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A. Conditional Densities used in BCDF
Using dot notation to represent marginal sums, e.g.,
x·nk ,

∑
p xpnk, we can write the conditional densities

for DPFA as (Zhou & Carin, 2015)

xpnk|− ∼Multi(xpn; ζpn1, . . . , ζpnK) , (1)
φk|− ∼ Dir(aφ + x1·k, . . . , aφ + xP ·k) ,

θkn|− ∼ Gamma(rkh
(1)
kn + x·nk, pn) ,

rk|− ∼ Gamma

(
γ0 +

N∑
n=1

lkn,
1

c0 −
∑N
n=1 h

(1)
kn ln(1− pn)

)
,

(2)

γ0|− ∼ Gamma

(
e0 +

K∑
k=1

l
′

k,
1

f0 −
∑K
k=1 ln(1− p′k)

)
,

(3)

h
(1)
kn |− ∼ δ(x·nk = 0)Ber

(
πkn(1− pn)rk

πkn(1− pn)rk + (1− πkn)

)
+ δ(x·nk > 0) ,

where

lkn|− ∼ CRT
(
x·nk, rkh

(1)
kn

)
, l′k|− ∼ CRT

(
N∑
n=1

lkn, γ0

)
,

ζpnk =
φpkθkn∑K
k=1 φpkθkn

, p′k =
−
∑N
n=1 h

(1)
kn ln(1− pn)

c0 −
∑N
n=1 h

(1)
kn ln(1− pn)

,

πkn = σ
(

(w
(1)
k )>h(2)

n + c
(1)
k

)
.

CRT represents the Chinese Restaurant Table distribution.
A CRT random variable l ∼ CRT(m, r) can be generated
with the summation of independent Bernoulli random vari-
ables as (Zhou & Carin, 2015)

l =

m∑
n=1

bn, bn ∼ Ber
(

r

n− 1 + r

)
.

B. Proof of Theorem 1
Consider a general stochastic differential equation of the
form

dΓ = Q(Γ)dt+
√

2D(Γ)dW , (4)

where Γ ∈ RN , Q : RN → RN , D : RM → RN×P
are measurable functions with P unnecessarily equal to N ,
and W is the standard P -dimensional Brownian motion.
Taking

Γ =

 θ
v
ξ

 , Q(Γ) =

 v
f − ξv

1
M v

Tv − 1

 ,

and D(Γ) to be constant, i.e., D, recovers the setting in the
original stochastic gradient Nóse-Hoover thermostats algo-
rithm (Ding et al., 2014) (with the notation of this paper).
Furthermore, write the joint distribution of Γ as

p(Γ) =
1

Z
exp {−H(Γ)} ,

where H(Γ) is usually called the Hamiltonian function of
a system. In the following we decompose Γ as Γ = (θ,x)
and H(Γ) as H(Γ) = U(θ) + E(θ,x) where U(θ) may
be the negative log-posterior of a Bayesian model.

To prove Theorem 1 in the main text, we make use of
Lemma 1 below, which is essentially the main theorem in
(Ding et al., 2014), which again is a consequence of the
celebrated Fokker-Planck Equation (Risken, 1989).

Lemma 1. The stochastic process of θ generated by the
stochastic differential equation (4) has the target distribu-
tion pθ(θ) = 1

Z exp{−U(θ)} as its stationary distribution,
if p(Γ) satisfies the following marginalization condition:

exp{−U(θ)} ∝
∫

exp{−U(θ)− E(θ,x)}dx , (5)
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and if the following condition is also satisfied:

∇ · (pQ) = ∇∇> : (pD) , (6)

where ∇ , (∂/∂θ, ∂/∂x), “·” represents the vector in-
ner product operator, “:” represents a matrix double dot
product, i.e., X : Y , tr(X>Y ).

Proof of Theorem 1. For conciseness, we replace the
model parameters Ψg in the main text with notation θ in
the following. We first reformulate our proposed SGNHT
as a special case of the general SDE in (4), i.e.,

Γ = (θ>,v>, ξ1, · · · , ξM )> ,

Q(Γ) = (v>, (f − Ξv)>, v21 − 1, · · · , v2M − 1)> ,

D(Γ) = diag

0, · · · , 0︸ ︷︷ ︸
M

, D, · · · , D︸ ︷︷ ︸
M

, 0, · · · , 0︸ ︷︷ ︸
M

 .

From Theorem 1 in the main text we know

p(Γ) =
1

Z
exp

(
−1

2
v>v − U(θ)

− 1

2
tr
{

(Ξ−D)
>

(Ξ−D)
})

, (7)

withH(Γ) = 1
2v
>v+U(θ)+ 1

2 tr
{

(Ξ−D)
>

(Ξ−D)
}

.
The marginalization condition (5) is trivially satisfied, we
are left to verify condition (6). Substituting p and Q into
(6), we have the left-hand side

LHS =
∑
i

∂

∂Γi
(pQi)

=
∑
i

∂p

∂Γi
Qi +

∂Qi
∂Γi

p

=
∑
i

(
∂Qi
∂Γi
− ∂H

∂Γi

)
p

= −
∑
i

ξi − vT (f − Ξv) + fTv −
∑
i

(ξi −D) (v2i − 1)

=
∑
i

Dii

(
v2i − 1

)
p .

Since D is independent of Γ, we have the right-hand side

RHS =
∑
i

∑
j

Dij
∂2

∂Γi∂Γj
p

=
∑
i

∑
j

Dij
∂

∂vj

(
−∂H
∂vi

p

)
=
∑
i

Dii

(
v2i − 1

)
p

≡ LHS .

Now we have verified both conditions of Lemma 1, this
makes the distribution (7) the equilibrium distribution of
our proposed SGNHT algorithm.

C. Sampling Topic-Word Distributions using
the Stochastic Gradient Riemannian
Langevin Dynamics

The Langevin dynamic (diffusion) is defined via a stochas-
tic differential equation of the following form:

dθt =
1

2
∇θt

logU(θt)dt+ dWt , (8)

where t is the time index, θt ∈ RM is the model pa-
rameter, U(θt) ,

(∏N
i=1 p(xi|θt)

)
p(θt) is the model

posterior, and Wt is the standard M -dimensional Brow-
nian motion. The law of the Langevin dynamic is de-
scribed by the Fokker-Planck equation (Risken, 1989),
and the equilibrium distribution p(θ) of θt can be shown
to be the model posterior U(θ) (Øksendal, 2003). In
Bayesian learning with big data, the stochastic gradient
Langevin dynamic (SGLD) (Welling & Teh, 2011) gener-
alizes the Langevin dynamic (8) by replacing U(θt) with
a stochastic version Ũ(θt) evaluated on a subset of data,
e.g., Ũ(θt) ,

(∏
i∈D p(xi|θt)

)
p(θt), where D is a ran-

dom subset of {1, · · · , N}. Furthermore, the correspond-
ing SDE of SGLD is then solved via the Euler-Maruyama
scheme (Tuckerman, 2010) using a decreasing step sizes
sequence (Welling & Teh, 2011), i.e., samples of the SGLD
are generated as

θt+1 = θt +
δt
2
∇θ log Ũ(θt) + ζt, ζt ∼ N(0, δtI) ,

where I is the identity matrix and {δt} is a decreasing se-
quence such that limt→∞ δt = 0 and

∑∞
t=1 δt =∞. Under

certain assumptions, it is shown that the SGLD is consis-
tent with the Langevin dynamics of (8), i.e., it generates
correct samples from the posterior U(θ) (Teh et al., 2014;
Vollmer et al., 2015).

The stochastic gradient Riemannian Langevin dynamics
(SGRLD) (Patterson & Teh, 2013) extends the SGLD by
defining it on Riemannian manifolds (Girolami & Calder-
head, 2011; Byrne & Girolami, 2013). Specifically, given a
Riemannian metric G(θ) (Jürgen, 2008), the SGRLD gen-
eralizes the Langevin dynamic (8) on a Riemannian mani-
fold and generates samples using the following proposal

θt+1 = θt +
δt
2
µ(θt) +G(θt)

−1/2ζt, ζt ∼ N(0, δtI) ,

(9)

where the j-th component of µ(θt) is given by µ(θt)j =

(
G−1(θt) ∇θtŨ(θt)

)
j
− 2

M∑
k=1

(
G−1(θt)

∂G(θt)

∂θtk
G−1(θt)

)
jk

+

M∑
k=1

(
G−1(θt)

)
jk

tr
(
G−1(θt)

∂G(θt)

∂θtk

)
.
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The SGRLD makes moves along a Riemannian manifold
defined by the metric G(θ), thus having the advantage of
converging faster towards the optimal solution compared to
the naive SGLD. In the Bayesian setting, the Fisher Infor-
mation matrix (Rao, 1945; Amari, 1990; 1997) is usually
chosen as the metric G(θ), which has convenient forms for
some models.

SGRLD for Deep Poisson Factor Analysis We use the
SGRLD algorithm to sample the topic-word distributions
{φk}’s. From Section A, we see that based on the aug-
mentation xpnk, the posterior of φk is a Dirichlet distribu-
tion, i.e., the joint conditional likelihood of ({xpnk},φk)
is p({xpnk},φk|·) ∝

∏
p(φpk)xp·k .

Now we reparameterize φk using the expanded-mean

schema (Patterson & Teh, 2013) as φpk =
φ̃pk∑
p′ φ̃pk′

. To-

gether with the prior on φk as φk ∼ Dir(aφ), this gives us
a stochastic gradient on a subset of data D as

∂ log p(φ̃k|·)
∂φ̃pk

≈aφ − 1

φ̃pk
− 1

+
N

|D|
∑
n∈D

E{xpnk}

[
xpnk

φ̃pk
− x·nk

φ̃k·

]
,

where the expectation is taken over the posterior of {xpnk},
which is infeasible. As a result, we use samples from the
posterior to approximate the expectation. To this end, we
use the conditional posterior of {xpnk} in (1) to collect
samples for the current mini-batch D after a few burn-in
steps.

To apply the SGRLD algorithm, we need to choose a
metric G(θ) for the Riemannian manifold. Because the
posterior of φk is Dirichlet, we thus use the same Rie-
mannian metric as in LDA (Patterson & Teh, 2013), e.g.,
G(φ) = diag(φ11, · · · , φP1, · · · , φ1K , · · · , φPK)−1, and
use the same mirror idea (Patterson & Teh, 2013) to avoid
parameters going out of boundary. After plugging G(θ)
into (9) and simplifying, we get the update for φ̃pk as:

φ̃pk =

∣∣∣∣φ̃pk +
δ

2

(
aφ − φ̃pk

+
N

|D|
∑
i∈D

E{xpnk} [xpnk − x·nkφpk]

)
+ (φ̃pk)1/2ζ

∣∣∣∣∣ ,
where we have omitted the time index t in the parameters
for simplicity.

For the other global model parameters such as rk and γ0,
we make use of their posterior distributions in (2) and (3),
respectively. We only briefly describe the sampling for rk,
sampling γ0 is similar. To simplified, rewrite the posterior
rk as

p(rk|·) ∼ Gamma (ak + c0, 1/(c0 + bk)) ,

where ak and bk are parameters for the Gamma distribu-
tion containing local parameters (or augmented parame-
ters) from the current mini-batch, e.g., ak contains {lkn}
for the current mini-batch. Denote these local parame-
ters as Lx. Now we use the reparameterization for rk as
rk = er̃k with r̃k ∼ Log-Gamma(γ0, 1/c0), this is equiv-
alent as putting a Gamma(γ0, 1/c0) prior on rk. Now the
stochastic gradient for r̃k can be easily seen as

∂ log p(r̃k|·)
∂r̃k

=
∂

∂r̃k
ELx

[
(ak + γ0 − 1)r̃k − e−(c0+bk)r̃k

]
= ELx

[
ak + γ0 − 1− (c0 + bk)rc0+bkk

]
.

Again, the expectation can be approximated using Monte
Carlo integration by drawing samples from the posterior,
then the stochastic gradient Langevin dynamic can be
straightforwardly applied.

D. Evaluation Details on Perplexities
For each test document, we randomly partition the words
into a 80/20% split. We learn document-specific local pa-
rameters using the 80% portion, and then calculate the pre-
dictive perplexities on the remaining 20% subset, denoted
as Y. For the PFA-based models, the test perplexity is cal-
culated as (Zhou et al., 2012)

exp

(
− 1

y··

P∑
p=1

N∑
n=1

ypn log

∑S
s=1

∑K
k=1 φ

s
pkθ

s
kn∑S

s=1

∑P
p=1

∑K
k=1 φ

s
pkθ

s
kn

)
,

where S is the total number of collected samples, y·· =∑P
p=1

∑N
n=1 ypn and ypn is an element of matrix Y.

The conditional distribution of yn given hn, in the Repli-
cated Softmax model (RSM) is specified as

yn ∼Multi(Dn;βn) ,

βpn =
exp(w>p hn + cp)∑P

p′=1 exp(w>p′hn + cp′)
,

where yn is the nth column of Y, and Dn =
∑P
p=1 ypn.

W = [w1, . . . .wP ]> ∈ RP×K is the mapping from hn
to yn, and c = [c1, . . . .cP ]> ∈ RP×1 is the bias term.
Based on this, the predictive test perplexity for RSM can
be calculated as

exp

(
− 1

y··

P∑
p=1

N∑
n=1

ypn log βpn

)
.

E. Sensitivity Analysis
We examined the sensitivity of the model performance with
respect to batch sizes in SGNHT on the three corpora con-
sidered. The results are shown in Figure 1. We found that
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Figure 1. Test perplexities w.r.t. mini-batch sizes on the three corpora. The number of hidden units in each layer is 128, 64, 32,
respectively. (Left) 20 Newsgroups. (Middle) RCV1-v2. (Right) Wikipedia.
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Figure 2. Test perplexities as a function of training documents seen. The number of hidden units in each layer is 128, 64, 32, respectively.
(Left) RCV1-v2. (Right) Wikipedia.

overall performance, both convergence speed and test per-
plexity, suffer considerably when the batch size is smaller
than 10 documents. However, for batch sizes larger than 50
(100 for RCV1-v2) we obtain performances comparable to
those shown in Tables 1 and 3.

We run the SGNHT algorithm on the RCV1-v2 and
Wikipedia datasets long enough so that the whole corpora
can be traversed. The results are shown in Figure 2. As can
be seen, performance smoothly improves as the amount of
data processed increases.

F. Additional Results
We compare our DPFA model with stronger shallow base-
lines, such as the Marked-Gamma-NB and Marked-Beta-
NB model described in Zhou & Carin (2015). Direct Gibbs
sampling is only suitable for relatively small datasets, so
only results on the 20Newsgroups are reported, shown in
Table 1. As can be seen, these advanced models can
achieve perplexity results comparable to those of a two-
layer DPFA model.

Table 1. Additional results on 20 Newsgroups.

MODEL METHOD DIM PERP.
MARKED-BETA-NB GIBBS 128 853
MARKED-GAMMA-NB GIBBS 128 854

G. Source Code
The source code, along with the topics we inferred from
the model, are available at https://github.com/
zhegan27/dpfa_icml2015. This package is made
publicly available for reproducibility purposes, and it is not
optimized for speed, minimally documented but fully func-
tional.
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Figure 3. Full graph induced by the correlation structure learned by DPFA-SBN for the 20 Newsgroups corpus.
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Figure 4. Full graph induced by the correlation structure learned by DPFA-SBN for the RCV1-v2 corpus.
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