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Abstract

Context trees (CT) are a widely used tool in ma-
chine learning for representing context-specific
independences in conditional probability distri-
butions. Parsimonious context trees (PCTs) are
a recently proposed generalization of CTs that
can enable statistically more efficient learning
due to a higher structural flexibility, which is
particularly useful for small-data settings. How-
ever, this comes at the cost of computationally
expensive structure learning, which is feasible
only for domains with small alphabets and tree
depths. In this work, we investigate to which
degree CTs can be generalized to increase sta-
tistical efficiency while still keeping the learn-
ing computationally feasible. Approaching this
goal from two different angles, we (i) propose
algorithmic improvements to the PCT learning
algorithm, and (ii) study further generalizations
of CTs, which are inspired by PCTs, but trade
structural flexibility for computational efficiency.
By empirical studies both on simulated and real-
world data, we demonstrate that the synergy of
combining of both orthogonal approaches yields
a substantial breakthrough in obtaining statisti-
cally efficient and computationally feasible gen-
eralizations of CTs.

1. Introduction

Univariate conditional distributions play a central role in
various multivariate probabilistic models such as Markov
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models, hidden Markov models, Bayesian networks, and
general hierarchical graphical models. Ideally, each condi-
tional distribution either involves only a few conditioning
variables or we can assume the conditional distribution to
take some simple form, e.g., a linear model. In practice,
neither case may apply, and we encounter the curse of di-
mensionality: the representation size, i.e., the number of
parameters, of the conditional distribution grows exponen-
tially in the number of variables. Depending on the chosen
statistical paradigm, such explosion easily leads to over-
fitting or otherwise poor use of the available data, which
become scarce in relation to a multitude of parameters.

The concept of context-specific independence (Boutilier
et al., 1996) provides an appealing approach to deal with
the curse of dimensionality. Context-specific independence
takes place when fixing some of the conditioning variables
to certain states, called a context, the remaining variables
provide no additional information about the response vari-
able, that is, the response variable is independent of the rest
given the context. Various structured models that enable
learning a sufficient set of contexts from data have been in-
vestigated (Rissanen, 1983; Bryant, 1986; Quinlan, 1986).

Context trees (CTs) in particular enable computationally
efficient learning of a sufficient set of contexts for cate-
gorical, linearly ordered random variables (Rissanen, 1983;
Volf & Willems, 1994; Biihlmann & Wyner, 1999). CTs
arise from organizing the full conditional probability distri-
bution as a rooted tree, where each node at level £ of the tree
is labeled by one of the possible states of the ¢th variable. If
a node at level / is a leaf of the tree, then the path from the
root to the leaf corresponds to a context zjxs - - - ¢4 in the
sense defined above: the conditional probability will be the
same no matter what states are selected for the remaining
variables. CTs can thus be learned efficiently by pruning
subtrees that are not justified by observed data.
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Context trees have been extensively applied in variable-
order Markov models where there is a natural ordering
of the variables; see, e.g., the survey by Begleiter et al.
(2004). But CTs appear also in more sophisticated mod-
els, such as permuted variable length Markov chains (Zhao
et al., 2005) and variable-order Bayesian networks (Ben-
Gal et al., 2005). The computational efficiency of CTs,
however, comes at the cost of reduced statistical efficiency,
stemming from the structural restrictions of CTs. Consider,
for example, a case where fixing the first and the third con-
ditioning variable to certain states x1 and x3 renders the re-
sponse variable independent of all the remaining variables.
To capture such context-specific independence, a CT has to
include a distinct context x;xx3 per every possible state
x9 of the second variable, as “jumping” over variables is
not allowed in CTs. In general, CTs may introduce an un-
necessarily large number of contexts, which results in sta-
tistical inefficiency particularly when the data are scarce
and the alphabet is not binary.

To address the shortcoming of CTs, Bourguignon & Ro-
belin (2004) proposed parsimonious context trees (PCTs).
PCTs generalize CTs by identifying a context with a se-
lection of state subsets for the conditioning variables.
Thus, in the above example, the multiple contexts z;zsx3
with varying xo become represented by the single context
{x1}S{x3}, where S stands for the state space of the sec-
ond variable. See Figure 1 for a richer illustration of PCTs
and the next section for a more formal definition. It has
been observed that the increased flexibility of the model
translates into improved prediction performance (Eggeling
et al.,, 2013). PCTs have been applied in several do-
mains, such as homogeneous parsimonious Markov models
for modeling bacterial genomes (Bourguignon & Robelin,
2004), parsimonious higher-order Hidden Markov models
for array-CGH analysis (Seifert et al., 2012), and inhomo-
geneous parsimonious Markov models for motif discovery
in DNA sequences (Eggeling et al., 2014a).

Unfortunately, the existing algorithm for learning PCTs has
an unfavorable computational complexity with respect to
the alphabet size and the depth of the PCT (Bourguignon
& Robelin, 2004). Hence, their applicability is currently
limited to small-alphabet domains, with DNA sequence
analysis being the most prominent instance. This is some-
what paradoxical, since generalizations of CTs that allow a
higher structural flexibility are supposed to excel in statisti-
cal efficiency in particular when the data contain relatively
long dependences over a large alphabet.

In this work, we aim at generalizing CTs for higher alpha-
bets and depths in order to improve their statistical effi-
ciency while keeping the computational effort in a practi-
cally feasible range. We approach this goal from two differ-
ent angles. First, we investigate to which degree the exist-

Figure 1. A parsimonious context tree (PCT) of depth 2 over
a five-letter alphabet. The PCT encodes a partition of all 25
possible context words into the six contexts {AA, AC,DA,DC},
{ca,cc,BA,BC,EA,EC}, {AB,AD}, {BB,BD,DB, DD, EB,ED},
{CB, CD}, and {AE, BE, CE, DE, EE}, each of which is assigned
a distinct distribution of the response variable.

ing algorithm for learning PCTs can by expedited by purely
algorithmic improvements for storing and reusing interme-
diate results of computation. Second, we put forward alter-
native classes of generalized CTs that are inspired by and
borrow features from PCTs, but trade statistical efficiency
for computational efficiency with the goal of finding a good
tradeoff between both extremes. We empirically show that
significant speedups are obtained when the algorithmic im-
provements are applied to the new classes of generalized
CTs and both the algorithmic and the modeling ideas thus
act in concert. Furthermore, the speedups are particularly
substantial when the data set is not only sparse but contains
a small number of observations. We also study the predic-
tion performance of the different types of generalized CTs,
and find that, in general, the more structural flexibility, the
better. In particular, the new classes of generalized CTS,
which are less flexible but computationally more efficient
than PCTs, can already yield a significant increase in sta-
tistical efficiency in relation to traditional CTs.

The next section briefly recaps the definition of PCTs
and describes the dynamic programming (DP) algorithm
of Bourguignon & Robelin (2004), to which we refer in the
sequel as basic DP. In Section 3 we describe two new ideas
for speeding up basic DP. In Section 4 we introduce alter-
native generalizations of CTs, which are inspired by PCTs
but allow a higher computational efficiency. Section 5 pro-
vides a theoretical analysis of the expected computational
gain of the proposed ideas. In Section 6 we evaluate the
effect of the ideas on running time using both artificial and
real data, and study the statistical efficiency of different CT
generalizations for real data. Finally, we summarize the
lessons learned by some concluding remarks (Section 7).

2. Parsimonious Context Trees and Basic
Dynamic Programming

For simplicity of presentation, we will assume that the vari-
ables of interest take values from a common alphabet ¥ of
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o symbols; generalization to the case where each variable
has a dedicated state space is straightforward. A PCT of
depth d over X is a rooted tree of depth d where each node
is labeled by a non-empty subset of 3, subject to the fol-
lowing constraint: for each inner node, the labels of the
node’s children form a set partition of >.. Each node at level
¢ < d of the tree corresponds to a context C' C ¢, namely
a sequence of node labels Cy - - - C atlevels 4, . .., 1 along
the unique path from the node to the root (excluding the
root). Note that we use a reversed order of indexing to
write the “past” symbols on the left of the current symbol.
We say that a word x4 - - - 1 and a context CY - - - C'y match
each other if z; € Cj forall j = 1,...,{. A subtree of a
PCT is trivial if all its nodes are labeled by X.

With each leaf of a PCT we associate a set of parameters
fc, where x ranges over the symbols in ¥ and C' is the
context that corresponds to the leaf. The parameter 0¢,
specifies the conditional probability that the symbol in a
fixed position of the modeled sequence is = given that it is
preceded by a context word in C. While several statistical
models that make use of PCTs have been proposed (Bour-
guignon & Robelin, 2004; Seifert et al., 2012; Eggeling
et al., 2013), we here assume without loss of generality that
the data consist of a single long sequence. We thus consider
a single conditional distribution and assume the availability
of n data samples, each of which is a sequence of length
d+1 over the alphabet 3. The sufficient statistics for learn-
ing the parameters 6, of a fixed PCT are simply the re-
spective counts nc, defined as the number of data samples
Tq---T1%o in which x4 - - - 21 matches C and xg = .

For measuring the goodness of fit of a PCT given the
data, there is a large collection of possible scoring func-
tions, which often assume the functional form of a penal-
ized likelihood (Akaike, 1974; Schwarz, 1978; Silander
et al., 2008). The only structural property we will need is
that the score of a PCT factorizes into a product [ [~ f(C'),
where C ranges over all leaves of the PCT and f(C) is
a local score that depends on the particular data subset of
sequences that match C. Virtually all practically relevant
scoring functions have this property.

The number of PCTs grows super-exponentially w.r.t. to
depth and alphabet size. For example, there are 2.75 x 10*?
PCTs for 0 = 4 and d = 3 already. Hence, learning an
optimal PCT by explicit enumeration of all possibilities is
infeasible for all but the smallest instances.

Fortunately, an exhaustive search can be avoided by dy-
namic programming (Bourguignon & Robelin, 2004). The
key is the following recurrence: Define f;(C) = f(C) and

q
felCe--- Ch) = slu?}gngz { il;[lsz(SiCe o Cl)}

forall £ = 0,1,...,d — 1 and subsets Cy,...,Cy C X,

where “LI” stands for disjoint union. It holds that f; equals
the optimal score over all PCTs of depth d. The basic dy-
namic programming algorithm exploits this recurrence us-
ing a data structure called extended PCT. Each inner node
of an extended PCT has 27 — 1 children labeled by the non-
empty subsets of the alphabet . Hence, the extended PCT
contains all leaves and inner nodes that may exist in a valid
PCT of the same depth and alphabet. The algorithm prunes
the extended PCT in a bottom-up traversal to a valid PCT
by keeping, at each inner node, a set of child nodes that
form an optimal partition of the alphabet, and by discard-
ing the remaining child nodes in the extended PCT.

The time complexity of the basic DP algorithm is de-
termined by the work needed at level d — 1 for opti-
mal partitioning of the alphabet for all possible contexts
C4—1 ---Cq, and is given by

o027 -1*""B,), (1)

where the Bell number B,, is the number of partitions of an
o-element set (Rota, 1964). For example, for the four-letter
DNA alphabet, B, = 27 — 1 = 15, and thus the running
time scales as 15%. For larger alphabets, B,, rapidly grows
much larger than 27 —1, and the computation of the optimal
partitions of child nodes becomes the limiting factor. For
small alphabets, however, the running time of the algorithm
may be dominated by the computation of the (27 —1)¢ local
scores, one for each leaf of the extended PCT.

3. Enhanced Dynamic Programming

There are two major obstacles that render basic DP infeasi-
ble for learning optimal PCTs of larger depth and alphabet.
First, the number of alphabet partitions, B,, grows super-
exponentially in o. Second, the sheer number of possible
contexts, (27 — 1)¢ grows exponentially in d. We address
the first challenge in Section 3.1 by giving a substantially
faster algorithm for finding an optimal set partition. We
address the second challenge in Section 3.2 by making use
of the observation that in an optimal PCT, the subtrees of
two nodes are identical if the nodes correspond to the same
data subset. It should be noted that both ideas do not alter
the set of admissible tree structures, thus the enhanced DP
algorithm yields the same output as the basic algorithm.

3.1. Fast Alphabet Partitioning

The key to faster finding of an optimal set partition is to
exploit the factorization of the objective function. For a
finite set U, define g(U) as the maximum of the product
f(S1)--- f(Sq) over all set partitions {S1,..., 54} of U,
with the convention that g(f)) = 1. Then, for non-empty U,

g(U) = o {f(Mg(U\T)}.
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Figure 2. The memoization rule. Consider the shown part of the
extended PCT and assume that the word *BA does not occur in
any data word. Hence, the second layer node {A} represents the
same data subset as its sibling node {2, B} and so the subtrees
below both nodes are identical (green). The same applies for the
subtrees {C} and {B, C} (yellow), and to the subtrees of {A, C}
and {A, B, C} (orange).

This recurrence enables the computation of an optimal par-
tition of alphabet ¥ in each inner node in [{(T,U) : 0 C
T C U C X} = 37 — 27 steps, yielding a significant
improvement on the Bell number term for larger alphabets.
The actual members of an optimal partition can be found
by standard backtracking.

3.2. Pruning by Memoization

Consider two contexts Cp - --Cy and Dy - - - D4 that corre-
spond to two nodes of the extended PCT at level /. Sup-
pose the two contexts specify exactly the same data subset
S. Then, in an optimal PCT containing the two nodes, the
subtrees of the two nodes are identical, since the two fixed
contexts do not impose any constraints on the possible sub-
trees. In terms of the associated scores, f;(Cy---Cp) =
fe(Dg--- Dy). Hence, it suffices to compute the optimal
score and the respective subtree only once and store them in
an appropriate data structure. We use a hash map, with the
data subset S, represented by the corresponding data point
IDs, and the level £ as the key. Repeated computations are
avoided by calling the values from the data structure. Fig-
ure 2 shows an example where the absence of one particular
context word in the data leads to three applications of rule
so that only 4 of 7 subtrees have to be explicitly computed.

The effectiveness of the memoization rule is data depen-
dent. For small data sets but deep trees, the rule is expected
to apply often, for then the number of contexts gets large
while the number of distinct data subsets (matching long
contexts) gets small. Likewise, the relative gain is expected
be the higher, the larger the alphabet is. Also, the memo-
ization rule is likely to apply more frequently on highly
structured data than on random data.

The memoization rule relies on the assumption that the lo-
cal score f(C') depends on the context C' only through the

data subset S that matches the context, which is fulfilled
for most scoring criteria (Akaike, 1974; Schwarz, 1978; Si-
lander et al., 2008). A notable exception is the Bayesian
marginal likelihood with context-dependent hyperparame-
ters (Eggeling et al., 2013).

4. Alternative Context Tree Generalizations

While PCTs are a highly flexible generalization of CTs,
it not obvious whether this high flexibility, which makes
structure learning expensive, is actually necessary. For this
reason, we propose alternative generalized context trees
(GCTs) that borrow several, but not all features that are
present in PCTs in comparison to CTs, with the aim of
achieving a better tradeoff between statistical and compu-
tational efficiency than both CTs and PCTs permit to date.

We define a k-generalized context tree (k-GCT) as a PCT
where every node labeled by more than k& symbols has a
trivial subtree. This is easily enforced by modifying the
extended PCT accordingly into an extended k-GCT, as il-
lustrated in Figure 3. This modification yields a guaranteed
saving in the computations: at each level ¢, the reduction in
the number of nodes in the extended GCT is from (27 —1)*
to (7). (27 = 1), where (7). = (7) + (3) + + ().
While k-GCTs sacrifice flexibility in favor of feasibility,
they retain parsimonious features, such as multiple sibling
nodes labeled with more than one symbol and non-trivial
subtrees below such nodes.

A drawback of a k-GCT is that it cannot economically rep-
resent a “jump node” to indicate a non-informative context
position. This is because no node labeled by the entire al-
phabet ¥ is allowed to have a non-trivial subtree. We ad-
dress this drawback by defining a kT-GCT as a PCT where
every node labeled with more than k, but less than o, sym-
bols has a trivial subtree. This modification only slightly
expands the corresponding extended GCT. Yet, when we
employ the memoization rule, k-GCTs and k+-GCTs yield
notably different computational gains (Section 6).

We note that the generalized CT variants do not directly
enable computational savings in the alphabet partitioning
problem. Namely, each of the 27 — 1 possible subsets can
be a member of an optimal partition, even if the other mem-
bers are of size at most k. When k£ = 2 one could em-
ploy polynomial-time algorithms for finding a maximum-
weight perfect matching (Edmonds, 1965), and thus reduce
the asymptotic running time to within a polynomial factor
of 27; however, for 0 < 20, our simpler algorithm is faster.

5. Theoretical Analysis

This section presents an analytic result concerning the sav-
ings due to memoization. For convenience, we consider
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Figure 3. An extended 2-GCT over the alphabet {2, B, C, D}, which is traversed and pruned within the DP algorithm in order to obtain
a 2-GCT. Shown are the first two levels, whereas triangles indicate possibly deeper subtrees.

k-GCTs, which allow good control for the nodes in the ex-
tended k-GCT. Intuitively, we might expect the gain to be
the larger, the smaller the bound £ and the data size n are.
Indeed, when we follow a path from the root to a leaf in the
extended k-GCT, we may expect each node to reduce the
associated data subset by a fraction of about o /k. Conse-
quently, at around depth log,, ;. n, the size of the associated
data subset is expected to be at most 1, at which point mem-
oization allows us to avoid exploring the node’s subtrees in
all but n cases. In particular, with & = ¢/2 the number
of visited nodes of the extended k-GCT is expected to be
about (27)'°%2" = . Below we show that these intuitive
expectations are valid, at least roughly and for random data;
in Section 6 we observe the same for real-world data.

That said, we note that the above reasoning does not hold
in the worst-case sense: it is possible to construct data sets
where the number of distinct data subsets associated with
the nodes in the extended k-GCT grows exponentially in
n. We thus interpret our positive finding, the polynomial
dependence on n, as a fortunate surprise, suggesting the
worst-case view would be overly pessimistic in practice.

For our analysis we assume the n data words are indepen-
dent draws from the uniform distribution on £¢. Our re-
sult concerns k-contexts, defined as contexts Cy - - - C7 with
|Cj\ < k for all j. In particular, we consider k-contexts of
fixed length ¢, that is, nodes of the extended k-GCT at level
£. The following theorem bounds the expected number of
distinct data subsets that are associated with the nodes (a
proof is given in the Supplement). That bound corresponds
to the number of nodes at level £ for which the memoiza-
tion rule does not apply, and thus to the amount of work
needed at level 4.

Theorem 1 The expected number of data subsets matched
by k-contexts of length { is at most

() (0 G))

where 1}, = {ln (Z)/ln ﬂ < [k(l + lnl% ﬂ

This result shows that for large enough ¢, the work needed
is, in essence, bounded from above by n"*. To be more
precise, a length £ is large enough if (k/c)¢ < 1/n, equiv-
alently ¢ > ¢y = log, ,, n. For k-contexts that are shorter
than /¢y, the theorem does not give a good bound. However,

the plain number of such k-contexts is less than (Z)fo ~
n"*. For example, if k = 0 /2, we obtain r;, = o, and the
bound in the theorem is at most n? for ¢ > ¢y = logyn,
while the plain number of k-contexts of length ¢ is, like-
wise, at most n7, agreeing with our intuitive expectation.

In summary, we have that, in expectation, the number of
nodes in the k-GCT that are expanded for score evalua-
tion scales as O(n"*), where k < rp < 2k for k < o /2..
Because this does not yet include the nodes labeled by
more than k& symbols, the total number of visited nodes is
bounded by O(27n"*).

6. Case Studies

In this section, we empirically investigate the performance
of the presented ideas. We have implemented the presented
algorithms in Java based on the Jstacs framework (Grau
etal., 2012) and conducted the experiments on a server with
2.4 GHz cores.

6.1. Running Time on Synthetic Data

Our first study concerns the running time of the enhanced
DP algorithm compared to the basic DP algorithm for
learning optimal k-GCTs, kT-GCTs, and original PCTs.
To enable comparison to the theoretical bounds, we var-
ied the alphabet size o and depth d, and for each (o, d) we
generated 100 sequences of length 100 + d independently
uniformly at random, each sequence resulting in a set of
n = 100 data words of length d + 1. For each configura-
tion of the algorithm we measured its median running time
(see Supplement), and we discuss selected key results in
the following.

We observe that for learning original PCTs the two algo-
rithmic ideas leading to the enhanced DP algorithm yield
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somewhat orthogonal advancements (Figure 4). For in-
creasing alphabet sizes but shallow PCTs, the speedup is
substantial due to the faster alphabet partitioning. Simi-
larly, for increasing depths but small alphabets, the speedup
is significant due to frequent memoization at the deeper lev-
els in the extended PCT. However, when the depth exceeds
3 it is no longer feasible to have large enough alphabet size
to benefit from fast alphabet partitioning. And vice versa,
when the alphabet size exceed 5 it is no longer feasible to
go sufficiently deep to benefit significantly from the mem-
oization rule.

The picture changes when we consider k-GCTs and k-
GCTs, which we here investigate for the case of k = 2 (Fig-
ure 5). For 2-GCTs we observe dramatic improvements
in the running time, since now we can go deep enough
to trigger off massive memoization. The observed gain is
in good agreement with our analytic bounds: the running

times grow very little when the depth exceeds log,, ;5 100.
For 2+-GCTs the improvements are less dramatic, but still
substantial in relation to the unrestricted PCTs. While
the feature of allowing subtrees below completely fused
nodes, thus skipping a position in the context, may be
very useful for finding a sparse model for the problem at
hand (Eggeling et al., 2013), it increases the complexity of
the learning problem to a large extent.

6.2. Efficiency of Memoization on Real Data

While the study on synthetic data provides an insight in the
general effect of the different techniques on running time,
there remain some open questions that can be addressed on
real data, only. We have seen on synthetic data that the
potential for memoization is immense, but it needs to be
investigated to which degree memoization applies on real
data. To shed light on this question, we here investigate two
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types of data: DNA binding sites and protein sequences.
Rather than measuring the running times of the different
configurations of the algorithm, we count the number of
visited nodes in the extended GCTs to enable as direct com-
parison among different data sets as possible.

First, we study DNA binding sites, i.e. symbolic sequences
over a four-letter alphabet, which is the most prominent
application of PCTs to date. The focus is here on bind-
ing sites of the human insulator protein CTCEF, for which
strong statistical dependencies have been recently unveiled
using PCTs (Eggeling et al., 2014a). We extract a data
set of CTCF binding sites, which consists of 908 DNA se-
quences, from the Jaspar database (Sandelin et al., 2004),
and plot the number of visited nodes for learning the dif-
ferent PCT variants under memoization (Figure 6). We
observe that in almost all cases the memoization rule ap-
plies more frequently on the CTCF data than on synthetic
data (cf. Section 6.1) The only exception are deep 2-GCTs
(d > 7), where in the random data sets the data get “uni-
formly” scarce as soon as we get sufficiently deep. While
this is not the case for the CTCF data, as the number of vis-
ited nodes steadily continues to increase, the savings due to
the memoization rule are nevertheless immense: ford = 9
the number of visited nodes reduces by more than three or-
ders of magnitude.

Since DNA binding sites are highly regular and limited
to o = 4, they may be not fully representative for other
types of data. We thus additionally investigate the effect of
memoization on protein sequences, which are typically de-
scribed using the 20-letter amino acid alphabet. However,
for many applications it is common to reduce this alphabet
to smaller sizes (Li et al., 2003; Peterson et al., 2009; Bac-
ardit et al., 2009). In this study we use the alphabet reduc-

tion method of Li et al. (2003), since it offers for each pos-
sible reduced alphabet size an optimal clustering of amino
acids into groups, and study several well-known proteins of
different size and functionality, extracted from protein se-
quence database UniProt (The UniProt Consortium, 2013).

We display the efficacy of the memoization rule in terms of
visited nodes in the extended 2-GCT in Table 1 (for PCTs
and 27-GCTs see Supplement). We observe that the per-
centage of visited nodes correlates with the length of the
protein, which is in good agreement with our analytic ob-
servations. For alphabet size 0 = 11 and depth d = 5, the
number of nodes is reduced by one to two orders of magni-
tude. For smaller alphabet sizes and larger depths the sav-
ings gradually increase, in some cases up to a factor as large
as 10°. In order to demonstrate the data-management re-
quired for memoization has not a negative effect itself, we
also measures the running times of all experiments (Sup-
plement), and observe them to be in agreement with the
number of visited nodes.

These results confirm that the memoization idea excels on
real data, and particularly so in combination with general-
ized CTs that make compromises w.r.t. the structural flex-
ibility allowed. This is due to the synergy effect discussed
in Section 6.1. In addition, memoization may also be useful
for the original PCT for small alphabets and highly regular
data, as it is the case for the CTCF data.

6.3. Predictive Performance

While it has been previously demonstrated that PCTs
can be superior to CTs in terms of statistical efficiency
(Eggeling et al., 2013), it remains to be investigated
whether the same statement also holds for less flexible
GCTs as proposed in this work.

In order to shed light on this issue, we compare CTs,
2-GCTs, 21-GCTs, and PCTs in terms of their predic-
tive performance for the task of modeling DNA binding
sites. For learning inhomogeneous PMMs, which make a
position-specific use of context trees, we use the best re-
ported learning method in Eggeling et al. (2014b), that is,
BIC (Schwarz, 1978) as structure score and fSNML (Silan-
der et al., 2009) as parameter estimation method. As data
sets, we use the CEBP data set of Eggeling et al. (2013),
for which PCTs have been demonstrated to predict bet-
ter than CTs, and four additional data sets from the JAS-
PAR database (Sandelin et al., 2004), namely DAF-12 from
C. elegans, BZR1 and PILS from A. thaliana, and human
NR2C2. For all data sets and all structural variants, we
compare the prediction performance using leave-one-out
cross validation (Table 2). In order to further test statis-
tical significance of differences, we also perform Wilcoxon
signed rank tests (Wilcoxon, 1945) on the population log
predictive probabilities (o« = 0.05).
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Table 1. Percentage of the number of visited nodes in extended 2-GCTs on protein sequences of size n under memoization in relation to
the maximal number when memoization is disabled (third column).

o | d | Memoization | Random  Insulin RuBisCO Myoglobin Actin HG « GFP
disabled n = 100 n =110 n =479 n =154 n =377 n =142 n = 238
11 |5 ] 1.27x10° 0.576%  2.053% 35.020% 4.247%  22.125% 3.539% = 9.520%
10 | 6 | 2.82x 10! | 0.056%  0.076% 1.226%  0.131%  0.765%  0.111%  0.301%
7 17 140x 1019 | 0.018%  0.022%  0432%  0.044%  0.273%  0.036%  0.105%
6 | 8397 x10° | 0.004%  0.005%  0.109%  0.010%  0.067%  0.009%  0.025%
519 |412x101° | 0.002%  0.003%  0.076%  0.006%  0.046%  0.005%  0.016%

For three data sets (CEBP, DAF-12, PIL5), we observe that
the possibility to skip a certain context position by using
a “jump node”, which is allowed in PCTs and 27-GCTs
but forbidden in 2-GCTs and traditional CTs, significantly
increases prediction performance. In the case of DAF-12,
27 -GCTs are even significantly better than the fully flex-
ible PCTs. While being surprising at first glance, such a
phenomenon can occur if the optimal model w.r.t. to test
data is already included in the less flexible model class.
For BZR1 and N2RC2, even the 2-GCTs are already sig-
nificantly better than the traditional CTs. In case of BZR1,
there is not even a significant difference between the 2-
GCT and the more flexible classes of tree structures.

These results show that even a slight generalization of
structural flexibility can yield a significant increase in pre-
diction performance. However, considering all five data
sets, we may conclude that the most substantial improve-
ment in relation to a CT in total is gained by allowing “jump
node”. Since PCTs are in not a single case significantly
better than 27-GCTs, we may speculate that their full flex-
ibility is not actually necessary, but the latter provide a
better tradeoff between statistical efficiency and computa-
tional complexity. Nevertheless, there may still be cases, in
which even the optimization of 27-GCTs is computation-
ally too demanding, and here 2-GCTs offer the opportunity
to outperform traditional context trees.

7. Concluding Remarks

This work was motivated by the observation that while CTs
are statistically inefficient in comparison to PCTs in small-
data settings, the latter entail an unfavorable time complex-
ity for structure learning. To address this issue, we have
contributed ideas to improve the state-of-the art from two
different perspectives. On the one hand, we proposed two
algorithmic enhancement to the PCT learning algorithm,
namely (i) faster alphabet partitioning in each node of the
PCT, and (ii) memoization of already computed subtrees
in extended PCT. On the other hand, we proposed alterna-
tive generalizations of CTs, trading structural flexibility for
computational efficiency, while keeping particular merits
of PCTs, such as the capability of “jumping” over putative

Table 2. Comparison of CTs and generalizations w.r.t. predictive
performance for modeling DNA binding sites (d = 7, all values
d < 7 are shown in Supplement). Table entries show negative
mean log predictive probabilities from a leave-one-out cross vali-
dation experiment.The rank of each method is shown in brackets.
Two methods obtain the same rank when the difference between
them does not pass a significance test.

Data set CT 2-GCT 2*T-GCT PCT
CEBP 1431 (3) 1423(3) 1275(1) 1257(D)
DAFI2  998(3) 993(3) 958(1) 9.68(2)
BZR1 12.12(4) 1198 (1) 11.93(1) 11.93(1)
PILS 11.89(3) 11.82(3) 11.77(1) 11.66 (1)
N2RC2  9.63(4) 959(3) 956(1) 9.54(1)

unimportant context positions.

Our main finding—supported by analytic results as well
as empirical evidence on synthetic and real data—is that
both approaches in combination now let us take a signif-
icant computational advantage of the scarcity of the data.
The purely algorithmic enhancements yield a considerable
speed-up by two to four orders of magnitude for learning
original PCTs. In addition, there is a substantial synergy
effect when they are combined with less flexible CT gener-
alizations as proposed in this work, yielding further speed-
ups by several orders of magnitude. While less flexibility
may entail the danger of sacrificing statistical efficiency, we
have seen that 27-GCT are as competitive as fully flexible
PCTs w.r.t. to prediction performance.

The presented ideas may enable to replace CTs by general-
ized variants in complex models such as permuted variable
length Markov chains (Zhao et al., 2005) or variable-order
Bayesian networks (Ben-Gal et al., 2005), and to determine
whether k-GCTs, k™-GCTs, or fully flexible PCTs are the
structural class of choice is certainly a question that needs
to be investigated for each application domain anew. While
such studies and model extensions were previously compu-
tationally infeasible, the results of this work allow to bene-
fit from the statistical efficiency of generalized context trees
in a broad variety of applications.
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