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A. Appendix
A.1. Kronecker Algebra

We exploit the identity (Steeb & Hardy, 2011):

(B> ⊗A)v = vec(AV B) (A22)

where v = vec(V ) and the vec operator turns a matrix into a vector by stacking columns vertically. Since a full n × n
matrix is never formed, this approach is very efficient in terms of space and time complexity, relying only on operations
with the smaller matrices Ki and the matrix V which only has n entries. We analyzed the complexity in Section 6.5.
Another result we use is that given the eigendecompositions of Kd = QdΛdQ

T
d , we have:
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A.2. Supplementary Results

q Weight Period Length-scale
1 52.72 10813.9 133280.2
2 5.48 4.0 1.1
3 0.33 52.1 27700.8
4 0.05 22.0 1.6
5 0.02 97.4 7359.1

Table A2. The top five spectral mixture components learned for the temporal kernel in the LGCP fit to 8 years of assault data. The
components are visualized in Figure 4 where component q corresponds to the row of the table.

N Standard Kronecker FITC-100
125 -62.12 -61.52 -61.20
343 -157.47 -157.80 -159.21
1000 -445.48 -443.87 -455.84
1728 -739.56 -740.31 -756.95
8000 -3333.10 -3333.66 -3486.20

Table A3. Predictive log-likelihoods are shown corresponding to the experiment in Figure 2. A higher log-likelihood indicates a better
fit. The differences between the standard and Kronecker results were not significant but the difference between FITC-100 and the others
was significant (two-sample paired t-test, p ≤ .05) for n ≥ 1000.

A.3. A two-dimensional LGCP

We used a product of Matérn-5/2 kernels: kx(d) with length-scale λx and variance σ2 and ky(d) with length-scale λy and
variance fixed at 1: k((x, y), (x′, y′)) = kx(|x− x′|)ky(|y − y′|).

We discretized our data into a 288 × 446 grid for a total of 128,448 observations. Locations outside of the boundaries of
Chicago – about 56% of the full grid—were treated as missing. In Figure A5 we show the location of assaults represented
by dots, along with a map of our posterior intensity, log-intensity, and variance of the number of assaults. It is clear that
our approach is smoothing the data. The hyperparameters that we learn are σ2 = 5.34, λx = 2.23, and λy = 2.24, i.e.,
length-scales for moving north-south and east-west were found to be nearly identical for these data; by assuming Kronecker
structure our learning happens in a fashion analogous to Automatic Relevance Determination (Neal, 1996).
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(a) Point pattern of assaults (b) Posterior Intensity

(c) Posterior Latent Log-Intensity (d) Posterior Variance

Figure A5. We fit a log Gaussian Cox Process to the point pattern of reported incidents of assault in Chicago (a) and made posterior
estimates of the intensity surface (b). The latent log-intensity surface is visualized in (c) and the posterior variance is visualized in (d).



Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods

Figure A6. We show the time series of weekly assaults in the nine neighborhoods with the most assaults in Chicago. The blue line shows
our posterior prediction (training data, first 8 years of data) and forecast (out-of-sample, last 2 years of data, to the right of the vertical
bar). Observed counts are shown as dots. 95% posterior intervals are shown in gray.
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