
Un-regularizing: approximate proximal point algorithms for empirical risk minimization

A. Derivation of regularized ERM duality
For completeness, in this section we derive the dual (5) to the problem of computing proximal operator for the ERM
objective (3).

We can rewrite the primal problem as

min
x∈Rd,z∈Rn

∑n
i=1 φi(zi) + λ

2 ‖x− s‖
2
2

subject to zi = aTi x, for i = 1, . . . , n
.

By convex duality, this is equivalent to

min
x,{zi}

max
y∈Rn

n∑
i=1

φi(zi) +
λ

2
‖x− s‖22 + yT(Ax− z) = max

y
min
x,{zi}

n∑
i=1

φi(zi) +
λ

2
‖x− s‖22 + yT(Ax− z)

= max
y

min
x,{zi}

n∑
i=1

(φi(zi)− yizi) +
λ

2
‖x− s‖22 + yTAx

= max
y

n∑
i=1

min
zi
{φi(zi)− yizi}+ min

x

{
λ

2
‖x− s‖22 + yTAx

}

= max
y

n∑
i=1

−max
zi
{yizi − φi(zi)} −max

x

{
−yTAx− λ

2
‖x− s‖22

}

= max
y

n∑
i=1

−φ∗i (yi)−
1

2λ
‖ATy‖22 + sTATy

= −min
y

n∑
i=1

φ∗i (yi) +
1

2λ
‖ATy‖22 − sTATy.

The final negated problem is precisely the dual formulation.

The first problem is a Lagrangian saddle-point problem, where the Lagrangian is defined as

L(x, y, z) =

n∑
i=1

φi(zi) +
λ

2
‖x− s‖22 + yT(Ax− z).

The dual-to-primal mapping (6) and primal-to-dual mapping (7) are implied by the KKT conditions under L, and can be
derived by solving for x, y, and z in the system∇L(x, y, z) = 0.

The duality gap in this context is defined as

gaps,λ(x, y) = fs,λ(x) + gs,λ(y). (9)

Strong duality dictates that gaps,λ(x, y) ≥ 0 for all x ∈ Rd, y ∈ Rn, with equality attained when x is primal-optimal and
y is dual-optimal.

B. Additional lemmas
This section establishes technical lemmas, useful in statements and proofs throughout the paper.

Lemma B.1 (Standard bounds for smooth, strongly convex functions). Let f : Rk → R be differentiable and let x ∈ Rk.
Furthermore, let xopt be a minimizer of f .

If f is L-smooth then

1

2L
‖∇f(x)‖22 ≤ f(x)− f(xopt) ≤ L

2
‖x− xopt‖22
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If f is µ-strongly convex we have

µ

2
‖x− xopt‖22 ≤ f(x)− f(xopt) ≤ 1

2µ
‖∇f(x)‖22

Proof. Apply the definition of smoothness and strong convexity at the points x and xopt and minimize the resulting
quadratic form.

Lemma B.2 (Errors for primal-dual pairs). Consider F , fs,λ gs,λ, x̂s,λ, and ŷ, as defined in (1), (3), (5), (6), and (7),
respectively. Then for all y ∈ Rn,

fs,λ(x̂s,λ(y))− f opt
s,λ ≤

R2L(nR2L+ λ)

λ2
(gs,λ(y)− gopt

s,λ),

Furthermore let

xopt
s,λ = argmin fs,λ(x) and yopt

s,λ = argmin gs,λ(x).

Then for all y ∈ Rn,

‖x̂s,λ(y)− xopt
s,λ‖

2
2 ≤

nR2

λ2
‖y − yopt

s,λ‖
2
2.

Proof. Because F is nR2L smooth, fs,λ is nR2L+ λ smooth. Consequently, for all x ∈ Rd we have

fs,λ(x)− f opt
s,λ(xopt

s,λ) ≤ nR2L+ λ

2
‖x− xopt

s,λ‖
2
2

Since we know that xopt
s,λ = s− 1

λA
Tyopt
s,λ and AAT � nR2I ,

fs,λ(x̂x,λ(y))− fs,λ(xopt
s,λ) ≤ nR2L+ λ

2
‖s− 1

λ
ATy − (s− 1

λ
ATyopt

s,λ)‖22

=
nR2L+ λ

2λ2
‖y − yopt

s,λ‖
2
AAT

≤ nR2(nR2L+ λ)

2λ2
‖y − yopt

s,λ‖
2
2. (10)

Finally, since each φ∗i is 1/L strongly convex, G is n/L strongly convex and hence so is gs,λ. Therefore,

n

2L
‖y − yopt

s,λ‖
2
2 ≤ gs,λ(y)− gs,λ(yopt

s,λ). (11)

Substituting (11) in (10) yields the result.

By adding the dual error to both sides of the inequality in Lemma B.2, we obtain the following corollary.

Corollary B.3 (Dual error bounds gap). Consider gs,λ, gaps,λ, x̂s,λ, and ŷ, as defined in (5), (9), (6), and (7), respectively.
For all s ∈ Rd and y ∈ Rn,

gaps,λ(x̂s,λ(y), y) ≤ 2R2L(nR2L+ λ)

λ2
(gs,λ(y)− gopt

s,λ).

Another corollary arises by combining Lemmas B.1 and B.3.

Corollary B.4 (Dual error bounds primal gradient). Consider fs,λ, gs,λ, and x̂s,λ, as defined in (3), (5), and (6), respec-
tively. For all s ∈ Rd and y ∈ Rn,

‖∇fs,λ(x̂s,λ(y))‖22 ≤ 2(nR2L+ λ)(fs,λ(x̂s,λ(y))− f opt
s,λ)

≤ 2R2L(nR2L+ λ)2

λ2
(gs,λ(y)− gopt

s,λ).
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Lemma B.5 (Gap for primal-dual pairs). Consider F , fs,λ gs,λ, gaps,λ, x̂s,λ, and ŷ, as defined in (1), (3), (5), (9), (6),
and (7), respectively. For any x, s ∈ Rd

gaps,λ(x, ŷ(x)) =
1

2λ
‖∇F (x)‖22 +

λ

2
‖x− s‖22. (12)

Separately, for any y ∈ Rn and s ∈ Rd,

gaps,λ(x̂s,λ(y), y) = F (x̂s,λ(y)) + gs,λ(y) + 1
2λ‖A

Ty‖2. (13)

Proof. To prove the first identity (12), let ŷ = ŷ(x) for brevity. Recall that

ŷi = φ′i(a
T
i x) ∈ argmax

yi

{xTaiyi − φ∗i (yi)} (14)

by definition, and hence xTaiŷi − φ∗i (ŷi) = φi(a
T
i x). Observe that

gaps,λ(x, ŷ) =

n∑
i=1

(
φi(a

T
i x) + φ∗i (ŷi)

)
− xTATŷ + 1

2λ‖A
Tŷ‖2 + λ

2 ‖x− s‖
2

=
n∑
i=1

φi(aTi x) + φ∗i (ŷi)− xTaiŷi︸ ︷︷ ︸
=0 (by (14))

+ 1
2λ‖A

Tŷ‖2 + λ
2 ‖x− s‖

2

= 1
2λ‖A

Tŷ‖2 + λ
2 ‖x− s‖

2

= 1
2λ‖

n∑
i=1

aiφ
′
i(a

T
i x)‖2 + λ

2 ‖x− s‖
2

= 1
2λ‖∇F (x)‖2 + λ

2 ‖x− s‖
2.

For the second identity (13), let x̂ = x̂s,λ(y) for brevity. Fix s ∈ Rd and λ > 0. Define r(x) = λ
2 ‖x− s‖

2, and note that
its Fenchel conjugate is r∗(y) = 1

2λ‖y‖
2 + sTy. With this notation we can write:

fs,λ(x) = F (x) + r(x)

gs,λ(y) = G(y) + r∗(−ATy).

Observe that

x̂ = s− 1
λA

Ty

= argmin
x

{
λ
2 ‖x− s‖

2 + xTATy
}

= argmin
x

{
r(x) + xTATy

}
= argmax

x

{
−xTATy − r(x)

}
= ∇r∗(−ATy).

Note also that gs,λ may be rewritten as

gs,λ(y) = G(y) + 1
2λ‖A

Ty‖2 − sTATy

= G(y) + (− 1
2λy

TA+ 1
λy

TA− sT)ATy

= G(y)− 1
2λ‖A

Ty‖2 − x̂TATy.

Combining the above two observations, and noting that the first implies equality in the Fenchel-Young inequality,

gaps,λ(x̂, y) = fs,λ(x̂) + gs,λ(y)

= F (x̂) +G(y) + r(x̂) + r∗(−ATy)

= F (x̂) +G(y)− x̂TATy

= F (x̂) + gs,λ(y) + 1
2λ‖A

Ty‖2,
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proving the claim.

C. Convergence analysis of Dual APPA
The goal of this section is to establish the convergence rate of Algorithm 3, Dual APPA. It is structured as follows:

• Mirroring Lemma 3.2, we establish Lemma C.1, concerning contraction of the norm of the gradient, ‖∇F‖, rather
than of the error in function value F −F opt. Similar to Lemma 3.2, this lemma is self-contained and assume only that
F is µ-strongly convex, but not that it is the ERM objective.

• We then establish directly a geometric rate upper bound on the value of ‖∇F‖ over the course of the algorithm,
relying, in the process on Lemma C.1.

• Finally, we query the strong convexity of F to establish that it too is subject to the same rate (up to an extra multi-
plicative factor).

Lemma C.1 (Gradient-norm reduction implies contraction). Suppose F : Rd → R is µ-strongly convex and that λ > 0.
Define fs : Rd → R by fs(x) = f(x) + λ

2 ‖x− s‖
2
2. For any x0, x1 ∈ Rd,

‖∇F (x1)‖2 ≤
(

1 +
λ

λ+ µ

)
‖∇fx0

(x1)‖2 +
λ

λ+ µ
‖∇F (x0)‖2. (15)

Corollary C.2. Define γ def
= λ/(λ+ µ) and let τ be any scalar in the interval [γ, 1). For any x0, x1 ∈ Rd,

‖∇F (x1)‖ ≤ τ‖∇F (x0)‖, (16)

whenever

‖∇fx0(x1)‖ ≤
(
τ − γ
1 + γ

)
‖∇F (x0)‖. (17)

Proof of Lemma C.1. Taking gradients of fx0 and fx1 we have that

∇F (x1) = ∇F (x1) + λ(x1 − x0)− λ(x1 − x0)

= ∇fx0(x1)− λ(x1 − x0).

By the triangle inequality,

‖∇F (x1)‖ ≤ ‖∇fx0(x1)‖+ λ‖x1 − x0‖.

Because fx0 is (λ+ µ)-strongly convex,

(λ+ µ)‖x1 − x0‖ ≤ ‖∇fx0(x1)−∇fx0(x0)‖
≤ ‖∇fx0(x1)‖+ ‖∇fx0(x0)‖
= ‖∇fx0(x1)‖+ ‖∇F (x0)‖.

Combining the previous two observations proves the claim.

Throughout the remainder of this section, we consider the functions defined in the main setup (Section 1.1) – namely, F ,
fs,λ gs,λ, x̂s,λ, and ŷ, as defined in (1), (3), (5), (6), and (7), respectively, where F is a µ-strongly convex sum whose
constituent summands are each L-smooth scalar functions operating on the inner product of the variable x ∈ Rd with a
vector ai of Euclidean norm at most R. For notational brevity, we omit the λ subscript, and we denote iterates of the
algorithm with numerical subscripts (e.g. x1, x2, . . . , and y1, y2, . . . ) rather than parenthesized superscripts.

We begin by bounding the error of the dual regularized ERM problem when the center of regularization changes. This
characterizes the initial error at the beginning of each Dual APPA iteration.
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Lemma C.3 (Dual error is bounded across re-centering.). Fix y ∈ Rn and x ∈ Rd. Let x′ = x̂x(y). Then

gx′(y)− gopt
x′ ≤ c1(gx(y)− gopt

x ) + c2‖∇F (x)‖22,

where

c1 =
2R2L(nR2L+ λ)

λ2

(
1 +

λ(nR2L+ λ)

2(λ+ µ)2

)
and c2 =

λ

2(λ+ µ)2
.

In other words, the dual error gs(y) − gopt
s is bounded across a re-centering step by multiples of previous sub-optimality

measurements (namely, dual error and gradient norm).

Proof. We first show how re-centering, from x to x′, increases the duality gap between y and x′ (the new center). The dual
function value changes from

gx(y) = G(y) +
1

2λ
‖ATy‖2 − xTATy

to

gx′(y) = G(y) +
1

2λ
‖ATy‖2 − x′TATy

= G(y) +
1

2λ
‖ATy‖2 −

(
x− 1

λ
ATy

)T

ATy

= gx(y) +
1

λ
‖ATy‖2

= gx(y) + λ‖ 1

λ
ATy‖2

= gx(y) + λ‖x− 1

λ
ATy − x‖2

= gx(y) + λ‖x′ − x‖2

i.e. it increases by λ‖x′ − x‖2. Meanwhile, the primal function value changes from

fx(x′) = F (x′) +
λ

2
‖x′ − x‖2

to fx′(x′) = F (x′), i.e. it decreases by λ
2 ‖x

′ − x‖2. Hence, in total, the new duality gap is

gapx′(x
′, y) = gapx(x′, y) +

λ

2
‖x′ − x‖2

≤ gapx(x′, y) +
λ

2(µ+ λ)2
‖∇fx(x′)−∇fx(x)‖2

≤ gapx(x′, y) +
λ

2(µ+ λ)2
(
‖∇fx(x′)‖2 + ‖∇fx(x)‖2

)
≤ gapx(x′, y) +

λ

2(µ+ λ)2
(
‖∇fx(x′)‖2 + ‖∇F (x)‖2

)
,

where the first inequality follows by (µ+ λ)-strong convexity of fx.
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Combining the last two chains of inequalities, and abbreviating L̃ = nR2L+ λ, we bound the re-centered dual error of y:

gx′(y)− gopt
x′ ≤ gapx′(x

′, y)

≤ gapx(x′, y) +
λ

2(µ+ λ)2
(
‖∇fx(x′)‖2 + ‖∇F (x)‖2

)
≤ 2R2LL̃

λ2
(gx(y)− gopt

x ) +
λ

2(µ+ λ)2
(
‖∇fx(x′)‖2 + ‖∇F (x)‖2

)
≤ 2R2LL̃

λ2
(gx(y)− gopt

x ) +
λ

2(µ+ λ)2

(
2R2LL̃2

λ2
(gx(y)− gopt

x ) + ‖∇F (x)‖2
)

=
2R2LL̃

λ2

(
1 +

λL̃

2(µ+ λ)2

)
(gx(y)− gopt

x ) +
λ

2(µ+ λ)2
‖∇F (x)‖2.

where the third and fourth inequalities follow from Corollary B.3 – the fourth first relying on the L̃-smoothness of fx, that
is:

‖∇fx(x′)‖2 ≤ 2L̃(fx(x′)− f opt
x ) ≤ 2R2LL̃2

λ2
(gx(y)− gopt

x ). (18)

Recalling the choices of numerical constants c1 and c2, the claim is proven.

Finally, we prove that – for an appropriate choice of oracle parameter σ independent of the target error ε – the iterates
produced by Dual APPA are bounded above by a geometric sequence. In doing so, it will be convenient to abbreviate

c3 =
2R2L(nR2L+ λ)2

λ2
,

the same numerical constant as in (18).

Proposition C.4 (Convergence rate of Dual APPA in gradient norm). Define γ = λ/(λ + µ) and let τ be any scalar in
[γ, 1). Define

r = max
{

1/2, τ/
√

2, τ2
}
, (19)

and

σ = max

{
c3
2λ

(
τ − γ
1 + γ

)−2
,
c1 + c2 + c2c3

r
,

1

r

(
τ − γ
1 + γ

)−2
c3(c1 + c2 + c2c3)

}
. (20)

In the execution of Dual APPA (Algorithm 3), for every iteration t ≥ 1,

gxt−1(yt)− gopt
xt−1
≤ crt, and (21)

‖∇F (xt−1)‖2 ≤ crt, (22)

where c = 2‖∇F (x0)‖2.

Proof. The argument proceeds by strong induction on t. We begin the inductive argument with base case t = 1.

For the first invariant (21), the algorithm takes σ ≥ 1/(2λ) and we have

gx0
(y1)− gopt

x0
≤ 1

σ
(gx0

(y0)− gopt
x0

) ≤ 1

σ

1

2λ
‖∇F (x0)‖2 ≤ 1

σ

1

4λ
c (23)

because the algorithm explicitly takes y0 = ŷ(x0) (see Lemma B.4). So this part of the claim holds as r ≥ 1/2 and
σ ≥ 1/(2λ).



Un-regularizing: approximate proximal point algorithms for empirical risk minimization

The second invariant (22) holds immediately as c = 2‖∇F (x0)‖2 and r ≥ 1/2.

We will also explicitly handle the case t = 2 for the second invariant. By (23) and our choice of σ, we have that

‖∇fx0(x1)‖2 ≤ c3(gx0(y1)− gopt
x0

) ≤ c3
1

σ

1

2λ
‖∇F (x0)‖2 ≤

(
τ − γ
1 + γ

)2

‖∇F (x0)‖2.

and so by Corollary C.2,

‖∇F (x1)‖2 ≤ τ2‖∇F (x0)‖2 ≤ τ2

2
c.

and the claim follows as r2 ≥ τ2/2

Now consider t ≥ 2. Concerning the first invariant (21), the algorithm takes σ ≥ 1
r (c1 + c2 + c2c3) and so we have

gxt−1(yt)− gopt
x0
≤ 1

σ
(gxt−1(yt−1)− gopt

xt−1
)

≤ 1

σ

[
(c1 + c2c3)(gxt−2(yt−1)− gopt

xt−2
) + c2‖∇F (xt−2)‖2

]
≤ 1

σ

[
(c1 + c2c3)crt−1 + c2cr

t−1]
≤ 1

σ
c(c1 + c2 + c2c3)rt−1

≤ crt.

For the second invariant (22), we have already handled the case of t = 2, and so assume that t ≥ 3. By Lemmas C.1 and
C.2, and by the choice of σ, we have that

‖∇F (xt−1)‖ ≤ (1 + γ)‖∇fxt−2(xt−1)‖+ γ‖∇F (xt−2)‖

≤ (1 + γ)
√
c3(gxt−2

(yt−1)− gopt
xt−2) + γ‖∇F (xt−2)‖

≤ (1 + γ)

√
c3

1

σ
(gxt−2

(yt−2)− gopt
xt−2) + γ‖∇F (xt−2)‖

≤ (1 + γ)

√
c3

1

σ

[
(c1 + c2c3)(gxt−3(yt−2)− gopt

xt−3) + c2‖∇F (xt−3)‖2
]

+ γ‖∇F (xt−2)‖

≤ (1 + γ)

√
c3

1

σ
(c1 + c2 + c2c3)crt−2 + γ

√
crt−1

≤ (τ − γ)
√
crt−1 + γ

√
crt−1

≤ τ
√
crt−1

≤
√
crt,

where the final inequality is due to the choice of r ≥ τ2. This completes the inductive argument.

Equipped with Proposition C.4, we translate it into a statement about the convergence rate of Dual APPA in error, rather
than in gradient norm, to prove Theorem 2.10:

Proof of Theorem 2.10. Define γ, τ , r, and σ as in Proposition C.4. In the execution of Dual APPA (Algorithm 3), at each
iteration t ≥ 1, we claim that

F (xt)− F opt ≤ 2nR2L

µ
ε0r

t+1, (24)
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where ε0 = F (x0) − F opt. Consequently, for any ε > 0, in order to achieve ε error in Dual APPA, it suffices to take a
number of iterations

T ≥ 1

1− r

(
log

(
2nR2L

µ

)
+ log

ε0
ε

)
.

The first part of the claim follows directly from Proposition C.4, using the smoothness and strong convexity of F . The
second part follows from a calculation sufficient to make the right hand side of (24) smaller than a given ε.

D. Convergence analysis of Accelerated APPA
The goal of this section is to establish the convergence rate of Algorithm 2, Accelerated APPA, and prove Theorem 2.6.
Note that the results in this section use nothing about the structure of F other than strong convexity and thus they apply to
the general ERM problem (2); they are written in greater generality to make this distinction clear.

Aspects of the proofs in this section bear resemblance to the analysis in Shalev-Shwartz & Zhang (2014), which achieves
similar results in a more specialized setting.

The rest of this section is structured as follows:

• In Lemma D.1 we show that applying a primal oracle to the inner minimization problem gives us a quadratic lower
bound on F (x).

• In Lemma D.2 we use this lower bound to construct a series of lower bounds for the main objective function f , and
accelerate the APPA algorithm, comprising the bulk of the analysis.

• In Lemma D.3 we show that the requirements of Lemma D.2 can be met by using a primal oracle that decreases the
error by a constant factor.

• In Lemma D.4 we analyze the initial error requirements of Lemma D.2.

• In Lemma D.5 we provide an auxiliary lemma that combines two quadratic functions that we use in the earlier proofs.

The proof of Theorem 2.6 follows immediately from these lemmas.

Lemma D.1. Let f ∈ Rn → R be µ-strongly convex and let fx0,λ(x)
def
= f(x) + λ

2 ‖x− x0‖
2
2. Suppose x+ satisfies.

fx0,λ(x+) ≤ min
x∈Rn

fx0,λ(x) + ε,

Then for µ′ def= µ/2, g def
= λ(x0 − x+), and all x ∈ Rn we have

f(x) ≥ f(x+)− 1

2µ′
‖g‖2 +

µ′

2

∥∥∥∥x− (x0 −
(

1

µ′
+

1

λ

)
g

∥∥∥∥2
2

− λ+ 2µ′

µ′
ε.

Note that as µ′ = µ/2 we are only losing a factor of 2 in the strong convexity parameter for our lower bound. This allows
us to account for the error without loss in our ultimate convergence rates.

Proof. Let xopt = argminx∈Rn fx0,λ(x). Since f is µ-strongly convex clearly fx0,λ is µ + λ strongly convex and by
Lemma B.1

fx0,λ(x)− fx0,λ(xopt) ≥ µ+ λ

2
‖x− xopt‖22. (25)

By Cauchy-Schwartz we know

λ+ µ′

2
‖x− x+‖22 ≤

λ+ µ′

2

(
‖x− xopt‖22 + ‖xopt − x+‖22

)
+
µ′

2
‖x− xopt‖22 +

(λ+ µ′)2

2µ′
‖xopt − x+‖22,
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which implies

µ+ λ

2
‖x− xopt‖22 ≥

λ+ µ′

2
‖x− x+‖22 −

λ+ µ′

µ′
· λ+ µ

2
‖xopt − x+‖22.

On the other hand, since fx0,λ(x+) ≤ fx0,λ(xopt) + ε by (25) we have λ+µ
2 ‖x

+ − xopt‖22 ≤ ε and therefore

fx0,λ(x)− fx0,λ(x+) ≥ fx0,λ(x)− fx0,λ(xopt)− ε

≥ µ+ λ

2
‖x− xopt‖22 − ε

≥ λ+ µ′

2
‖x− x+‖22 −

λ+ µ′

µ′
· λ+ µ

2
‖xopt − x+‖22 − ε

≥ λ+ µ′

2
‖x− x+‖22 −

λ+ 2µ′

µ′
ε.

Now since

‖x− x+‖22 = ‖x− x0 +
1

λ
g‖22 = ‖x− x0‖2 +

2

λ
〈g, x− x0〉+

1

λ2
‖g‖22,

and using the fact that fx0,λ(x) = f(x) + λ
2 ‖x− x0‖

2
2, we have

f(x) ≥f(x+) +

[
1

λ
+

µ′

2λ2

]
‖g‖22 +

(
1 +

µ′

λ

)
〈g, x− x0〉+

µ′

2
‖x− x0‖2 −

λ+ 2µ′

µ′
ε.

The right hand side of the above equation is a quadratic function. Looking at its gradient with respect to x we see that it
obtains its minimum when x = x0 −

(
1
µ′ + 1

λ

)
g and has a minimum value of f(x+)− 1

2µ′ ‖g‖
2
2 −

λ+2µ′

µ′ ε.

Lemma D.2. Let f : Rn → R be µ-strongly convex and suppose that in each iteration t we have ψt
def
= ψopt

t + µ′

2 ‖x−v
(t)‖22

such that f(x) ≥ ψt(x) for all x. Then if we let ρ def
= µ′+λ

µ′ , fy,λ(x)
def
= f(x) + λ

2 ‖y − x‖
2
2 for λ ≥ 3µ′ and

• y(t) def
= 1

1+ρ−1/2x
(t) + ρ−1/2

1+ρ−1/2 v
(t),

• E[fy(t),λ(x(t+1))]− f opt
y(t),λ

≤ ρ−3/2

4 (f(x(t))− ψopt
t ),

• g(t) def
= λ(y(t) − x(t+1)),

• v(t+1) def
= (1− ρ−1/2)v(t) + ρ−1/2

[
y(t) −

(
1
µ′ + 1

λ

)
g(t)
]
.

We have that

E[f(x(t))− ψopt
t ] ≤

(
1− ρ−1/2

2

)t
(f(x0)− ψopt

0 ).

Proof. Regardless of how y(t) is chosen we know by Lemma D.1 that for γ = 1 + µ′

λ and all x ∈ Rn

f(x) ≥ f(x(t+1))− 1

2µ′
‖g(t)‖22 +

µ′

2

∥∥∥∥x− (y(t) − γ

µ′
g(t)
)∥∥∥∥2

2

− λ+ 2µ′

µ′

(
fy(t),λ(x(t+1))− f opt

y(t),λ

)
. (26)
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Thus, for β = 1− ρ−1/2 we can let

ψt+1(x)
def
= βψt(x) + (1− β)

[
f(x(t+1))− 1

2µ′
‖g(t)‖22 +

µ′

2
‖x−

(
y(t) − γ

µ′
g(t)
)
‖22

− λ+ 2µ′

µ′
(fy(t),λ(x(t+1))− f opt

y(t),λ
)

]
= β

[
ψopt
t +

µ′

2
‖x− v(t)‖22

]
+ (1− β)

[
f(x(t+1))− 1

2µ′
‖g(t)‖22 +

µ′

2
‖x−

(
y(t) − γ

µ′
g(t)
)
‖22

− λ+ 2µ′

µ′
(fy(t),λ(x(t+1))− f opt

y(t),λ
)

]
= ψopt

t+1 +
µ′

2
‖x− v(t+1)‖22.

where in the last line we used Lemma D.5. Again, by Lemma D.5 we know that

ψopt
t+1 = βψt + (1− β)

(
f(x(t+1))− 1

2µ′
‖g(t)‖22 −

λ+ 2µ′

µ′
(fy(t),λ(x(t+1))− f opt

y(t),λ
)

)
+ β(1− β)

µ′

2
‖v(t) −

(
y(t) − γ

µ′
g(t)
)
‖22

≥ βψt + (1− β)f(x(t+1))− (1− β)2

2µ′
‖g(t)‖22 + β(1− β)γ

〈
g(t), v(t) − y(t)

〉
− (1− β)(λ+ 2µ′)

µ′
(fy(t),λ(x(t+1))− f opt

y(t),λ
).

In the second step we used the following fact:

−1− β
2µ′

+ β(1− β)
µ′

2
· γ

2

µ′
=

1− β
2µ′

(−1 + βγ2) ≥ − (1− β)2

2µ′
.

Furthermore, expanding the term µ
2 ‖(x− y

(t)) + γ
µg

(t)‖22 and instantiating x with x(t) in (26) yields

f(x(t+1)) ≤ f(x(t))− 1

λ
‖g(t)‖22 + γ

〈
g(t), y(t) − x(t)

〉
+
λ+ 2µ′

µ′
(fy(t),λ(x(t+1))− f opt

y(t),λ
).

Consequently we know

f(x(t+1))− ψopt
t+1 ≤ β[f(x(t))− ψopt

t ] +

[
(1− β)2

2µ′
− β

λ

]
‖g(t)‖22 + γβ

〈
g(t), y(t) − x(t) − (1− β)(v(t) − y(t))

〉
+

(λ+ 2µ′)

µ′
(fy(t),λ(x(t+1))− f opt

y(t),λ
)

Note that we have chosen y(t) so that the inner product term equals 0, and we choose β = 1− ρ−1/2 ≥ 1
2 which ensures

(1− β)2

2µ′
− β

λ
≤ 1

2(µ′ + λ)
− 1

2λ
≤ 0.

Also, by assumption we know E[fy(t),λ(x(t+1))− f opt
y(t),λ

] ≤ ρ−3/2

4 (f(x(t))− ψopt
t ), which implies

E[f(x(t+1))− ψopt
t+1] ≤

(
β +

(λ+ 2µ′)

µ′
· ρ
−3/2

4

)
(f(x(t))− ψopt

t ) ≤ (1− ρ−1/2/2)(f(x(t))− ψopt
t ).

In the final step we are using the fact that λ+2µ′

µ′ ≤ 2ρ and ρ ≥ 1.
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Lemma D.3. Under the setting of Lemma D.2, we have fy(t),λ(x(t))− f opt
y(t),λ

≤ f(x(t))− ψopt
t . In particular in order to

achieve E[fy(t),λ(x(t+1)) ≤ ρ−3/2

8 (f(x(t)) − ψopt
t ) we only need an oracle that shrinks the function error by a factor of

ρ−3/2

8 (in expectation).

Proof. We know

fy(t),λ(x(t))− f(x(t)) =
λ

2
‖x(t) − y(t)‖22 =

λ

2
· ρ−1

(1 + ρ−1/2)2
‖x(t) − v(t)‖22.

We will try to show the lower bound f opt
y(t),λ

is larger than ψopt
t by the same amount. This is because for all x we have

fy(t),λ(x) = f(x) +
λ

2
‖x− y(t)‖22 ≥ ψ

opt
t +

µ′

2
‖x− v(t)‖22 +

λ

2
‖x− y(t)‖22.

The RHS is a quadratic function, whose optimal point is at x = µ′v(t)+λy(t)

µ′+λ and whose optimal value is equal to

ψopt
t +

λ

2

(
µ′

µ′ + λ

)2

‖v(t) − y(t)‖22 +
µ′

2

(
λ

µ+ λ

)2

‖v(t) − y(t)‖22 = ψopt
t +

µ′λ

2(µ′ + λ)
· 1

(1 + ρ−1/2)2
‖x(t) − v(t)‖22.

By definition of ρ−1, we know µ′λ
2(µ′+λ) ·

1
(1+ρ−1/2)2

‖x(t)−v(t)‖22 is exactly equal to λ
2 ·

ρ−1

(1+ρ−1/2)2
‖x(t)−v(t)‖22, therefore

fy(t),λ(x(t))− f opt
y(t),λ

≤ f(x(t))− ψopt
t .

Remark In the next lemma we show that moving to the regularized problem has the same effect on the primal function
value and the lower bound. This is a result of the choice of β in the proof of Lemma D.2. However this does not mean the
choice of β is very fragile, we can choose any β′ that is between the current β and 1; the influence to this lemma will be
that the increase in primal function becomes smaller than the increase in the lower bound (so the lemma continues to hold).

Lemma D.4. Let ψopt
0 = f(x(0)) − λ+2µ′

µ′ (f(x(0)) − f opt), and v(0) = x(0), then ψ0
def
= ψopt

0 + µ′

2 ‖x − v0‖
2 is a valid

lower bound for f . In particular when λ = LR2 then f(x(0))− ψopt
0 ≤ 2κ(f(x(0))− f opt).

Proof. This lemma is a direct corollary of Lemma D.1 with x+ = x(0).

Lemma D.5. Suppose that for all x we have

f1(x)
def
= ψ1 +

µ

2
‖x− v1‖22 and f2(x) = ψ2 +

µ

2
‖x− v2‖22

then
αf1(x) + (1− α)f2(x) = ψα +

µ

2
‖x− vα‖22

where
vα = αv1 + (1− α)v2 and ψα = αψ1 + (1− α)ψ2 +

µ

2
α(1− α)‖v1 − v2‖22

Proof. Setting the gradient of αf1(x) + (1− α)f2(x) to 0 we know that vα must satisfy

αµ (vα − v1) + (1− α)µ (vα − v2) = 0

and thus
vα = αv1 + (1− α)v2.

Finally,

ψα = α
[
ψ1 +

µ

2
‖vα − v1‖22

]
+ (1− α)

[
ψ2 +

µ

2
‖vα − v2‖22

]
= αψ1 + (1− α)ψ2 +

µ

2

[
α(1− α)2‖v2 − v1‖22 + (1− α)α2‖v2 − v1‖22

]
= αψ1 + (1− α)ψ2 +

µ

2
α(1− α)‖v1 − v2‖22


