I_{0} be the leftmost interval, i.e., we define

$$
\begin{aligned}
& q_{0}:=\arg \min \left\{q^{\prime}:\left.\left[q^{\prime}, q^{\prime}+b_{0}-1\right] \in \mathcal{I}\right|_{I}\right\} \\
& s_{0}=q_{0}+b_{0}-1 \\
& I_{o}=\left[q_{0}, s_{0}\right]
\end{aligned}
$$

Starting from $q_{0}-1$, we define a sequence of disjoint and consecutive intervals (in a reversed order), denoted $\left(I_{-1}, \ldots, I_{-k}\right)$, as follows:

$$
\begin{aligned}
{\left[q_{-1}, s_{-1}\right] } & :=I_{-1} \\
& :=\underset{\substack{I^{\prime}=\left[q^{\prime}, s^{\prime}\right] \in \mathcal{I}_{\left[q, q_{0}-1\right]} \\
s^{\prime}=q_{0}-1}}{\arg \max }\left|I^{\prime}\right| \\
& \vdots \\
{\left[q_{-i}, s_{-i}\right] } & :=I_{-i} \underset{\substack{ \\
I^{\prime}=\left.\left[q^{\prime}, s^{\prime}\right] \in \mathcal{I}\right|_{\left[q, q_{-i+1}-1\right]}: \\
s^{\prime}=q_{-i+1}-1}}{\arg \max }\left|I^{\prime}\right| \\
& := \\
\vdots &
\end{aligned}
$$

Clearly, this sequence is finite and the left endpoint of the leftmost interval, I_{-k}, is q. Denote the size of I_{-i} by b_{-i}. We next prove that for every $i \geq 1, b_{-i} / b_{-i+1}=2^{j}$ for some $j \leq-1$. We note that according to Property 1 , it suffices to show that $b_{-i}<b_{-i+1}$ for every $i \geq 1$. We use induction. The base case follows from the minimality of I_{0}. We next assume that the claim holds for every $i \in\{1, \ldots, k-1\}$ and prove for k. Assume by contradiction that $b_{-k} \geq b_{-k+1}$. Consider the interval \hat{I}_{-k+1} which is obtained by concatenating a copy of I_{-k+1} to its left ${ }^{1}$. It follows that \hat{I}_{-k+1} is an interval of size $2 b_{-k+1}$ which is contained in $\left[q, q_{-k+2}-1\right]$ and its right endpoint is $q_{-k+2}-1$. According to the induction hypothesis, $\left|\hat{I}_{-k+1}\right|=2 b_{-k+1}=2^{j} \cdot b_{-k+2}$ for some $j \leq 0$. It follows from Property 3 that $\left.\hat{I}_{-k+1} \in \mathcal{I}\right|_{I}$, contradicting the maximality of I_{-k+1}.

Similarly, starting from $s_{0}+1$, we define a sequence of

[^0]disjoint and consecutive intervals, denoted $\left(I_{1}, \ldots, I_{p}\right)$:
\[

$$
\begin{aligned}
{\left[q_{1}, s_{1}\right] } & :=I_{1} \\
& :=\underset{\substack{I^{\prime}=\left.\left[q^{\prime}, s^{\prime}\right] \in \mathcal{I}\right|_{\left[s_{0}+1, s\right]}: \\
q^{\prime}=s_{0}+1}}{\arg \max }\left|I^{\prime}\right| \\
& \vdots \\
{\left[q_{i}, s_{i}\right] } & :=I_{i} \underset{I^{\prime}=\left.\left[q^{\prime}, s^{\prime}\right] \in \mathcal{I}\right|_{\left[s_{i-1}+1, s\right]}:}{\arg \max =s_{i-1}+1} \mid
\end{aligned}
$$
\]

Clearly, this sequence is finite and the right endpoint of the rightmost interval, I_{p}, is s. Denote the size of I_{i} by b_{i}. We next prove that for every $i \geq 2, b_{i} / b_{i-1}=2^{j}$ for some $j \leq$ -1 . According to Property 1, it suffices to prove that $b_{i}<$ b_{i-1} for every $i \geq 2$. For this purpose, we first note that $b_{1} \leq b_{0}$; this follows immediately from the definition of b_{0}. Hence, we may assume that $b_{i} / b_{i-1} \in\left\{2^{j}: j \leq 0\right\}$ for every $i \in\{1, \ldots, p-1\}$ and prove that $b_{p}<b_{p-1}$. Assume by contradiction that $b_{p} \geq b_{p-1}$. Consider the interval \hat{I}_{p-1} which is obtained by concatenating a copy of I_{p-1} to its right. It follows that \hat{I}_{p-1} is an interval of size $2 b_{p-1}$ which is contained in $\left[s_{p-2}+1, s\right]$ and its left endpoint is $s_{p-2}+1$. According to the induction hypothesis, $\left|\hat{I}_{p-1}\right|=2 b_{p-1}=$ $2^{j} \cdot b_{p-2}$ for some $j \leq 1$. We need to consider the following two cases:

- Assume first that $j \leq 0$ (thus, $b_{p-1} / b_{p-2} \leq 1 / 2$). Then, it follows from Property 4 that $\left.\hat{I}_{p-1} \in \mathcal{I}\right|_{I}$, contradicting the maximality of I_{p-1}.
- Assume that $j=1$ (i.e., $b_{p-1}=b_{p-2}$). Then, using Property 5, we obtain a contradiction to the maximality of I_{k-2}.

We are now ready to complete the proof of Theorem 1.
Proof (of Theorem 1) Consider an arbitrary interval $I=$ $[q, s] \subseteq[T]$, and let $I=\bigcup_{i=-k}^{p} I_{i}$ be the partition described in Lemma 1.2. Then,

$$
\begin{align*}
R_{\mathrm{SAOL}^{\mathcal{B}}}(I) & \leq \sum_{i \leq 0} R_{\mathrm{SAOL}^{\mathcal{B}}}\left(I_{i}\right) \\
& +\sum_{i \geq 1} R_{\mathrm{SAOL}^{\mathcal{B}}}\left(I_{i}\right) . \tag{3}
\end{align*}
$$

We next bound the first term in the the right-hand side of

Figure 1. Geometric Covering of Interval: The interval $I=$ $[1,30]$ is partitioned into the sequences $\left(I_{-1}=[1], I_{-2}=\right.$ $\left.[2,3], I_{-1}=[4,7], I_{0}=[8,15]\right)$ and $\left(I_{1}=[16,23], I_{2}=\right.$ $\left.[24,27], I_{3}=[28,29], I_{4}=[30]\right)$

Equation (3). According to Lemma 2, we obtain that

$$
\begin{aligned}
\sum_{i \leq 0} R_{\mathrm{SAOL}}\left(I_{i}\right) & \leq C \sum_{i \leq 0}\left|I_{i}\right|^{\alpha} \\
& +5 \sum_{i \leq 0} \log \left(s_{i}+1\right)\left|I_{i}\right|^{1 / 2} \\
& \leq C \sum_{i \leq 0}\left|I_{i}\right|^{\alpha} \\
& +5 \log (s+1) \sum_{i \leq 0}\left|I_{i}\right|^{1 / 2} .
\end{aligned}
$$

According to Lemma 1.2,

$$
\begin{aligned}
\sum_{i \leq 0}\left|I_{i}\right|^{\alpha} & \leq \sum_{i=0}^{\infty}\left(2^{-i}|I|\right)^{\alpha} \\
& =\frac{2^{\alpha}}{2^{\alpha}-1}|I|^{\alpha} \\
& \leq \frac{2}{2^{\alpha}-1}|I|^{\alpha}
\end{aligned}
$$

Similarly, we have

$$
\sum_{i \leq 0}\left|I_{i}\right|^{1 / 2} \leq \frac{\sqrt{2}}{\sqrt{2}-1}|I|^{1 / 2} \leq 4|I|^{\frac{1}{2}}
$$

Combining the three last inequalities, we obtain that

$$
\sum_{i \leq 0} R_{\mathrm{SAOL}}{ }^{\mathcal{B}}\left(I_{i}\right) \leq \frac{2}{2^{\alpha}-1} C|I|^{\alpha}+20 \log (s+1)|I|^{\frac{1}{2}}
$$

The second term of the right-hand side of Equation (3) is bounded identically. Hence,

$$
R_{\mathrm{SAOL}} \mathcal{B}^{\mathcal{B}}(I) \leq \frac{4}{2^{\alpha}-1} C|I|^{\alpha}+40 \log (s+1)|I|^{\frac{1}{2}}
$$

[^0]: ${ }^{1}$ Formally, $\hat{I}_{-k+1}:=\left[q_{-k+1}-b_{-k+1}, q_{-k+1}-1\right] \cup I_{-k+1}$.

