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A. Appendix
Identity 1.

cos(x− y) =

∫ 2π

0

1

2π

√
2 cos(x+ b)

√
2 cos(y + b)db

Proof. We first evaluate the term inside the integral. We
have

cos(x+ b) cos(y + b)

= (cos(x) cos(b)− sin(x) sin(b))

· (cos(y) cos(b)− sin(y) sin(b))

= (cos(x) cos(y)) cos2(b) + (sin(x) sin(y)) sin2(b)

− (sin(x) cos(y) + cos(x) sin(y)) sin(b) cos(b).

Now, since
∫

cos2(b)db = b
2 + 1

4 sin(2b), as well as∫
sin2(b)db = b

2 −
1
4 sin(2b), and

∫
sin(b) cos(b)db =

− 1
4 cos(2b), we have∫ 2π

0

1

2π

√
2 cos(x+ b)

√
2 cos(y + b)db

=
1

π
(cos(x) cos(y)(π − 0)

+ sin(x) sin(y)(π − 0)

− (sin(x) cos(y) + cos(x) sin(y)) · 0
= cos(x− y)

Identity 2.

EN (w;µ,Σ)

(
cos(wTx + b)

)
= e−

1
2x

TΣx cos(µTx + b)

Proof. We rely on the characteristic function of the Gaus-
sian distribution to prove this identity.

EN (w;µ,Σ)

(
cos(wTx + b)

)
= <

(
eibEN (w;µ,Σ)

(
eiw

Tx
))

= <(eibeiw
Tµ− 1

2x
TΣx)

= e−
1
2x

TΣx cos(µTx + b)

where <(·) is the real part function, and the transition from
the second to the third lines uses the characteristic function
of a multivariate Gaussian distribution.

Identity 3.

EN (w;µ,Σ)

(
cos(wTx + b)2

)
=

1

2
e−2xTΣx cos(2µTx + 2b) +

1

2

Proof. Following the identity cos(θ)2 = cos(2θ)+1
2 ,

EN (w;µ,Σ)

(
cos(wTx + b)2

)
=

1

2
EN (w;µ,Σ)

(
cos(2wTx + 2b)

)
+

1

2

=
1

2
e−2xTΣx cos(2µTx + 2b) +

1

2

Proposition 1. Given a sum of covariance functions with
L components (with each corresponding to Φi an N ×K
matrix) we have Φ = [Φi]

L
i=1 an N × LK matrix.

Proof. We extend the derivation of equation 2 to sums of
covariance functions. Given a sum of covariance functions
with L components

K(x,y) =

L∑
i=1

σ2
iKi(x,y),

following equation 1 we have

K(x,y) =
L∑
i=1

∫
RQ

σ2
i pi(w) cos(2πwT (x− y))dw,

where we write σ2
i instead of σσ2

i for brevity (with σ2
i not

having to sum to one).
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Following the derivations of equation 2, for each compo-
nent i in the sum we get Φi an N × K matrix. Writing
Φ = [Φi]

L
i=1 an N × LK matrix, we have that the sum

of covariance matrices can be expressed with a single term
after marginalizing F out,

L∑
i=1

ΦiΦ
T
i + τ−1I = ΦΦT + τ−1I,

thus identity 2 still holds.

Proposition 2. Performing a change of variables to a
sum of SE covariance functions results in p(w) a stan-
dard normal distribution with covariance function hyper-
parameters expressed in Φ.

Proof. The sum of SE covariance functions’ correspond-
ing probability measure p(w) is expressed as a mixture of
Gaussians,

p(w) =

L∑
i=1

σ2
i

Q∏
q=1

√
2πliqe

−
(2πliq)

2

2 w2
q

=

L∑
i=1

σ2
iN (w; 0,L−2

i ),

with σ2
i summing to one.

Following equation 1 with the above p(w) we perform a
change of variables to get,

K(x,y)

=

L∑
i=1

∫
RQ

σ2
iN (w′; 0,L−2

i ) cos(2πw′T (x− y))dw′

=

L∑
i=1

∫
RQ

σ2
iN (w; 0, I) cos(2π(L−1

i w)T (x− y))dw

for w′ = L−1
i w.

For each component i we get Φi an N × K matrix with
elements√

2σ2
i

K
cos
(
2π(L−1

i wk)T (x− zk) + bk
)
,

where for simplicity, we index wk and bk with k =
1, ..., LK as a function of i.

Proposition 3. Let p(a) = N (0, I). The optimal distribu-
tion q(a) solving∫

q(a)

∫
q(ω) log p(y|a,X,ω)dωda

− KL(q(a)||p(a))− KL(q(ω)||p(ω))

is given by

q(ad) = N (ΣEq(ω)(Φ
T )yd, τ

−1Σ)

with Σ = (Eq(ω)(Φ
TΦ) + τ−1I)−1.

The lower bound to optimise then reduces to

L =

D∑
d=1

(
− N

2
log(2πτ−1)− τ

2
yTd yd

+
1

2
log(|τ−1Σ|)

+
1

2
τyTd Eq(ω)(Φ)ΣEq(ω)(Φ

T )yd

)
− KL(q(ω)||p(ω)).

Proof. Let

L =

∫
q(a)

∫
q(ω) log p(y|a,X,ω)dωda

−
∫
q(a) log

q(a)

p(a)
da−

∫
q(ω) log

q(ω)

p(ω)
dω.

We want to solve

d(L+ λ
∫

(
∫
q(a)da− 1))

dq(a)
= 0

for some λ. I.e.∫
q(ω) log p(y|a,X,ω)dω − log

q(a)

p(a)
− 1 + λ = 0.

This means that

q(a) = eλ−1e
∫
q(ω) log p(y|a,X,ω)dωp(a)

= exp

(
− 1

2
aT τ(E(ΦTΦ) + τ−1I)a

+
(
τyTE(Φ)

)
a + ...

)
and since q(a) is Gaussian, it must be equal to

q(a) = N (ΣEq(ω)(Φ
T )y, τ−1Σ)

with Σ = (Eq(ω)(Φ
TΦ) + τ−1I)−1.

Writing p(a) and q(a) explicitly and simplifying results in
the required lower bound.

Proposition 4. Denoting M = [md]
D
d=1, we have

Eq(y∗|x∗)(y
∗) = Eq(ω)

(
φ∗
)
M.



Variational Inference for Sparse Spectrum Approximation in Gaussian Process Regression – Appendix

Proof. The d’th output y∗d of the mean of the distribution is
given by (writing φ∗ = φ(x∗,ω))

Eq(y∗d |x∗)(y
∗
d) =

∫
y∗dp(y

∗
d|x∗,A,ω)q(A,ω)dAdωdy∗d

=

∫ (
φ∗ad

)
q(A,ω)dAdω

=

∫
φ∗q(ω)dω

∫
adq(A)dA

= Eq(ω)

(
φ∗
)
md,

which can be evaluated analytically.

Proposition 5. The variance of the predictive distribution
is given by

Varq(y∗|x∗)(y
∗) = τ−1ID + Ψ

+ MT
(
Eq(ω)

(
φT∗ φ∗

)
− Eq(ω)

(
φ∗
)T
Eq(ω)

(
φ∗
))

M

with Ψi,j = tr
(
Eq(ω)

(
φT∗ φ∗

)
· si
)
· 1[i = j].

Proof. The raw second moment of the distribution is given
by (remember that y∗ is a 1×D row vector)

Eq(y∗|x∗)((y
∗)T (y∗))

=

∫ (
(y∗)T (y∗)p(y∗|x∗,A,ω)dy∗

)
q(A,ω)dAdω

=

∫ (
Covp(y∗|x∗,A,ω)(y

∗)

+ Ep(y∗|x∗,A,ω)(y
∗)TEp(y∗|x∗,A,ω)(y

∗)
)
q(A,ω)dAdω

= τ−1ID + Eq(A)q(ω)

(
ATφT∗ φ∗A

)
.

Now, for i 6= j between 1 and D,(
Eq(A)q(ω)

(
ATφT∗ φ∗A

))
i,j

= Eq(A)q(ω)

(
aTi φ

T
∗ φ∗aj

)
= mT

i Eq(ω)

(
φT∗ φ∗

)
mj ,

and for i = j between 1 and D,(
Eq(A)q(ω)

(
ATφT∗ φ∗A

))
i,i

= Eq(A)q(ω)

(
aTi φ

T
∗ φ∗ai

)
= mT

i Eq(ω)

(
φT∗ φ∗

)
mi

+ tr
(
Eq(ω)

(
φT∗ φ∗

)
· si
)
.

Taking the difference between the raw second moment and
the outer product of the mean we get that the variance of
the predictive distribution is given by

Varq(y∗|x∗)(y
∗) = τ−1ID + Ψ

+ MT
(
Eq(ω)

(
φT∗ φ∗

)
− Eq(ω)

(
φ∗
)T
Eq(ω)

(
φ∗
))

M

with Ψi,j = tr
(
Eq(ω)

(
φT∗ φ∗

)
· si
)
· 1[i = j].

Discussion 1. We discuss some of the key properties of the
VSSGP, fVSSGP, and sfVSSGP. Due to space constraints,
this discussion was moved to the appendix.

Unlike the sparse pseudo-input approximation, where the
variational uncertainty is over the locations of a sparse
set of inducing points in the output space, the uncer-
tainty in our approximation is over a sparse set of func-
tion frequencies. As the uncertainty over a frequency (Σk)
grows, the exponential decay term in the expectation of
Φ decreases, and the expected magnitude of the feature
([(Eq(ω)(Φ))n,k]Nn=1) tends to zero for points xn far from
zk. Conversely, as the uncertainty over a frequency de-
creases, the exponential decay term increases towards one,
and the expected magnitude of the feature does not dimin-
ish for points xn far from zk.

With the predictive uncertainty in equation 15 we preserve
many of the GP characteristics. As an example, consider
the SE covariance function1. In full GPs the variance in-
creases towards σ2 + τ−1 far away from the data. This
property is key to Bayesian optimisation for example where
this uncertainty is used to decide what action to take given
a GP posterior.

With the SE covariance function, our expression for
φ∗ contains an exponential decay term exp(− 1

2 (xn −
zk)TΣk(xn − zk)). This term tends to zero as xn diverges
from zk. For xn far away from zk for all k we get that the
entire matrix Φ tends to zero, and that Eq(ω)

(
φT∗ φ∗

)
tends

to σ2

K Ik.

For fVSSGP, equation 15 then collapses to

Varq(y∗|x∗)(y
∗) = τ−1ID + Ψ′

with Ψ′i,j = σ2 1
K

∑K
k=1(µikµjk + s2

ik1[i = j]).

This term leads to identical predictive variance to that of the
full GP when A is fixed and follows the prior. It is larger
than the predictive variance of a full GP when s2

di > 1−µ2
di

on average, and smaller otherwise.

Unlike the SE GP, the predictive mean in the VSSGP with
a SE covariance function does not tend to zero quickly far
from the data. This is because the model can have high
confidence in some frequencies, driving the inducing fre-
quency variances (Σk) to zero. This in turn requires xn−zk
to be much larger for the exponential decay term to tend to
zero. The frequencies the model is confident about will be
used far from the data as well.

Unlike the SSGP, the approximation presented here is not
periodic. This is one of the theoretical limitations of the
sparse spectrum approximation (although in practice the
period was observed to often be larger than the range of the

1Given by σ2 exp
(
− 1

2

∑Q
q=1

(xq−yq)
2

l2q

)
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data). The limitation arises from the fact that the covariance
is represented as a weighted sum of cosines in SSGP. In the
approximation we present here this is avoided by decaying
the cosines to zero.

It is interesting to note that although our approximated co-
variance function K(x,y) has to be stationary (i.e. it can
be represented as K(x,y) = K(x − y)), the approximate
posterior is not. This is because stationarity entails that for
all x it must hold that K(x,x) = K(x − x) = K(0).
But for Eq(ω)(K̂(X,X)) = Eq(ω)(ΦΦT ) we have that the
diagonal terms depend on x:

(
Eq(ω)(ΦΦT )

)
n,n

=

K∑
k=1

2σ2
i

K
e−x

T
nkΣkxnk

· Eq(bk)

(
cos(µTk xnk) + bnk)

)2
.

This is in comparison to the SSGP approximation, where
the approximate model is stationary.

It is also interesting to note that the lower bound in equation
10 is equivalent to that of equation 11 for sd non-diagonal.
For sd diagonal the lower bound is looser, but offers im-
proved time complexity.

The use of the factorised lower bound allows us to save on
the expensive computation of A for small updates of ω.
Intuitively, this is because small updates in ω would result
in small updates to A. Thus solving for A analytically at
every time point without re-using previous computations
is very wasteful. Optimising over A to solve the linear
system of equations (given ω) allows us to use optimal A
from previous steps, adapting it accordingly.

Even though it is possible to analytically integrate over A,
we can’t analytically integrate ω. This is because ω ap-
pears inside a cosine inside an exponent in equation 2.

Finally, we can approximate our approach to achieve a
much more scalable implementation by only using the K ′

nearest inducing inputs for each data point. This is follow-
ing the observation that for short length-scales and large Σ,
the features will decay to zero exponentially fast with the
distance of the data points from the inducing inputs.


