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Abstract
The Frank-Wolfe method (a.k.a. conditional gra-
dient algorithm) for smooth optimization has re-
gained much interest in recent years in the con-
text of large scale optimization and machine
learning. A key advantage of the method is that
it avoids projections - the computational bottle-
neck in many applications - replacing it by a lin-
ear optimization step. Despite this advantage, the
known convergence rates of the FW method fall
behind standard first order methods for most set-
tings of interest. It is an active line of research
to derive faster linear optimization-based algo-
rithms for various settings of convex optimiza-
tion.

In this paper we consider the special case of op-
timization over strongly convex sets, for which
we prove that the vanila FW method converges
at a rate of 1

t2 . This gives a quadratic improve-
ment in convergence rate compared to the gen-
eral case, in which convergence is of the order 1

t ,
and known to be tight. We show that various balls
induced by `p norms, Schatten norms and group
norms are strongly convex on one hand and on
the other hand, linear optimization over these sets
is straightforward and admits a closed-form solu-
tion. We further show how several previous fast-
rate results for the FW method follow easily from
our analysis.

1. Introduction
The Frank-Wolfe method, originally introduced by Frank
and Wolfe in the 1950’s (Frank & Wolfe, 1956), is a first
order method for the minimization of a smooth convex
function over a convex set. Its main advantage in large-

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

scale problems is that it is a first-order and projection-free
method - i.e. the algorithm proceeds by iteratively solving a
linear optimization problem and remaining inside the feasi-
ble domain. For matrix completion problems, metric learn-
ing, sparse PCA, structural SVM and other large-scale ma-
chine learning problems, this feature enabled the derivation
of algorithms that are practical on one hand and come with
provable convergence rates on the other (Jaggi & Sulovský,
2010; Lacoste-Julien et al., 2013; Dudı́k et al., 2012; Har-
chaoui et al., 2012; Hazan & Kale, 2012; Shalev-Shwartz
et al., 2011; Laue, 2012).

Despite its empirical success, the main drawback of the
method is its relatively slow convergence rate in compar-
ison to optimal first order methods. The convergence rate
of the method is on the order of 1/t where t is the num-
ber of iterations, and this is known to be tight. In con-
trast, Nesterov’s accelerated gradient descent method gives
a rate of 1/t2 for general convex smooth problems and a
rate e−Θ(t) is known for smooth and strongly convex prob-
lems. The following question arises: are there projection-
free methods with convergence rates matching that of pro-
jected gradient-descent and its extensions?

Motivated by this question, in this work we advance the line
of research for faster convergence rates of projection free
methods. We prove that in case both the objective function
and the feasible set are strongly convex (in fact a slightly
weaker assumption than strong convexity of the objective is
required), the vanilla Frank-Wolfe method converges at an
accelerated rate of 1/t2. The improved convergence rate is
independent of the dimension. This is also the first conver-
gence result for the FW that we are aware of that achieves
a rate that is between the standard 1/t rate and a linear rate.
We further show how the analysis used to prove the lat-
ter result enables to easily derive previous fast convergence
rates for the FW method.

We motivate the study of optimization over strongly convex
sets by demonstrating that various norms that serve as pop-
ular regularizes in machine learning problems, including
`p norms, matrix Schatten norms and matrix group norms,
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give rise to strongly convex sets. We further show that in-
deed linear optimization over these sets is straightforward
to implement and admits a closed-form solution. Hence the
FW method is appealing for solving optimization problems
with such constraints, such as regularized linear regression.

1.1. Related Work

The Frank-Wolfe method dates back to the original work of
Frank and Wolfe (Frank & Wolfe, 1956) which presented
an algorithm for minimizing a quadratic function over a
polytope using only linear optimization steps over the fea-
sible set. Recent results by Clarkson (Clarkson, 2008),
Hazan (Hazan, 2008) and Jaggi (Jaggi, 2013) extend the
method to smooth convex optimization over the simplex,
spectrahedron and arbitrary convex and compact sets re-
spectively.

It was shown in numerous works that the convergence rate
of the method is on the order of 1/t and that it could not
be improved in general, even if the objective function is
strongly convex for instance, as shown in (Clarkson, 2008;
Hazan, 2008; Jaggi, 2013), even though it is known that in
this case, the projected gradient method achieves an expo-
nentially fast convergence rate.

Over the past years, several results tried to improve the
convergence rate of the Frank-Wolfe method under vari-
ous assumptions. GuéLat and Marcotte (GuéLat & Mar-
cotte, 1986) showed that in case the objective function is
strongly convex and the feasible set is a polytope, then in
case the optimal solution is located in the interior of the set,
the FW method converges exponentially fast. A similar re-
sult was presented in the work of Beck and Teboulle (Beck
& Teboulle, 2004) who considered a specific problem they
refer to a the convex feasibility problem over an arbitrary
convex set. They also obtained a linear convergence rate
under the assumption that an optimal solution that is far
enough from the boundary of the set exists.

Recently, Garber and Hazan (Garber & Hazan, 2013a) gave
the first natural linearly-converging FW variant without any
restricting assumptions on the location of the optimum.
They showed that a variant of the Frank Wolfe method
with the addition of away steps converges exponentially
fast in case the objective function is strongly convex and
the feasible set is a polytope. In follow-up work, Jaggi
and Lacoste-Julien (Lacoste-Julien & Jaggi, 2013) gave a
refined analysis of an algorithm presented in (GuéLat &
Marcotte, 1986) which also uses away steps and showed
that it also converges exponentially fast in the same setting
as the Garber-Hazan result. Also relevant in this context
is the work of Ahipasaoglu, Sun and Todd (Ahipasaoglu
et al., 2008) who showed that in the specific case of mini-
mizing a smooth and strongly convex function over the unit
simplex, a variant of the Frank-Wolfe method that also uses

away steps converges with a linear rate.

In a different line of work, Migdalas and recently Lan
(Migdalas, 1994; Lan, 2013) considered the Frank-Wolfe
algorithm with a stronger optimization oracle that is able to
solve quadratic problems over the feasible domain. They
show that in case the objective function is strongly convex
then exponentially fast convergence is attainable. However,
in most settings of interest, an implementation of such a
non-linear oracle is computationally much more expensive
than the linear oracle, and the key benefit of the Frank-
Wolfe method is lost.

In the specific case that the feasible set is strongly convex,
an assumption also made in this paper, Levitin and Polyak
showed in their classical work (Levitin & Polyak, 1966)
that under the restrictive assumption that the norm of the
gradient of the objective function is lower bounded by a
constant everywhere in the feasible set, the FW method
converges with an exponential rate. The same result ap-
peared in following works by Demyanov and Rubinov (De-
myanov & Rubinov, 1970) and Dunn (Dunn, 1979), both
also requiring that the magnitude of the gradients is lower
bounded by a constant everywhere in the feasible set. As
we later show, the lower bound requirement on the gradi-
ents is in a sense much stronger than requiring that the ob-
jective function is strongly convex. Under our assumption
however, which is slightly weaker than strong convexity of
the objective, the gradient may become arbitrarily small on
the feasible set.

We summarize previous convergence rate results for the
standard FW method in Table 1.1.

2. Preliminaries
2.1. Smoothness and Strong Convexity

For the following definitions let E be a finite vector space
and ‖ · ‖, ‖ · ‖∗ be a pair of dual norms over E.

Definition 1 (smooth function). We say that a function f :
E → R is β smooth over a convex set K ⊂ E with respect
to ‖ · ‖ if for all x, y ∈ K it holds that

f(y) ≤ f(x) +∇f(x) · (y − x) +
β

2
‖x− y‖2.

Definition 2 (strongly convex function). We say that a
function f : E → R is α-strongly convex over a convex
set K ⊂ E with respect to ‖ · ‖ if it satisfies the following
two equivalent conditions

1. ∀x, y ∈ K :

f(y) ≥ f(x) +∇f(x) · (y − x) +
α

2
‖x− y‖2.
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Reference Feasible set K Objective function f Location of x∗ Conv. rate
(Jaggi, 2013) convex convex unrestricted 1/t

(GuéLat & Marcotte, 1986) polytope strongly convex interior exp(−Θ(t))
(Beck & Teboulle, 2004) convex f(x) = ‖Ax− b‖22 interior exp(−Θ(t))
(Levitin & Polyak, 1966)

(Demyanov & Rubinov, 1970) strongly convex ‖∇f(x)‖ ≥ c > 0 ∀x ∈ K unrestricted exp(−Θ(t))
(Dunn, 1979)

this paper strongly convex strongly convex unrestricted 1/t2

Table 1. Comparison of convergence rates for the Frank-Wolfe method under different assumptions. We denote the optimal solution by
x∗. Note that since all results assume smoothness of the function we omit it from column 3.

2. ∀x, y ∈ K, γ ∈ [0, 1] :

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y)

− α

2
γ(1− γ)‖x− y‖2.

The above definition (part 1) combined with first order op-
timality conditions imply that for a α-strongly convex func-
tion f , if x∗ = arg minx∈K f(x), then for any x ∈ K

f(x)− f(x∗) ≥ α

2
‖x− x∗‖2. (1)

Eq. (1) further implies that the magnitude of the gradient
of f at point x, ‖∇f(x)‖∗ is at least of the order of the
square-root of the approximation error at x, f(x)− f(x∗).
This follows since√

2

α
(f(x)− f(x∗)) · ‖∇f(x)‖∗ ≥ ‖x− x∗‖ · ‖∇f(x)‖∗

≥ (x− x∗) · ∇f(x)

≥ f(x)− f(x∗),

where the first inequality follows from (1), the second from
Holder’s inequality and the third from convexity of f . Thus
we have that at any point x ∈ K it holds that

‖∇f(x)‖∗ ≥
√
α

2
·
√
f(x)− f(x∗). (2)

We will show that this property, that is in fact weaker than
strong convexity, combined with an additional property of
the convex set that we define next, allows to obtain the
faster rates 1.
Definition 3 (strongly convex set). We say that a convex
set K ⊂ E is α-strongly convex with respect to ‖ · ‖ if for
any x, y ∈ K, any γ ∈ [0, 1] and any vector z ∈ E such
that ‖z‖ = 1, it holds that

γx+ (1− γ)y + γ(1− γ)
α

2
‖x− y‖2z ∈ K.

1In this work we assume that the convex set K is full-
dimensional. In case this assumption does not hold, e.g. if the
convex set is the unit simplex, then Eq. (2) holds even if we re-
place ∇f(x) with PS(K)[∇f(x)] where PS(K) denotes the pro-
jection operator onto the smallest subspace that contains K.

That is, K contains a ball of of radius γ(1− γ)α2 ‖x− y‖
2

induced by the norm ‖ · ‖ centered at γx+ (1− γ)y.

2.2. The Frank-Wolfe Algorithm

The Frank-Wolfe algorithm, also known as the conditional
gradient algorithm, is an algorithm for the minimization
of a convex function f : E → R which is assumed to
be βf -smooth with respect to a norm ‖ · ‖, over a con-
vex and compact set K ⊂ E. The algorithm implicitly
assumes that the convex set K is given in terms of a lin-
ear optimization oracle OK : E → K which given a linear
objective c ∈ E returns a point x = OK(c) ∈ K such
that x ∈ arg miny∈K y · c. The algorithm is given below.
The algorithm proceeds in iterations, taking on each itera-
tion t the new iterate xt+1 to be a convex combination be-
tween the previous feasible iterate xt and a feasible point
that minimizes the dot product with the gradient direction
at xt, which is generated by invoking the oracle OK with
the input vector ∇f(xt). There are various ways to set the
parameter that controls the convex combination ηt in order
to guarantee convergence of the method. The option that
we choose here is the optimization of ηt via a simple line
search rule, which is straightforward and computationally
cheap to implement.

Algorithm 1 Frank-Wolfe Algorithm
1: Let x0 be an arbitrary point in K.
2: for t = 0, 1, ... do
3: pt ← OK(∇f(xt)).
4: ηt ← arg minη∈[0,1] η(pt − xt) · ∇f(xt) +

η2 βf

2 ‖pt − xt‖
2.

5: xt+1 ← xt + ηt(pt − xt).
6: end for

The following theorem states the well-known convergence
rate of the Frank-Wolfe algorithm for smooth convex min-
imization over a compact and convex set, without any fur-
ther assumptions. A proof is given in the appendix for
completeness though similar proofs could also be found in
(Levitin & Polyak, 1966; Jaggi, 2013).
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Theorem 1. Let x∗ ∈ arg minx∈K f(x) and denote DK =
maxx,y∈K ‖x− y‖ (the diameter of the set with respect to
‖ · ‖). For every t ≥ 1 the iterate xt of Algorithm 1 satisfies

f(xt)− f(x∗) ≤ 8βfD
2
K

t
= O

(
1

t

)
.

2.3. Our Results

In this work, we consider the case in which the function
to optimize f is not only βf -smooth with respect to ‖ · ‖
but also αf -strongly convex with respect to ‖ · ‖ (we relax
this assumption a bit in subsection 4.3). We further assume
that the feasible set K is αK-strongly convex with respect
to ‖ · ‖. Under these two additional assumptions alone we
prove the following theorem.

Theorem 2. Let x∗ = arg minx∈K f(x) and let M =√
αfαK

8
√

2βf
. Denote DK = maxx,y∈K ‖x− y‖. For every

t ≥ 1 the iterate xt of Algorithm 1 satisfies

f(xt)− f(x∗) ≤
max{ 9

2βfD
2
K, 18M−2}

(t+ 2)2
= O

(
1

t2

)
.

3. Proof of Theorem 2
We denote the approximation error of the iterate xt pro-
duced by the algorithm by ht. That is ht = f(xt)− f(x∗)
where x∗ = arg minx∈K f(x).

To better illustrate our results, we first shortly revisit the
proof technique of Theorem 1. The main observation to be
made is the following:

ht+1 = f(xt + ηt(pt − xt))− f(x∗) ≤

ht + ηt(pt − xt) · ∇f(xt) +
η2
t βf
2
‖pt − xt‖2 ≤

ht + ηt(x
∗ − xt) · ∇f(xt) +

η2
t βf
2
‖pt − xt‖2 ≤

(1− ηt)ht +
η2
t βf
2
‖pt − xt‖2, (3)

where the the first inequality follows from the smoothness
of f , the second from the optimality of pt and the third
from convexity of f . Choosing ηt to be roughly 1/t yields
the convergence rate of 1/t stated in Theorem 1. This rate
cannot be improved in general since while the so-called du-
ality gap (xt − pt) · ∇f(xt) could be arbitrarily small (as
small as (xt − x∗) · ∇f(xt)), the quantity ‖pt − xt‖ may
remain as large as the diameter of the set. Note that in case
f is strongly-convex, then according to Eq. (1) it holds that
xt converges to x∗ and thus according to Eq. (3) it suffices
to solve the inner linear optimization problem in Algorithm
1 on the intersection of K and a small ball centered at xt.
As a result the quantity ‖pt − xt‖2 will be proportional to
the approximation error at time t, and a linear convergence

Figure 1. For strongly convex sets, as in the left picture, the dual-
ity gap (denoted dg) increases with ‖pt − xt‖2, which accelerates
the convergence of the Frank-Wolfe method. As shown in the pic-
ture on the right, this property clearly does not hold for arbitrary
convex sets.

rate will be attained. However in general, under the lin-
ear oracle assumption, we have no way to solve the linear
optimization problem over the intersection of K and a ball
without greatly increasing the number of calls to the linear
oracle, which is the most expensive step in many settings.

In case the feasible set K is strongly convex, then the main
observation to be made is that while the quantity ‖pt − xt‖
may still be much larger than ‖x∗ − xt‖ (the distance to the
optimum), in this case, the duality gap must also be large,
which results in faster convergence. This observation is
illustrated in Figure 1 and given formally in Lemma 1.

Lemma 1. On any iteration t of Algorithm 1 it holds that

ht+1 ≤ ht ·max{1

2
, 1− αK‖∇f(xt)‖∗

8βf
}.

Proof. By the optimality of the point pt we have that

(pt − xt) · ∇f(xt) ≤ (x∗ − xt) · ∇f(xt)

≤ f(x∗)− f(xt) = −ht, (4)

where the second inequality follows from convexity of f .
Denote ct = 1

2 (xt + pt) and wt ∈ arg minw∈E,‖w‖≤1 w ·
∇f(xt). Note that from Holder’s inequality we have that
wt ·∇f(xt) = −‖∇f(xt)‖∗. Using the strong convexity of
the setK we have that the point p̃t = ct+

αK

8 ‖xt − pt‖
2wt

is in K. Again using the optimality of pt we have that

(pt − xt) · ∇f(xt) ≤ (p̃t − xt) · ∇f(xt)

=
1

2
(pt − xt) · ∇f(xt) +

αK‖xt − pt‖2

8
wt · ∇f(xt)

≤ −1

2
ht −

αK‖xt − pt‖2

8
‖∇f(xt)‖∗, (5)

where the last inequality follows from Eq. (4).



Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets

We now analyze the decrease in the approximation error
ht+1. By smoothness of f we have

f(xt+1) ≤ f(xt) + ηt(pt − xt) · ∇f(xt)

+
βf
2
η2
t ‖pt − xt‖2.

Subtracting f(x∗) from both sides we have

ht+1 ≤ ht + ηt(pt − xt) · ∇f(xt) +
βf
2
η2
t ‖pt − xt‖2.

(6)

Plugging Eq. (5) we have

ht+1 ≤ ht

(
1− ηt

2

)
− ηt

αK‖xt − pt‖2

8
‖∇f(xt)‖∗

+
βf
2
η2
t ‖pt − xt‖2

= ht

(
1− ηt

2

)
+
‖xt − pt‖2

2

(
η2
t βf − ηt

αK‖∇f(xt)‖∗
4

)
.

In case αK‖∇f(xt)‖∗
4 ≥ βf , by the optimal choice of ηt in

Algorithm 1, we can set ηt = 1 and get

ht+1 ≤
ht
2
.

Otherwise, we can set ηt = αK‖∇f(xt)‖∗
4βf

and get

ht+1 ≤ ht

(
1− αK‖∇f(xt)‖∗

8βf

)
.

Note that Lemma 1 only relies on the strong convexity of
the set K and did not assume anything regrading f beyond
convexity and smoothness. In particular it does not require
f to be strongly convex.

We can now prove Theorem 2.

Proof. Let M =
√
αfαK

8
√

2βf
and C =

max{ 9
2βfD

2
K, 18M−2}. We prove by induction that

for all t ≥ 1, ht ≤ C
(t+2)2 .

Since we assume that the objective function f satisfies Eq.
(2), we have from Lemma 1 that on any iteration t,

ht+1 ≤ ht ·max{1

2
, 1−

αK
√
αf

8
√

2βf

√
ht}

= ht ·max{1

2
, 1−Mh

1/2
t }. (7)

For the base case t = 1 we need to prove that h1 = f(x1)−
f(x∗) ≤ C/4. By βf smoothness of f we have

f(x1)− f(x∗) = f(x0 + η0(p0 − x0))− f(x∗)

≤ h0 + η0(p0 − x0) · ∇f(x0) +
βfη

2
0

2
D2
K

≤ h0(1− η0) +
βfη

2
0

2
D2
K,

where the last inequality follows from convexity of f . By
the optimal choice of η0 we can in particular set η0 = 1

which gives h1 ≤ βf

2 D
2
K ≤ C/9.

Assume now that the induction holds for time t ≥ 1, that is
ht ≤ C

(t+2)2 .

If the result of the max operation in Eq. (7) is the first
argument, that is 1/2, we have that

ht+1 ≤ ht
2
≤ C

2(t+ 2)2
=

C

(t+ 3)2
· (t+ 3)2

2(t+ 2)2

≤ C

(t+ 3)2
. (8)

where the last inequality holds for any t ≥ 1.

We now turn to the case in which the result of the max
operation in Eq. (7) is the second argument. We consider
two cases.

If ht ≤ C
2(t+2)2 then as in Eq. (8) it holds for any t ≥ 1 that

ht+1 ≤ ht ≤
C

2(t+ 2)2
≤ C

(t+ 3)2
,

where the first inequality follows from Eq. (7).

Otherwise, ht > C
2(t+2)2 . By Eq. (7) and the induction

assumption we have

ht+1 ≤ ht
(

1−Mh
1/2
t

)
<

C

(t+ 2)2

(
1−M

√
C

2

1

t+ 2

)

=
C

(t+ 3)2
· (t+ 3)2

(t+ 2)2

(
1−M

√
C

2

1

t+ 2

)

=
C

(t+ 3)2
· (t+ 2)2 + 2t+ 5

(t+ 2)2

(
1−M

√
C

2

1

t+ 2

)

<
C

(t+ 3)2

(
1 +

3(t+ 2)

(t+ 2)2

)(
1−M

√
C

2

1

t+ 2

)

=
C

(t+ 3)2

(
1 +

3

t+ 2

)(
1−M

√
C

2

1

t+ 2

)
.
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Thus for C ≥ 18
M2 we have that

ht+1 ≤
C

(t+ 3)2

(
1 +

3

t+ 2

)(
1− 3

t+ 2

)
<

C

(t+ 3)2
.

4. Derivation of Previous Fast Rates Results
and Extensions

4.1. Deriving the Linear Rate of Polayk & Levitin

Polyak & Levitin considered in (Levitin & Polyak, 1966)
the case in which the feasible set is strongly convex, the
objective function is smooth and there exists a constant g >
0 such that

∀x ∈ K : ‖∇f(x)‖∗ ≥ g. (9)

They showed that under the lower-bounded gradient as-
sumption, Algorithm 1 converges with a linear rate, that
is e−Θ(t). Clearly by plugging Eq. (9) into Lemma 1 we
have that on each iteration t

ht+1 ≤ ht ·max{1

2
, 1− αkg

8βf
}.

which results in the same exponentially fast convergence
rate as in (Levitin & Polyak, 1966) and following works
such as (Demyanov & Rubinov, 1970; Dunn, 1979).

4.2. Deriving a Linear Rate for Arbitrary Convex Sets
in case x∗ is in the Interior of the Set

Assume now that the feasible setK is convex but not neces-
sarily strongly convex. We assume that the objective func-
tion f is smooth, convex, satisfies Eq. (2) with some con-
stant αf and admits a minimizer (not necessarily unique)
x∗ that lies in the interior of K, i.e. there exists a param-
eter r > 0 such that the ball of radius r with respect to
norm ‖ · ‖ centered at x∗ is fully contained in K 2. GuéLat
and Marcotte (GuéLat & Marcotte, 1986) showed the under
the above conditions, the Frank-Wolfe algorithm converges
with a linear rate. We now show how a slight modification
in the proof of Lemma 1 yields this linear convergence re-
sult.

Let wt be as in the proof of Lemma 1, that is wt ∈
arg minw∈E,‖w‖≤1 w · ∇f(xt). Instead of defining the

2We assume here thatK is full-dimensional. In any other case,
we can assume instead that the intersection of the ball centered at
x∗ with the smallest subspace containing K is fully contained in
K. In this case we also need to replace the gradient ∇f(x) with
its projection onto this subspace, see also footnote 1.

point p̃t as in the proof of Lemma 1 we define it to be
p̃t = x∗ + rwt. Because of our assumption on the loca-
tion of x∗, it holds that p̃t ∈ K. We thus have that

(p̃t − xt) · ∇f(xt) = (x∗t − xt) · ∇f(xt) + rwt · ∇f(xt)

≤ −r‖∇f(xt)‖∗.

Plugging this into Eq. (6) we have

ht+1 ≤ ht − ηtr‖∇f(xt)‖∗ +
βfη

2
tD

2
K

2

≤ ht − ηtr
√
αf
2

√
ht +

βfη
2
tD

2
K

2
.

where DK denotes the diameter of K with respect to norm
‖ · ‖ and the second inequality follows from Eq. (2). By the

optimal choice of ηt, we can set ηt =
r
√
αf

√
ht√

2βfD2
K

and get

ht+1 ≤ ht −
r2αf

4βfD2
K
ht,

which results in a linear convergence result.

4.3. Relaxing the Strong Convexity of f

So far we have considered the case in which the objective
function f is strongly convex. Notice however that our
main instrument for proving the accelerated convergence
rate, i.e. Lemma 1, did not rely directly on strong convex-
ity of f , but on the magnitude of the gradient, ‖∇f(xt)‖∗.
We have seen in Eq. (2) that indeed if f is strongly convex
than the gradient is at least of the order of

√
ht. We now

show that there exists functions which are not strongly con-
vex but still satisfy Eq. (2) and hence our results apply also
for them.

Consider the function

f(x) =
1

2
‖Ax− b‖22.

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm. Assume that m < n
and all rows of A are linearly independent. In this case
the optimization problem minx∈K f(x) is the problem of
finding a point in K that best satisfies an under-determined
linear system in terms of the mean square error. An ap-
plication of the Frank-Wolfe method to this problem was
studied in (Beck & Teboulle, 2004). Under these assump-
tions, the function f is smooth and convex but not strongly
convex since the Hessian matrix given by A>A is not posi-
tive definite (note however that the matrix AA> is positive
definite).

The gradient of f is given by

∇f(x) = A>(Ax− b).



Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets

Thus we have that

‖∇f(x)‖22 = [A>(Ax− b)]>[A>(Ax− b)]
≥ λmin(AA>)‖Ax− b‖22

≥ 2λmin(AA>)
(1

2
‖Ax− b‖22

− 1

2
‖Ax∗ − b‖22

)
,

where λmin(AA>) denotes the smallest eigenvalue of
AA>. Since AA> is positive definite, λmin(AA>) > 0
and it follows that f satisfies Eq. (2).

Combining the result of this subsection with the previous
one yields the linear convergence rate of the Frank-Wolfe
method applied to the convex feasibility problem studied in
(Beck & Teboulle, 2004).

5. Examples of Strongly Convex Sets
In this section we explore convex sets for which Theorem
2 is applicable. That is, convex sets which on one hand are
strongly convex, and on the other, admit a simple and ef-
ficient implementation of a linear optimization oracle. We
show that various norms that give rise to natural regular-
ization functions in machine learning, induce convex sets
that fit both of the above requirements. A summary of our
findings is given in Table 5. We note that in all cases in
which the norm parameter p is smaller than 2 (or one of the
parameters s, p in case of group norms), we are not aware
of a practical algorithm for computing the projection.

5.1. Partial Characterization of Strongly Convex Sets

The following lemma is taken from (Journée et al., 2010)
(Theorem 12).

Lemma 2. Let E be a finite vector space and let f : E→ R
be non-negative, α-strongly convex and β-smooth. Then
the set K = {x | f(x) ≤ r} is α√

2βr
-strongly convex.

This lemma for instance shows that the Euclidean ball of ra-
dius r is 1/r-strongly convex (by applying the lemma with
f = ‖x‖22).

The following lemma will be useful to prove that convex
sets that are induced by certain norms, which do not corre-
spond to a smooth function as in the previous lemma, are
strongly convex. The proof is given in the appendix.

Lemma 3. Let E be a finite vector space, let ‖·‖ be a norm
over E and assume that the function f(x) = ‖x‖2 is α-
strongly convex over E with respect to the norm ‖·‖. Then
for any r > 0, the set B‖·‖(r) = {x ∈ E | ‖x‖ ≤ r} is α

2r -
strongly convex with respect to ‖ · ‖.

5.2. `p Balls for p ∈ (1, 2]

Given a parameter p ≥ 1, consider the `p ball of radius r,

Bp(r) = {x ∈ Rn | ‖x‖p ≤ r}.

The following lemma is proved in (Shwartz, 2007).

Lemma 4. Fix p ∈ (1, 2]. The function 1
2‖x‖

2
p is (p − 1)-

strongly convex w.r.t. the norm ‖·‖p.

The following corollary is a consequence of combining
Lemma 4 and Lemma 3. The proof is given in the appendix

Corollary 1. Fix p ∈ (1, 2]. The set Bp(r) is p−1
r -strongly

convex with respect to the norm ‖ · ‖p and (p−1)n
1
2
− 1

p

r -
strongly convex with respect to the norm ‖ · ‖2.

The following lemma establishes that linear optimization
over Bp(r) admits a simple closed-form solution that can
be computed in time that is linear in the number of non-
zeros in the linear objective. The proof is given in the ap-
pendix.

Lemma 5. Fix p ∈ (1, 2], r > 0 and a linear objective
c ∈ Rn. Let x ∈ Rn such that xi = − r

‖c‖q−1
q

sgn(ci)|ci|q−1

where q satisfies: 1/q + 1/p = 1, and sgn(·) is the sign
function. Then x = arg miny∈Bp(r) y · c

5.3. Schatten `p Balls for p ∈ (1, 2]

Given a matrix X ∈ Rm×n we denote by σ(X) the vec-
tor of singular values of X in descending order, that is
σ(X)1 ≥ σ(X)2 ≥ ...σ(X)min(m,n). The Schatten `p
norm is given by

‖X‖S(p) = ‖σ(X)‖p =

min(m,n)∑
i=1

σ(X)pi

1/p

.

Consider the Schatten `p ball of radius r,

BS(p)(r) = {X ∈ Rm×n | ‖X‖S(p) ≤ r}.

The following lemma is taken from (Kakade et al., 2012).

Lemma 6. Fix p ∈ (1, 2]. The function 1
2‖X‖

2
S(p) is (p −

1)-strongly convex w.r.t. the norm ‖·‖S(p).

The proof of the following corollary follows the exact same
lines as the proof of Corollary 1 by using Lemma 6 instead
of Lemma 4.

Corollary 2. Fix p ∈ (1, 2]. The set BS(p)(r) is
p−1
r -strongly convex with respect to the norm ‖ · ‖S(p)

and (p−1) min(m,n)
1
2
− 1

p

r -strongly convex with respect to the
frobenius norm ‖ · ‖F .
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E Domain name Domain expression S.C. parameter Complexity of lin. opt.
Rn `p ball, p ∈ (1, 2] {x ∈ Rn | ‖x‖p ≤ r} p−1

r O(nnz)

Rm×n Schatten `p ball, p ∈ (1, 2] {X ∈ Rm×n | ‖σ(X)‖p ≤ r} p−1
r O(n3) (SVD)

Rm×n Group `s,p ball, s, p ∈ (1, 2] {X ∈ Rm×n | ‖X‖s,p ≤ r} (s−1)(p−1)
(s+p−2)r O(nnz)

Table 2. Examples of strongly convex sets with corresponding strong convexity parameter and complexity of a linear optimization oracle
implementation . nnz denotes the number of non-zero entries in the linear objective and σ(X) denotes the vector of singular values.

The following lemma establishes that linear optimization
over BS(p)(r) admits a simple closed-form solution given
the singular value decomposition of the linear objective.
The proof is given in the appendix.

Lemma 7. Fix p ∈ (1, 2], r > 0 and a linear objec-
tive C ∈ Rm×n. Let C = UΣV > be the singular value
decomposition of C. Let σ be a vector such that σi =
− r

‖σ(C)‖q−1
q

σ(C)q−1
i where q satisfies: 1/q+ 1/p = 1. Fi-

nally, let X = UDiag(σ)V > where Diag(σ) is an m× n
diagonal matrix with the vector σ as the main diagonal.
Then X = arg minY ∈BS(p)(r) Y • C, where • denotes the
standard inner product for matrices.

5.4. Group `s,p Balls for s, p ∈ (1, 2]

Given a matrix X ∈ Rm×n denote by Xi ∈ Rn the ith row
of X . That is X = (X1, X2, ..., Xm)>.

The `s,p norm of X is given by,

‖X‖s,p = ‖(‖X1‖s, ‖X2‖s, ..., ‖Xm‖s)‖p.

We define the `s,p ball as follows:

Bs,p(r) = {X ∈ Rm×n | ‖X‖s,p ≤ r}.

The proof of the following lemma is given in the appendix.

Lemma 8. Let s, p ∈ (1, 2]. The set Bs,p(r) is (s−1)(p−1)
(s+p−2)r -

strongly convex with respect to the norm ‖ · ‖s,p and
n

1
s−

1
2m

1
p−

1
2

(s−1)(p−1)
(s+p−2)r -strongly convex with respect to the

frobenius norm ‖ · ‖F .

The following lemma establishes that linear optimization
over Bs,p(r) admits a simple closed-form solution that can
be computed in time that is linear in the number of non-
zeros in the linear objective. The proof is given in the ap-
pendix.

Lemma 9. Fix s, p ∈ (1, 2], r > 0 and a linear ob-
jective C ∈ Rm×n. Let X ∈ Rm×n be such that
Xi,j = − r

‖C‖q−1
z,q ‖Ci‖z−q

z
sgn(Ci,j)|Ci,j |z−1 where z satis-

fies: 1/s+ 1/z = 1, q satisfies: 1/p+ 1/q = 1 and Ci de-
notes the ith row of C. Then X = arg minY ∈Bs,p(r) Y •C,
where • denotes the standard inner product for matrices.

6. Conclusions and Open Problems
In this paper we proved that the Frank-Wolfe algorithm
converges at an accelerated rate of O(1/t2) for smooth and
strongly-convex optimization over strongly-convex sets,
beating the known tight convergence rate of the method for
general smooth and convex optimization. This is one of the
very few known results that achieve such an improvement
in convergence rate under natural and standard assumptions
(i.e. strong convexity etc.). We have further demonstrated
that various regularization functions in machine learning
give rise to strongly convex sets. We have also demon-
strated how previous fast convergence rate results follow
easily from our analysis.

The following questions naturally arise.

It is known that in case the objective function is both
smooth and strongly convex, projection/prox-based meth-
ods achieve a convergence rate of O(log(1/ε)). Is it pos-
sible to achieve such a rate for the FW method in case the
convex set is strongly convex?

We have shown that it is possible to obtain faster rates for
optimization over balls induced by norms that give rise to
strongly convex functions. Is it possible to obtain faster
rates for balls induced by norms that do not give rise to
strongly convex functions (but rather to smooth functions)?
e.g. is it possible to obtain faster rates for `p balls for p > 2.

Finally, the most intriguing question is to give a linear op-
timization oracle-based method that enjoys the same con-
vergence rate, at least in terms of the approximation er-
ror, as optimal projection/prox-based gradient methods, in
any regime (including non-smooth problems). A progress
in this direction was made recently by Garber and Hazan
(Garber & Hazan, 2013b) who showed that in case the fea-
sible set is a polytope, a variant of the FW-method ob-
tains the same rates as the projected (sub)gradient descent
method.
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A. Proof of Theorem 1
Proof. Fix an iteration t. By the βf -smoothness of f we
have that

ht+1 = f(xt + ηt(pt − xt))− f(x∗)

≤ f(xt)− f(x∗) + ηt(pt − xt) · ∇f(xt)

+
η2
t βf
2
‖pt − xt‖2

≤ ht − ηtht +
η2
t βfD

2
K

2
, (10)

where the last inequality follows from convexity of f . No-
tice that by the optimal choice of ηt in Algorithm 1, it holds
in particular that ht+1 ≤ ht (by setting ηt = 0 in Eq. (10)).

Fix C = 8βfD
2
K. We now prove by induction on t that

ht ≤ C
t .

For the base case t = 1 we notice that by the optimal choice
of η0 in Algorithm 1 we can in particular set η0 = 1 and
thus it follows from Eq. (10) that h1 ≤ βfD

2
K

2 < C as
needed.

Assume now that the induction holds for t ≥ 1. That is
ht ≤ C

t . We consider two cases.

If ht ≤ C
2t then we have

ht+1 ≤ ht ≤
C

2t
=

C

t+ 1
· t+ 1

2t
≤ C

t+ 1
,

where the last inequality holds for any t ≥ 1.

Otherwise it holds that ht > C
2t . Using Eq. (10) again we

have

ht+1 ≤ ht − ηtht +
η2
t βfD

2
K

2
.

By the optimal choice of ηt in Algorithm 1 we can set ηt =
ht

βfD2
K

and get

ht+1 ≤ ht −
1

2βfD2
K
h2
t <

C

t
− C2

8βfD2
Kt

2

=
C

t+ 1

(
t+ 1

t
− C(t+ 1)

8βfD2
Kt

2

)
<

C

t+ 1

(
1 +

1

t
− Ct

8βfD2
Kt

2

)
.

Thus for C ≥ 8βfD
2
K we have that ht+1 ≤ C

t+1 .

B. Proofs of Lemmas and Corollaries from
Section 5

B.1. Proof of Lemma 3

Proof. It suffices to show that given x, y ∈ E such that
f(x) ≤ r2, f(y) ≤ r2, a scalar γ ∈ [0, 1] and z ∈ E such

that ‖z‖ ≤ α
4rγ(1−γ)‖x− y‖2, it holds that, f(γx+ (1−

γ)y + z) ≤ r2.

By the definition of f and the triangle inequality for ‖ · ‖
we have

f(γx+ (1− γ)y + z) = ‖γx+ (1− γ)y + z‖2 ≤
(‖γx+ (1− γ)y‖+ ‖z‖)2

=(√
f(γx+ (1− γ)y) + ‖z‖

)2

. (11)

Since f is α strongly convex with respect to ‖ · ‖ we have
that

f(γx+ (1− γ)y) ≤

γf(x) + (1− γ)f(y)− α

2
γ(1− γ)‖x− y‖2 ≤

r2 − α

2
γ(1− γ)‖x− y‖2.

The function g(t) =
√
t is concave, meaning

√
a− b =

g(a− b) ≤ g(a)− g′(a) · b =
√
a− b

2
√
a

. Thus,

√
f(γx+ (1− γ)y) ≤

√
r2 − α

2
γ(1− γ)‖x− y‖2

≤ r − αγ(1− γ)‖x− y‖2

4r
.

Plugging back in Eq. (11) we have

f(γx+ (1− γ)y + z) ≤(
r − αγ(1− γ)‖x− y‖2

4r
+ ‖z‖

)2

.

By our assumption on ‖z‖ we have

f(γx+ (1− γ)y + z) ≤
(
r − αγ(1− γ)‖x− y‖2

4r

+
α

4r
γ(1− γ)‖x− y‖2

)2

= r2.

B.2. Proof of Corollary 1

Proof. The strong convexity of the set w.r.t. ‖ · ‖p is an
immediate consequence of Lemma 3.

Since Bp(r) is α = (p − 1)/r strongly convex w.r.t. the
norm ‖ ·‖p, we have that given x, y ∈ Bp(r), γ ∈ [0, 1] and
z ∈ Rn such that ‖z‖p ≤ 1 it holds that

γx+ (1− γ)y +
α

2
γ(1− γ)‖x− y‖2pz ∈ Bp(r).



Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets

For any p ∈ (1, 2] and vector v ∈ Rn it holds that

‖v‖2 ≤ ‖v‖p ≤ n
1
p−

1
2 ‖v‖2. (12)

Given a vector z′ ∈ Rn such that ‖z′‖F ≤ 1 we have that

‖α
2
γ(1− γ)‖x− y‖22z′‖p =

α

2
γ(1− γ)‖x− y‖22‖z′‖p.

Using Eq. (12) we have

‖α
2
γ(1− γ)‖x− y‖22z′‖p ≤

α

2
γ(1− γ)‖x− y‖2pn

1
p−

1
2 ‖z′‖2 ≤

αn
1
p−

1
2

2
γ(1− γ)‖x− y‖2p.

Hence, Bp(r) is αn
1
2−

1
p = (p−1)n

1
2
− 1

p

r -strongly convex
with respect to ‖ · ‖2.

B.3. Proof of Lemma 5

Proof. Since ‖·‖p and ‖·‖q are dual norms, we have using
Holder’s inequality that for all x ∈ Bp(r),

x · c ≥ −‖x‖p‖c‖q ≥ −r‖c‖q.

Thus choosing xi = − r

‖c‖q−1
q

sgn(ci)|ci|q−1 we have that

x · c = −
n∑
i=1

r

‖c‖q−1
q

sgn(ci)|ci|q−1 · ci

= −
n∑
i=1

r

‖c‖q−1
q

|ci|q = − r

‖c‖q−1
q

‖c‖qq

= −r‖c‖q.

Moreover,

‖x‖pp =
rp(

‖c‖q−1
q

)p n∑
i=1

(
|ci|q−1

)p
.

Since p = q/(q − 1) we have that

‖x‖pp =
rp

‖c‖qq

n∑
i=1

|ci|q = rp.

Thus we have that x ∈ Bp(r).

B.4. Proof of Lemma 7

Proof. Since ‖·‖S(p) and ‖·‖S(q) are dual norms we from
Holder’s inequality that for all X ∈ BS(p)(r),

X • C ≥ −‖X‖S(p)‖C‖S(q) ≥ −r‖C‖S(q) = r‖σ(C)‖q.

By our choice of X we have that

X • C = Tr(X>C) = Tr(V Diag(σ)>U>UΣV >)

= Tr(V Diag(σ)>ΣV >)

= Tr(V >V Diag(σ)>Σ) = Tr(Diag(σ)>Σ)

=

min(m,n)∑
i=1

− r

‖σ(C)‖q−1
q

σ(C)q−1
i · σ(C)i

= − r

‖σ(C)‖q−1
q

min(m,n)∑
i=1

σ(C)qi

= −r‖σ(C)‖q.

Moreover,

‖X‖pS(p) = ‖σ(X)‖pp =
rp(

‖σ(C)‖q−1
q

)p n∑
i=1

(
σ(C)q−1

i

)p
.

Since p = q/(q − 1) we have that

‖X‖pS(p) =
rp

‖σ(C)‖qq

n∑
i=1

|σ(C)i|q = rp.

Thus we have that X ∈ BS(p)(r).

B.5. Proof of Lemma 8

The following lemma will be of use in the proof.
Lemma 10. for any matrix A ∈ Rm×n and s, p ∈ (1, 2] it
holds that

‖A‖F ≤ ‖A‖s,p ≤ n
1
s−

1
2m

1
p−

1
2 ‖A‖F .

Proof. For any vector v ∈ Rn and p ∈ (1, 2] it holds that

‖v‖2 ≤ ‖v‖p ≤ n
1
p−

1
2 ‖v‖2. (13)

Denote by Ai the ith row of A. For any i ∈ [m] and p ∈
(1, 2] it holds that

‖Ai‖2 ≤ ‖Ai‖p ≤ n
1
p−

1
2 ‖Ai‖2. (14)

Note that by definition ‖ · ‖F ≡ ‖ · ‖2,2. Applying Eq. (13)
and (14) we have,

‖A‖F = ‖A‖2,2 = ‖(‖A1‖2, ‖A2‖2, ..., ‖Am‖2)‖2
≤ ‖(‖A1‖s, ‖A2‖s, ..., ‖Am‖s)‖p
≤ n

1
s−

1
2m

1
p−

1
2 ‖(‖A1‖2, ‖A2‖2, ..., ‖Am‖2)‖2

= n
1
s−

1
2m

1
p−

1
2 ‖A‖F .
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We can now prove Lemma 8.

Proof. Let z, q be such that 1/z+1/s = 1 and 1/q+1/p =
1. Note that z, q ∈ [2,∞). The norm ‖ · ‖z,q is the dual
norm to ‖ · ‖s,p (see (Kakade et al., 2012) for instance).

According to Lemma 4, the functions ‖x‖2s and ‖x‖2p are
αs = 2(s − 1)-strongly convex w.r.t. ‖ · ‖p and αp =
2(p − 1)-strongly convex w.r.t. ‖ · ‖q respectively. Hence
by the strong convexity / smoothness duality (see Theorem
3 in (Kakade et al., 2012)) we have that the functions ‖x‖2z
and ‖x‖2q are α−1

s -smooth w.r.t. ‖ · ‖z and α−1
p -smooth

w.r.t. ‖ · ‖q respectively.

By Theorem 13 in (Kakade et al., 2012) we have that the
function ‖X‖2z,q is (α−1

p +α−1
s )-smooth with respect to the

norm ‖·‖z,q . Again using the strong convexity / smoothness
duality we have that ‖X‖2s,p is

(
α−1
p + α−1

s

)−1
=

αpαs

αp+αs

strongly convex with respect to the norm ‖ · ‖s,p. The first
part of the lemma now follows from applying Lemma 3.

Since Bs,p(r) is α = (s−1)(p−1)
(s+p−2)r strongly convex w.r.t. the

norm ‖·‖s,p, we have that givenX,Y ∈ Bs,p(r), γ ∈ [0, 1]
and Z ∈ Rm×n such that ‖Z‖s,p ≤ 1 it holds that

γX + (1− γ)Y +
α

2
γ(1− γ)‖X − Y ‖2s,pZ ∈ Bs,p(r).

Given a matrix Z ′ ∈ Rm×n such that ‖Z ′‖F ≤ 1 we have
that

‖α
2
γ(1− γ)‖X − Y ‖2FZ ′‖s,p =

α

2
γ(1− γ)‖x− y‖2F ‖Z ′‖s,p.

Using Lemma 10 we have

‖α
2
γ(1− γ)‖X − Y ‖2FZ ′‖s,p ≤

α

2
γ(1− γ)‖X − Y ‖2s,pn
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1
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αn
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1
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1
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2
γ(1− γ)‖X − Y ‖2s,p.

Hence, Bs,p(r) is αn
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1
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1
2 =

n
1
s−

1
2m

1
p−

1
2

(s−1)(p−1)
(s+p−2)r strongly convex with respect

to ‖ · ‖F .

B.6. Proof of Lemma 9

Proof. Since by choice of z, q it holds that ‖ · ‖s,p, ‖ · ‖z,q
are dual norms, we have by Holder’s inequality that

X • C ≥ −‖X‖s,p‖C‖z,q ≥ −r‖C‖z,q.

Thus, choosing

Xi,j = − r

‖C‖q−1
z,q ‖Ci‖z−qz

sgn(Ci,j)|Ci,j |z−1,

we have that

X • C =
∑

i∈[m],j∈[n]

Xi,jCi,j =

∑
i∈[m],j∈[n]

− r

‖C‖q−1
z,q ‖Ci‖z−qz

sgn(Ci,j)|Ci,j |z−1 · Ci,j =

∑
i∈[m],j∈[n]

− r

‖C‖q−1
z,q ‖Ci‖z−qz

|Ci,j |z =

∑
i∈[m]

− r

‖C‖q−1
z,q ‖Ci‖z−qz

∑
j∈[n]

|Ci,j |z =

∑
i∈[m]

− r

‖C‖q−1
z,q ‖Ci‖z−qz

‖Ci‖zz =
∑
i∈[m]

− r

‖C‖q−1
z,q

‖Ci‖qz =

− r

‖C‖q−1
z,q

∑
i∈[m]

‖Ci‖qz = − r

‖C‖q−1
z,q

‖C‖qz,q = −r‖C‖z,q.

Moreover, for all i ∈ [m] it holds that

‖Xi‖ss =

n∑
j=1

|Xi,j |s =
rs

‖C‖s(q−1)
z,q ‖Ci‖s(z−q)z

n∑
i=j

|Ci,j |s(z−1).

Since s = z/(z − 1) we have

‖Xi‖ss =
rs

‖C‖s(q−1)
z,q ‖Ci‖s(z−q)z

‖Ci‖zz =
‖Ci‖sq−z(s−1)

z

‖C‖s(q−1)
z,q

rs

Using z = s/(s− 1) we have that

‖Xi‖ss =
‖Ci‖s(q−1)

z

‖C‖s(q−1)
z,q

rs.

Thus,

‖Xi‖s =

(
‖Ci‖z
‖C‖z,q

)q−1

r.

Finally, we have that

‖X‖ps,p =
∑
i∈[m]

‖Xi‖ps =
∑
i∈[m]

(
‖Ci‖z
‖C‖z,q

)p(q−1)

rp =

∑
i∈[m]

(
‖Ci‖z
‖C‖z,q

)q
rp =

rp

‖C‖qz,q

∑
i∈[m]

‖Ci‖qz = rp.

Thus, X ∈ Bs,p(r).


