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Abstract

In applications of Gaussian processes where

quantification of uncertainty is of primary in-

terest, it is necessary to accurately character-

ize the posterior distribution over covariance pa-

rameters. This paper proposes an adaptation of

the Stochastic Gradient Langevin Dynamics al-

gorithm to draw samples from the posterior dis-

tribution over covariance parameters with negli-

gible bias and without the need to compute the

marginal likelihood. In Gaussian process re-

gression, this has the enormous advantage that

stochastic gradients can be computed by solving

linear systems only. A novel unbiased linear sys-

tems solver based on parallelizable covariance

matrix-vector products is developed to acceler-

ate the unbiased estimation of gradients. The re-

sults demonstrate the possibility to enable scal-

able and exact (in a Monte Carlo sense) quantifi-

cation of uncertainty in Gaussian processes with-

out imposing any special structure on the covari-

ance or reducing the number of input vectors.

1. Introduction

Probabilistic kernel machines based on Gaussian Pro-

cesses (GPs) (Rasmussen & Williams, 2006) are popular

in a number of applied domains as they offer the possi-

bility to flexibly model complex data and, depending on

the choice of covariance function, to gain some under-

standing on the underlying behavior of the system under

study. When quantification of uncertainty is of primary

interest, it is necessary to accurately characterize the pos-

terior distribution over covariance parameters. This has
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been argued in a number of papers where this is done by

means of Markov chain Monte Carlo (MCMC) methods

(Williams & Rasmussen, 1995; Williams & Barber, 1998;

Neal, 1999; Murray & Adams, 2010; Taylor & Diggle,

2012; Filippone et al., 2013; Filippone & Girolami, 2014).

The limitation of MCMC approaches to draw samples from

the posterior distribution over covariance parameters is that

they need to compute the marginal likelihood at every it-

eration. In GP regression, a standard way to compute

the marginal likelihood involves storing and factorizing an

n×n matrix, leading to O(n3) time and O(n2) space com-

plexities, where n is the size of the data set. For large data

sets this becomes unfeasible, so a large number of con-

tributions can be found in the literature on how to make

these calculations tractable. For example, when the GP

covariance matrix has some particular properties, e.g., it

has sparse inverse (Rue et al., 2009; Simpson et al., 2013;

Lyne et al., 2015), it is computed on regularly spaced in-

puts (Saatçi, 2011), or it is computed on univariate in-

puts (Gilboa et al., 2015), it is possible to considerably re-

duce the complexity in computing the marginal likelihood.

When these properties do not hold, which is common in

several Machine Learning applications, approximations are

usually employed. Some examples involve the use subsets

of the data (Candela & Rasmussen, 2005), the determina-

tion of a small number of surrogate input vectors that rep-

resent the full set of inputs (Titsias, 2009; Hensman et al.,

2013), and the application of GPs to subsets of the data

obtained by partitioning the input space (Gramacy et al.,

2004), to name a few. Unfortunately, it is difficult to as-

sess to what extent approximations affect the quantification

of uncertainty in predictions, although some interesting re-

sults in this direction are reported in (Banerjee et al., 2013).

The focus of this paper are applications of GP regression

where the structure of the covariance matrix is not neces-

sarily special and quantification of uncertainty is of primary

interest, so that approximations should be avoided. This

paper proposes an adaptation of the Stochastic Gradient
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Langevin Dynamics (SGLD) algorithm (Welling & Teh,

2011) to draw samples from the posterior distribution over

GP covariance parameters. SGLD does not require the

computation of the marginal likelihood and yields sam-

ples from the posterior distribution of interest with negli-

gible bias. This has the enormous advantage that stochastic

gradients can be computed by solving linear systems only

(Gibbs, 1997; Gibbs & MacKay, 1997; Stein et al., 2013).

Linear systems can be solved by means of iterative meth-

ods, such as the Conjugate Gradient (CG) algorithm, that

are based on parallelizable covariance matrix-vector prod-

ucts (Higham, 2008; Skilling, 1993; Seeger, 2000). Similar

ideas were previously put forward to optimize GP covari-

ance parameters (Chen et al., 2011; Anitescu et al., 2012;

Stein et al., 2013). Despite the O(n2) in time and O(n)
in space complexities of these methods compare well with

the O(n3) in time and O(n2) in space complexities of tra-

ditional MCMC-based inference, solving dense linear sys-

tems at each iteration makes the whole inference frame-

work too slow to be of practical use. We compare a num-

ber of standard ways to speed up the solution of dense lin-

ear systems, such as fast covariance matrix-vector products

(Gray & Moore, 2000; Moore, 2000) and preconditioning

(Srinivasan et al., 2014), and in line with what reported in

(Murray, 2009), we observe that they yield little gain in

computational speed compared to the standard CG algo-

rithm. In order to enable practical inference for GPs ap-

plied to large data sets, we therefore develop an Unbiased

LInear Systems SolvEr (ULISSE) that essentially allows

the CG algorithm to stop early while retaining unbiased-

ness of the solution.

We highlight here that (i) in (Welling & Teh, 2011), an

unbiased estimate of the gradient is computed by consid-

ering small batches of data. Recent alternative contribu-

tions on scaling Bayesian inference by analyzing small

batches of data can be found in (Banterle et al., 2014;

Maclaurin & Adams, 2014). GPs do not lend themselves

to this treatment, due to the covariance structure making all

data dependent on one another. (ii) ULISSE is complemen-

tary to recent approaches in the area of probabilistic numer-

ics that aim at infering, rather than computing, solutions to

linear systems (Hennig, 2014). (iii) The proposed inference

method is based on “noisy” gradients and is complemen-

tary to recent inference approaches based on noisy likeli-

hoods (Lyne et al., 2015; Filippone, 2014). In GP regres-

sion, iterative methods akin to the CG algorithm (Higham,

2008) can be employed to obtain an unbiased estimate of

the log-determinant of the covariance matrix, but this re-

mains an extremely onerous calculation needed to get an

unbiased estimate of the log-marginal likelihood. A further

and perhaps more challenging issue is transforming the un-

biased estimate of the log-marginal likelihood in an unbi-

ased estimate of the marginal likelihood (Kennedy & Kuti,

1985; Liu, 2000; Lyne et al., 2015).

This paper demonstrates that employing ULISSE within

SGLD makes it possible to accurately carry out inference

of covariance parameters in GPs and effectively scale these

computations to large data sets. We report results on a

data set with about 23 thousand input vectors where we can

draw ten thousand samples per day from the posterior dis-

tribution over covariance parameters on a desktop machine

with standard hardware1. To the best of our knowledge,

this paper reports the first real attempt to enable full quan-

tification of uncertainty of covariance parameters of GPs

without reducing the number of input vectors and without

imposing sparsity on the GP covariance or its inverse.

The paper is organized as follows. Section 2 briefly reviews

GPs and motivates the adoption of SGLD to infer GP co-

variance parameters. Section 3 describes and evaluates the

CG algorithm to solve linear systems and some variants

based on fast covariance matrix-vector product and precon-

ditioning. Section 4 presents ULISSE and its use to obtain

an unbiased estimate of the gradient of the log-marginal

likelihood in GPs. Section 5 demonstrates the ability of

the proposed methodology to accurately infer covariance

parameters in GPs and its scalability properties to a large

data set where the marginal likelihood cannot be computed

exactly. Finally, Section 6 draws the conclusions.

2. Inference of covariance parameters in GPs

In GP regression, a set of continuous labels y =
{y1, . . . , yn} is associated with a set of input vectors X =
{x1, . . . ,xn}. Throughout the paper, we will employ zero

mean GPs with the following covariance function:

k(xi,xj) = σ exp
(

τ‖xi − xj‖2
)

+ λδij (1)

with δij = 1 if i = j and zero otherwise. The parameter

τ determines the rate of decay of the covariance function,

whereas σ represents the marginal variance of each Gaus-

sian random variable comprising the GP. The parameter λ
is the variance of the (Gaussian) noise on the labels. Let K
be the covariance matrix with Kij = k(xi,xj) and denote

by θ the vector comprising all parameters of the covariance

matrix K, namely θ = (σ, τ, λ).

In a Bayesian sense, we would like to carry any uncertainty

in parameters estimates forward to predictions over the la-

bel y∗ for a new input vector x∗. In particular, this requires

solving the following integral:

p(y∗|y, X,x∗) =

∫

p(y∗|y,θ, X,x∗)p(θ|y, X)dθ. (2)

Such an expectation, like any other expectation under the

1Code to reproduce all the results can be found here:
www.dcs.gla.ac.uk/˜maurizio/pages/code.html

www.dcs.gla.ac.uk/~maurizio/pages/code.html
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posterior over θ, is analytically intractable, so it is neces-

sary to resort to some approximations. A standard way to

tackle this intractability is to draw samples from p(θ|y, X)
using MCMC methods, and approximate the expectation

with the Monte Carlo estimate

p(y∗|y, X,x∗) ≃
1

N

N
∑

i=1

p(y∗|θ(i), X,x∗), (3)

where θ(i) denotes the ith of a set of samples from

p(θ|y, X). Drawing samples from the posterior distribu-

tion can be done using several MCMC algorithms that es-

sentially are based on a proposal mechanism and on an

accept/reject step that requires the evaluation of the log-

marginal likelihood:

log[p(y|θ, X)] = −1

2
log (|K|)− 1

2
yTK−1y + const.

(4)

A standard way to proceed, is to factorize the covari-

ance matrix K = LLT using the Cholesky algorithm

(Golub & Van Loan, 1996). The factorization costs O(n3)
operations and requires the storage of O(n2) entries of

the covariance matrix, but after that computing the log-

determinant and the inverse of K multiplied by y can be

done using O(n2) operations.

The computational complexities above pose a constraint on

the scalability of GPs to large data sets. Iterative methods

based on covariance matrix-vector products (CMVPs) have

been proposed to obtain an unbiased estimate of the log-

marginal likelihood. Even though these methods scale with

O(n2) in time and O(n) in space, they are of little practical

use in the task of sampling from p(θ|y, X), as the number

of iterations needed to estimate the log-determinant term

can be prohibitively large (see, e.g., (Chen et al., 2011)).

We now illustrate our proposal to obtain samples from

p(θ|y, X) with negligible bias and without having to es-

timate log-determinants and marginal likelihoods.

2.1. Stochastic Gradient Langevin Dynamics (SGLD)

We briefly describe how to adapt SGLD (Welling & Teh,

2011) to obtain samples from p(θ|y, X) in GPs. The idea

behind SGLD is to modify the standard stochastic gradi-

ent optimization algorithm (Robbins & Monro, 1951) by

injecting Gaussian noise in a way that ensures transition

into a Langevin dynamics phase yielding samples from the

posterior distribution of interest. In particular, the proposal

of a new set of parameters is

θt+1 = θt +
εt
2
M {g̃ +∇θ log[p(θ)]}+ ηt (5)

with ηt ∼ N (ηt|0, εtM) and g̃ an unbiased estimate of

the gradient of log[p(y|θ, X)]. We have also introduced a

preconditioning matrix M that can be chosen to improve

convergence of SGLD. The update equation, except for ηt,

is the standard update used in stochastic gradient optimiza-

tion. The parameters εt are chosen to satisfy

∞
∑

t=1

εt = ∞ and

∞
∑

t=1

ε2t < ∞ (6)

as these conditions, along with some other technical as-

sumptions, guarantee convergence to a local maximum.

The injected noise ηt is Gaussian with covariance εtM en-

suring that the algorithm transitions into a discretized ver-

sion of a Langevin dynamics with target distribution given

by the posterior over θ. In principle, it would be nec-

essary to accept or reject the proposals, which would re-

quire evaluating the marginal likelihood. The key result

in (Welling & Teh, 2011) is that when SGLD reaches the

Langevin dynamics phase, the step-size εt is small enough

to make the acceptance rate close to one. Therefore, in this

phase it is possible to accept all proposals, avoiding having

to evaluate the marginal likelihood, at the cost of introduc-

ing a negligible amount of bias.

Following (Welling & Teh, 2011), we can estimate when

the algorithm reaches the Langevin dynamics phase by

monitoring the ratio between the variance of the stochastic

gradients and the variance of the injected noise. Defining

V to be the sampling covariance of the stochastic gradients

and λmax(A) to be the largest eigenvalue of a matrix A, we

can write such a ratio as

εt
4
λmax

(

M
1

2VM
1

2

)

(7)

When this ratio is small enough the algorithm is in its

Langevin dynamics phase and produces samples from the

posterior distribution over θ. Further theoretical analyses

on the convergence properties of SGLD can be found in

(Teh et al., 2014; Vollmer et al., 2015).

The motivation for employing SGLD for inference of GP

covariance parameters comes from inspecting the gradient

of the log-marginal likelihood that has components

gi = −1

2
Tr

(

K−1 ∂K

∂θi

)

+
1

2
yTK−1 ∂K

∂θi
K−1y (8)

Computing the gi’s requires again O(n3) operations due to

the trace term and the linear system K−1y. However, we

can introduce Nr vectors r(i) with components drawn from

{−1, 1} with probability 1/2 and unbiasedly estimate the

trace term (Gibbs, 1997), obtaining:

g̃i = − 1

2Nr

Nr
∑

i=1

r(i)
T
K−1 ∂K

∂θi
r(i) +

1

2
yTK−1 ∂K

∂θi
K−1y

(9)

Given that E(r(i)r(i)
T
) = I , we can readily verify that

E[r(i)
T
K−1 ∂K

∂θi
r(i)] = Tr

[

K−1 ∂K
∂θi

E(r(i)r(i)
T
)
]

, which
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Algorithm 1 The Conjugate Gradient algorithm

Input: data X , vector b, convergence threshold ǫ, initial

vector s0, maximum number of iterations T
e0 = b−Ks0; d0 = e0;

for i = 0 to T do

αi =
eTi ei

dT
i Kdi

;

si+1 = si + αidi;

ei+1 = ei − αiKdi;

if ‖ei+1‖ < ǫ then

return s = si+1;

end if

βi =
eTi+1ei+1

eTi ei
;

di+1 = ei+1 + βidi;

end for

yields the trace term in eq. 8. Hence, in order to compute an

unbiased version of the gradient of the log-marginal likeli-

hood we need to solve one linear system for y and one

for each of the Nr vectors r(i) used to estimate the trace

term. This consideration forms the basis of the proposed

methodology. Computing an unbiased version of the gra-

dient involves solving linear systems only, which is much

easier and cheaper than estimating log-determinants.

3. Solving linear systems without storing K

We have discussed that SGLD to infer covariance parame-

ters in GPs requires solving linear systems. Here we briefly

review the Conjugate Gradient (CG) algorithm that is a

popular method to iteratively solve linear systems based

on Covariance Matrix Vector Product (CMVP) operations.

CMVPs can be carried out without having to store K, so

their time and space complexities are in O(n2) and O(n),
respectively. We also discuss and evaluate a few variants

to speed up computations/convergence, such as precondi-

tioning and fast CMVPs. Throughout this section we will

evaluate the effectiveness of these alternatives on a GP re-

gression task applied to the Concrete data set from the

UCI repository (Asuncion & Newman, 2007). This data set

contains data about the compressive strength of n = 1030
samples of concrete described by d = 8 features.

3.1. The Conjugate Gradient (CG) algorithm

Given a linear system of the form Ks = b with K and b

given, the CG algorithm (Golub & Van Loan, 1996) yields

the solution s without having to invert or factorize the ma-

trix K. The idea is to calculate the solution s as the mini-

mizer of

φ(s) =
1

2
sTKs− sTb (10)

which can be obtained by employing gradient-based opti-

0 2 4 6 8 10 12
log10(κ)

a = 1, b = 1
a = 1, b = 0.1
a = 1, b = 0.01
a = 0.5, b = 0.01

Figure 1. Distribution of the condition number κ of the covari-

ance matrix for different choices of shape and rate parameters of

a Gamma prior on each covariance parameter θ.

mization. The CG algorithm is initialized from an initial

guess s0. After that, the iterations refine the solution s by

updates in directions di. The CG algorithm, in comparison

with the standard gradient descent, is characterized by the

fact that K-orthogonality (or conjugacy with respect to K)

of the search directions is imposed, namely dT
i Kdj = 0

when i 6= j. This condition yields a sequence of residuals

ei = b − Ksi that are mutually orthogonal, and guaran-

tees convergence in at most n iterations. Remarkably, the

CG algorithm can be implemented in a way that requires a

single CMVP (Kdi) at each iteration (see Algorithm 1).

The trade-off between accuracy and speed is governed by

the threshold ǫ, which in this paper is set to ǫ = 10−8.

Theoretically, the CG algorithm is guaranteed to converge

in at most n iterations, but in practice, due to the repre-

sentation in finite numerical precision, orthogonality of the

directions can be lost, especially in badly conditioned sys-

tems, and the CG algorithm can take more than n iterations

to converge. The condition number of a matrix is defined

as the ratio between its largest and smallest eigenvalues:

κ =
λmax(K)

λmin(K)

Fig. 1 shows the distribution of the condition number when

each covariance parameter θi is sampled form a Gamma

distribution with shape and rate parameters a and b. The

distributions are reasonably vague and give a rough idea of

the typical condition numbers encountered during the infer-

ence of GP covariance parameters for the Concrete data set.

We can expect slower convergence speed when the condi-

tion number is large due to numerical instabilities; we are

interested in quantifying to what extent this applies to GPs

and what is the impact of cheap CMVPs and precondition-

ing on convergence speed. In the remainder of this section,

we will consider the problem of solving the linear system

Ks = y that is needed in the calculation of part of the gra-

dient in eq. 9. The results pertaining to the solution of the

linear systems Ks = r(i) are quite similar, so for the sake

of brevity we will omit them.

3.2. Fast CMVPs

We consider here the use of two fast CMVPs based on

efficient representation of input data that we will call
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“kdtree” (Gray & Moore, 2000) and “anchors” (Moore,

2000)2. These methods yield fast CMVPs at the price of

a lower accuracy.

In the top row of Fig. 2 we show the number of itera-

tions required by the CG algorithm to reach convergence

versus the condition number and the error in the solution

versus the condition number. The error is defined as the

norm of the difference between the solution obtained by

the CG algorithm and the one obtained by factorizing K
using the Cholesky algorithm and carrying out forward and

back substitutions with y. We compare a baseline CG algo-

rithm with CMVPs performed in double precision with CG

algorithms implemented with (i) single precision (“float”)

CMVPs, (ii) “kdtree” CMVPs and (iii) “anchors” CMVPs.

The convergence threshold of the CG algorithm was set to

10−8, so in order to be able to satisfy this criterion when

employing “kdtree” and “anchors” CMVPs, we selected

the relative and absolute tolerance parameters to be 10−10.

The results indicate that double precision calculations lead

to the lowest number of iterations compared to the other

methods, especially when κ is large. Double precision cal-

culations also offer the lowest error. Single precision cal-

culations lead to a very poor error compared to the other

methods. The CG algorithm with “kdtree” CMVPs seems

to take longer to converge than the one with “anchor”

CMVPs, but it achieves a lower error.

Drawing definitive conclusions on whether fast CMVPs

yield any gain in computing time is far from trivial, as this

very much depends on implementation details and hard-

ware where the code is run. What we can say, however, is

that gaining orders of magnitude speed-ups would require

reducing the accuracy of fast CMVPs, but this would re-

quire loosening up the convergence criterion in order for

the CG algorithm to converge. As a result, we would be

able to obtain solutions of linear systems faster but at the

cost of a reduced accuracy in the solution, which in turn

would bias the estimation of gradients.

3.3. Preconditioned CG

The Preconditioned CG (PCG) is a variant of the CG algo-

rithm that aims at mitigating the issues associated with the

rate of convergence of the CG algorithm when the condi-

tion number κ is large. A (right) preconditioning matrix J
operates on the linear system yielding

KJ−1(Js) = b

The success of PCG is based on the possibility to construct

J so that KJ−1 is well conditioned. This can be achieved

when J−1 well approximates K−1, and a complication im-

2code implementing these methods can be found here:
www.cs.ubc.ca/˜awll/nbody_methods.html
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Figure 2. Top row: Comparison of fast CMVPs on number of iter-

ations and error versus condition number. Bottom row: Compar-

ison of the CG algorithm and two PCG algorithms using double

and single precision CMVPs to solve inner linear systems.

mediately arises on how to do so for general kernel matrices

without carrying out expensive operations (in O(n3)).

In (Srinivasan et al., 2014) it was proposed to define J =
K + δI with δ > 0. Compared to the standard CG al-

gorithm, the PCG algorithm introduces the solution of an

“inner” linear system of the form J−1z at each iteration,

that can be solved again using the CG algorithm. A large

value of δ makes K + δI well conditioned and makes con-

vergence speed of the inner CG algorithm faster, whereas it

makes J−1 and K−1 considerably different leading to the

necessity to run the outer CG algorithm for several itera-

tions. For small values of δ the situation is reversed, so δ
needs to be tuned to find an optimal compromise.

In the bottom row of Fig. 2, we compare the standard CG

algorithm with two versions of the PCG algorithm on num-

ber of iterations and accuracy of the solution. In the first

version of the PCG algorithm we used double precision cal-

culations when solving the inner linear systems, whereas in

the second version we used single precision calculations.

In both versions of the PCG algorithm we set δ to yield the

lowest number of iterations in order to show whether it is

possible to reduce the number of computations.

The results show that the standard CG algorithm takes less

iterations to converge than the PCG algorithm (counting

both inner and outer iterations). Even in the case of sin-

gle precision calculations in the inner CG algorithm, we

did not experience any gain in computing time due to the

www.cs.ubc.ca/~awll/nbody_methods.html
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increased number of iterations. For other data and in dif-

ferent experimental conditions there might be a compu-

tational advantage in using a preconditioner, as shown in

(Srinivasan et al., 2014), but the gain is generally modest.

4. Unbiased LInear System SolvEr (ULISSE)

From the analysis in the previous sections it is evident that

none of the standard ways to speedup calculations and con-

vergence of the CG algorithm offer substantial gains in

computing time. As a result, employing iterative meth-

ods as an alternative to traditional factorization techniques

seems beyond practicality as pointed out, e.g., in (Murray,

2009). One of the novel contributions of this paper is to ac-

celerate the CG algorithm at the expenses of obtaining an

(unbiased) estimate of the solution. The idea is to stop the

CG algorithm before the convergence criterion is satisfied

and apply some corrections to ensure unbiasedness of the

solution. We note here that our proposal can be applied to

any of the variants of the CG algorithm presented earlier

and to dense as well as sparse linear systems.

We can rewrite the final solution of a linear system obtained

by the CG algorithm as a sum of incremental updates

s = s0 + δ1 + . . .+ δT (11)

assuming that it takes T iterations to satisfy the conver-

gence threshold ǫ. We can define an “early stop” thresh-

old α > ǫ that will be reached after l < T iterations, and

rewrite the final solution by introducing a series of coeffi-

cients as follows

s = s0 +

l−1
∑

i=1

δi +
1

w0

(

w0δl+0 +
1

w1

(

w0w1δl+1 +

+
1

w2
(w0w1w2δl+2 + . . .)

))

(12)

We will focus on coefficients defined as wr = exp(βr),
but this choice is not restrictive. We can now obtain an

unbiased estimate of the solution of the linear system by

adding these instructions to the standard CG algorithm: set

s̃ = s0+
∑l−1

i=1 δi and iterate for j = 0, 1, . . . the following

two steps (i) draw uj ∼ U [0, 1] (ii) if uj < 1
wj

then s̃ =

s̃+
∏j

r=0 wrδl+j , else return s̃ and stop the CG algorithm.

The expectation of s̃ is clearly s and the rate of decay β
in the expression of wr determines the average number of

steps that are carried out after the convergence threshold α
is reached.

For simplicity, we set the early stop threshold to α = q
√
n

as q gives a rough indication of the average error that we

are expecting in each element of the solution. In Fig. 3 we

report number of iterations and average standard deviation

across the elements of the solution. ULISSE with two dif-

ferent values of β and q is compared with the baseline CG
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Figure 3. Comparison of the CG algorithm and ULISSE with

early stop thresholds α calculated with q = 0.1 and q = 1 on

number of iterations and standard deviation of the solution. The

top row corresponds to β = 1 in the calculation of the weights

wr , whereas the bottom row corresponds to β = 100.

algorithm without early stop (“CG”). We stress again that

the error is such that the solution is unbiased.

4.1. Impact on the calculation of stochastic gradients

We conclude this section by showing the impact of ULISSE

in the calculation of stochastic gradients in GPs. Applying

the proposed unbiased solver to the first term of g̃i in eq. 9

is straightforward and it requires solving Nr linear systems,

one for each of the r(i) vectors. For the quadratic term in

y, instead, we need to obtain two independent unbiased es-

timates of K−1y in order for the expectation of the whole

term to be unbiased. This can be implemented by running

a single instance of the CG algorithm and keeping track of

two solutions obtained by independent draws of the uni-

form variables uj used to early stop the CG algorithm. We

remark that the unbiased estimation of gradients involves

now two sources of stochasticity: one due to the stochastic

estimate of the trace term in eq. 8, and one due to the pro-

posed way to unbiasedly solve all linear systems in eq. 9.

Fig. 4 reports the average, taken with respect to 100 repeti-

tion of the log10 of the relative square norm of the error:

‖g(θ)− g̃(θ)‖2
‖g(θ)‖2 (13)

as a function of the condition number κ. We used one vec-

tor r(1) to estimate the gradient in eq. 9. The figure shows
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Figure 4. Comparison of the CG algorithm and ULISSE and early

stop thresholds computed with q = 0.1 and q = 1 to estimate the

gradient of the log-marginal likelihood in eq. 9. In ULISSE, the

weights wr are calculated with β = 1.

that the estimate in eq. 9 (“CG” in the figure) is quite accu-

rate, as the relative error is small in a wide range of values

of κ. Also, at the expenses of a larger variance in the es-

timate of the gradient, ULISSE yields orders of magnitude

improvements in the number of iterations.

5. Experimental validation

In this section, we infer covariance parameters of GP re-

gression models using SGLD with ULISSE. We start by

considering the Concrete data set where it is possible to

compare our proposal with the Metropolis-Hastings (MH)

algorithm. We then demonstrate the scalability of the pro-

posed methodology by considering a data set with n =
22, 784 and d = 8.

5.1. Comparison with MCMC

We ran the MH algorithm for fifty-thousand iterations to

the GP regression model with covariance in eq. 1 applied

to the Concrete data set. We allowed for an initial adaptive

phase to reach an average acceptance rate between 0.2 and

0.4, and we discarded the first ten-thousand samples. Fig. 5

shows the running mean and the interval corresponding to

plus/minus twice the running standard deviation of the pos-

terior over the three parameters (solid red lines) computed

over the remaining forty-thousand samples.

We compare the run from the MH algorithm with SGLD,

where we made the following design choices. We em-

ployed ULISSE within the CG algorithm with double pre-

cision CMVPs. We set the early stop threshold α to
√
n and

the parameter β in the computation of the weights wr to 1.

Stochastic gradients were computed using Nr = 4 vectors

r(i). We ran SGLD for forty-thousand iterations; the step-

size was set to εt = a(b + t)−γ , with γ = 1, and it was

chosen to start from 10−1 and reduce to 10−4 on the last

iteration. During the execution of SGLD we monitored the
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Figure 5. Concrete data (n = 1030) - Left panel: Comparison of

MCMC (red) and SGLD with ULISSE (black) on running mean

and plus/minus two standard deviations. The trace of one chain

of SGLD is shown in gray. Right panel: Convergence analysis of

SGLD with ULISSE with PSRF computed over ten chains.

quantity εt
4 λmax

(

M
1

2VM
1

2

)

as discussed in Section 4,

and we froze the value of εt when it was less than 0.002;

the covariance of the gradients V was estimated on batches

of one-hundred iterations. In order to speed up computa-

tions, we decided to redraw the vectors r(i) every twenty

iterations and to keep them fixed in between. The advan-

tage of this is that the solutions of the linear systems Kr(i)

can be used to initialize the same systems when proposing

new θ’s thus speeding up convergence. Finally, we set the

preconditioning matrix M in SGLD as the inverse of the

negative Hessian of the log of the posterior density at its

mode computed on a subset of five hundred input vectors,

as this is cheap way to obtain a rough idea of the covariance

structure of the posterior distribution for the full data set.

SGLD yields an effective sample size of about 0.1% and it

draws one independent sample every 27 sec. In Fig. 5 we

report the running statistics for the three parameters (solid

black lines), and the trace-plot of one run of SGLD (solid

gray lines), where we discarded all iterations prior to the

freezing of the step-size εt. The figure shows a striking

match between the results obtained by a standard MCMC

approach and SGLD with ULISSE. This demonstrates that

our proposal is a valid alternative to other MCMC ap-

proaches to reliably quantify uncertainty in GPs.

In order to check convergence speed of SGLD, we ran ten

parallel chains and computed the Potential Scale Reduction

Factor (PSRF) (Gelman & Rubin, 1992). The chains were

initialized by drawing from a Gaussian with mean on the

MAP solution over a subset of five hundred input vectors

and covariance M , so as to ensure enough dispersion to re-

liably report the PSRF. Fig. 5 shows the median and the
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Figure 6. Census data (n = 22, 784) - Left panel: Running

mean and plus/minus two standard deviations (black) and trace

of one chain of SGLD (gray). Right panel: Convergence analysis

of SGLD with ULISSE reporting the PSRF computed over five

chains.

97.5th percentile of the PSRF across the ten chains. The

analysis of these plots reveals that SGLD achieves conver-

gence after few thousand iterations.

5.2. Demonstration on a larger dataset

We now present the application of SGLD with ULISSE to

a data set where it is not possible to run any MCMC algo-

rithm with exact computation of the marginal likelihood on

a conventional desktop machine. This data set contains data

collected as part of the 1990 US census. In this study, we

used the 8L data set3 where the regression task associates

the median house price in a given region with demographic

composition and housing market features (n = 22, 784 and

d = 8). We kept the same experimental conditions as in

the case of the Concrete data, except that εt was chosen to

decrease from 5 · 10−2 to 5 · 10−6 to cope with the larger

gradients obtained for this data set, and the preconditioner

M was estimated based on the MAP on one-thousand data

points. The running statistics for the three parameters for

one chain are reported in Fig. 6, along with the PSRF com-

puted across five chains, which shows that convergence was

reached after few thousand iterations.

SGLD with ULISSE was run on a desktop machine with

an eight core (i7-2600 CPU at 3.40GHz) processor, and

an NVIDIA GeForce GTX 590 graphics card (released in

2011). The two GPUs in the graphics card are used to carry

out CMVPs. With this arrangement, we were able to draw

roughly ten thousand samples per day from the posterior

distribution over covariance parameters. SGLD yields an

3www.cs.toronto.edu/˜delve/data/

effective sample size of roughly 0.1%, and it can draw one

independent sample every 2.4 hours.

6. Conclusions

This paper presented a novel way to accurately infer co-

variance parameters in GPs. The novelty stems from the

combination of stochastic gradient-based inference and a

fast unbiased solver of linear systems. The results demon-

strate that it is possible to carry out inference of GP co-

variance parameters over a data set comprising about 23
thousand input vectors in a day on a desktop machine with

standard hardware. The proposed methodology can exploit

parallelism in computing covariance matrix-vector prod-

ucts, so there is an opportunity to scale “exact” inference

(in a Monte Carlo sense) to even larger data sets. We are

not aware of any method that is capable of carrying out full

quantification of uncertainty of GP covariance parameters

on such large data sets without imposing special structures

on the covariance or reducing the number of input vectors.

These results are important not only in Machine Learn-

ing, but also in areas where quantification of uncertainty is

of primary interest and GPs are routinely employed, such

as calibration of computer models (Kennedy & O’Hagan,

2001) and optimization (Jones et al., 1998).

The results reported in this paper, although promising, in-

dicate some directions for improvements. SGLD requires

the tuning of a preconditioning matrix M . Choosing M
to be similar to the covariance of the posterior speeds up

convergence of SGLD when it reaches the Langevin dy-

namics phase. However, M also affects the scaling of the

gradient in the proposal. During the first phase of SGLD

this might not be optimal, and ideally, gradients should be

scaled in a way similar to AdaGrad (Duchi et al., 2011). In

(Welling & Teh, 2011), it was possible to establish a con-

nection between the covariance of the gradients, the Fisher

Information, and M due to the fact that stochastic gradi-

ents are computed on subsets of the data. We were un-

able to do so for GPs due to the different way stochasticity

is introduced in the computation of the gradients. Despite

this complication, we demonstrated that it is still possible

to obtain convergence to the posterior distribution over co-

variance parameters in a reasonable number of iterations,

which is of ultimate importance in any inference task.

We are currently investigating the application of SGLD

to automatic relevance determination covariances and the

possibility to extend our proposal to scale inference for

other GP models, e.g., GP classification and GPs for spatio-

temporal data. Other interesting aspects to explore would

be the introduction of mixed precision calculations within

the CG algorithm to improve convergence and computation

speed as presented, e.g., in (Jang et al., 2011; Cevahir et al.,

2009; Baboulin et al., 2009).

www.cs.toronto.edu/~delve/data/
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