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Abstract
Bayesian nonparametric mixture models based
on the Dirichlet process (DP) have been widely
used for solving problems like clustering, den-
sity estimation and topic modelling. These mod-
els make weak assumptions about the underlying
process that generated the observed data. Thus,
when more data are collected, the complexity of
these models can change accordingly. These the-
oretical properties often lead to superior predic-
tive performance when compared to traditional
finite mixture models. However, despite the in-
creasing amount of data available, the application
of Bayesian nonparametric mixture models is so
far limited to relatively small data sets.

In this paper, we propose an efficient distributed
inference algorithm for the DP and the HDP mix-
ture model. The proposed method is based on a
variant of the slice sampler for DPs. Since this
sampler does not involve a pre-determined trun-
cation, the stationary distribution of the sampling
algorithm is unbiased. We provide both local
thread-level and distributed machine-level paral-
lel implementations and study the performance
of this sampler through an extensive set of ex-
periments on image and text data. When com-
pared to existing inference algorithms, the pro-
posed method exhibits state-of-the-art accuracy
and strong scalability with up to 512 cores.

1. Introduction
Probabilistic modelling is a mainstay of modern AI, pro-
viding necessary tools for analysing the vast amount of
complex data from science, scholarship and daily life. Suc-
cessful applications of such models range from information
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retrieval (Blei et al., 2003) to large scale recommender sys-
tems (Mnih & Salakhutdinov, 2007). In particular, non-
parametric mixture models based on the DP (Ferguson,
1973) and its extensions are one of the most popular family
of probabilistic models for applications in clustering, den-
sity estimation, language modelling, and topic modelling
(Teh, 2010). Mixture models based on DPs treat the num-
ber of represented mixture components as a latent variable,
and infer it automatically from observed data. This for-
mulation allows model complexity to grow dynamically as
more data are collected. However, despite the the sharply
increasing available amount of data (e.g., DNA and protein
sequences, text data), the applicability of DP mixture mod-
els is so far constrained by the absence of scalable inference
algorithms.

One approach to address this problem is through paralleli-
sation. Indeed, recently it has become an active area to
improve the efficiency of Bayesian inference via exploit-
ing distributed computation. For instance, Newman et al.
(2009) described two distributed approximate algorithms
for the widely-used Latent Dirichlet Allocation (LDA)
model; Doshi-Velez et al. (2009) proposed a parallel infer-
ence algorithm for the Indian buffet process (IBP) model;
Ahn et al. (2014) proposed another distributed method for
LDA based on the stochastic gradient Langevin dynam-
ics sampler. Parallel algorithms for DP mixture models
have also been proposed. An example is to re-parametrise
the DP mixture model as a mixture of DPs, and then per-
form inference for each DP in parallel at a thread-level
(Williamson et al., 2013). This method does not involve
approximation, but as suggested by Gal & Ghahramani
(2014) its scalability is limited due to unbalanced loading
in the computing units. Chang & Fisher III (2013) studied
another thread-level parallel inference algorithm for DPs
based on the split-merge framework (Jain & Neal, 2004).

In this paper, we propose an unbiased distributed inference
algorithm for the DP and HDP mixture models based on
an improved slice sampler of DPs. We demonstrate that
the proposed sampler has superb scalability in both local
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thread–level and distributed machine–level experiments.
This strong scalability is critical when designing and eval-
uating distributed algorithms.

The rest of this paper is organised as follows: In Section 2
we give a brief review of the DP mixture model and HDP
mixture model. In Section 3 we describe a slice sampler
for the DP mixture model. In Sections 4 and 5 we derive
the distributed sampler under the Map–Reduce framework
and Section 6 contains our experimental results. Finally,
Section 7 concludes with a brief discussion.

2. Model and notation
2.1. Dirichlet Process Mixture Models

The basic DP mixture model applies to data y1, y2, . . . , yN
which are drawn independently from some unknown distri-
bution. This distribution can be modelled as a mixture of
simpler distributions with the form g(y|θ), with the mixing
distribution over θ given a DP prior with concentration α
and a base distribution H . This gives the following model:

yi|θi ∼ g(y | θi), θi|G
iid∼ G, G ∼ DP(α,H) (1)

Here θi represents the parameter of the cluster associated
with data point yi, and G is a random measure.

If we integrate over G, we obtain a marginal representation
of the prior distribution of θi in terms of successive condi-
tional distributions of the following form:

θi+1|θ1, . . . , θi ∼
1

α+ i

αH +

i∑
j=1

δθj

 (2)

Here, δθ is the distribution concentrated at the atomic loca-
tion θ. This representation is often known as the Blackwell
MacQueen urn scheme (see e.g., Pitman (1996)). An alter-
native way of drawing samples from a DP prior is the stick
breaking procedure introduced by Sethuraman (1994). By
assuming φk ∼ H , a random measure G can be drawn
from a DP prior using a sequence of i.i.d. beta variables as
follows:

G =

∞∑
k=1

βkδφk
, βk = νk

k−1∏
i=1

(1− νi),

νk
iid∼ Be(1, α).

(3)

Because G is discrete in Equation 3, θi (Equation 2) values
will repeat and therefore data will cluster.

2.2. Hierarchical Dirichlet Process Mixture Models

The hierarchical Dirichlet process (HDP) extends the DP to
model grouped data, e.g., text grouped in documents (Teh

et al., 2006). In an HDP mixture model, one first samples
a random measure G0 from a DP prior with base measure
γH . Then for each group of data Dj , a random measure
Gj =

∑∞
k=1 πjkδφk

is drawn from a DP prior with base
measure αG0. For the i’th observation in group j, a com-
ponent assignment zji = k is drawn with probability πjk.
Observation yji is then drawn from component zji, with
yji distributed as g(·| φzji). The model can be summarised
as:

yji ∼ g(y | φzji), zji ∼ Cat(πj),

Gj =

∞∑
k=1

πjkδφk

iid∼ DP(α,G0), G0 ∼ DP(γ,H) (4)

3. Posterior Inference via MCMC
Inference for DP or HDP mixture model has been made
feasible by Gibbs sampling since the seminal work of Esco-
bar & West (1998). Broadly speaking, there are two Gibbs
sampling techniques for DPs, corresponding to two differ-
ent representation of DPs. The marginal method exploits
convenient theoretical property of DPs and integrates out
analytically the random measureG. Then, a Gibbs sampler
is used to sample from the posterior distribution of the com-
ponent assignments and the parameters and the weights of
the clusters.

In contrast, the conditional Gibbs sampler retains the the
random measure G in Equation 3. It consists of the impu-
tation of G, and subsequent Gibbs sampling of the com-
ponent assignments from their posteriors. The difficulty of
constructing a valid conditional sampler, is to find a way
of dealing with potentially infinite number of components
in DPs. A solution to this problem is the slice sampler de-
veloped by Walker (2007). In the following section, we
first review the standard slice sampler for DPs, then present
an improved slice sampler with a more efficient updating
scheme for component weights.

3.1. A Slice Sampler

To begin, consider a random measure G =
∑∞
k=1 βkδφk

sampled through the stick breaking procedure as described
in Equation 3. Then conditioned on this random measure
G, the probability of component assignment zi for the i’th
observation can be written as

p(zi = k | yi, G) ∝ βkg(yi | φk). (5)

Equation 5 shows that component assignment variable zi’s
are independent among i given G. To be able to represent
the infinite number of components in G, we have to intro-
duce some auxiliary variables. The starting point of the
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solution is the data density

g(yi | φ, β) =
∞∑
k=1

βkg(yi | φk). (6)

Through introducing an auxiliary variable ui, the joint den-
sity of yi and the latent variable ui becomes

g(yi, ui | φ, β) =
∞∑
k=1

βkU(ui | 0, βk)g(yi | φk)

=

∞∑
k=1

1(ui ≤ βk)g(yi | φk), (7)

where 1(·) is the indicator function. We can easily verify
that, when ui is integrated over, Equation 7 is equivalent
to Equation 6. Thus the conditional density of yi becomes
g(yi | ui, φ, β) ∝

∑
k:βk≥ui

g(yi|φk). The interesting
fact is that given the latent variable ui, the number of mix-
tures needed to be represented is finite: conditioned on the
slice level ui, each observation yi can only join a clustering
component k if k ∈ Ai := {k : βk ≥ ui}. Intuitively, the
latent variable ui has an effect of “dynamically truncating”
the number of components needed to be sampled. Through
exploiting this property, Walker (2007); Kalli et al. (2011)
proposed a slice sampler:

Step 1: Sample slice variables and find the minimum

ui ∼ U(0, βzi), ∀i = 1, . . . , N

u∗ := min
i
ui.

(8)

Step 2: Create new components through stick breaking un-
til β∗ < u∗ with β∗ being the remaining stick length and
K∗ the number of instantiated components

K∗ ← K∗ + 1, νK∗ ∼ Be(1, α),
βK∗ = β∗νK∗ , φK∗ ∼ H,

β∗ ← β∗(1− νK∗).

(9)

Step 3: For each observation xi, sample the component
assignment zi

p(zi = k | yi, ui, β, φ) ∝

{
g(yi|φk) if βk ≥ ui
0 otherwise

. (10)

Step 4: For each active component k, sample component
parameters φk

φk | z, y ∼ H(φk)
∏

(i:zi=k)

g(yi | φk). (11)

Step 5: For each active component k, sample stick-

breaking length and compute new component weights

ν̃k | z, α ∼ Be
(
1 + nk, α+

K∑
j=k+1

nj

)
,

βk = ν̃k

k−1∏
j=1

(1− ν̃j),

(12)

where nk is the number of observations assigned to com-
ponent k and K is the number of active components.

In the above slice sampler, the latent variable ui does not
change the marginal distribution of other variables, thus the
sampler target the correct posterior distribution. Another
important feature of the slice sampler is that it enables di-
rect inference of random measure G. This is important
for developing efficient inference algorithm some elaborate
models like HDP-HMMs (Van Gael et al., 2008). More re-
cently, Teh et al. (2007) exploited a similar trick to develop
a slice sampler for the Indian buffet process (IBP; Griffiths
& Ghahramani, 2011).

3.2. An Improved Slice Sampler

Unlike a Gibbs sampler using the marginal representa-
tion, component labels in the slice sampler are no longer
exchangeable. This non-exchangeability leads to a label
switching problem which could have a dramatic impact on
the mixing of the slice sampler (see e.g., Papaspiliopoulos
& Roberts (2008)). However, through using an alternative
posterior representation DPs described in Pitman (1996),
the exchangeability of components in the slice sampler can
be restored, which is quite helpful for deriving an improved
slice sampler:

G |β,φ =

K∑
j=1

βkδφk
+ β∗H∗, (13)

where β := (β1, β2, . . . , βK , β
∗), and

β | z, α ∼ Dir(n1, n2, . . . , nK , α),
H∗ ∼ DP(H,α).

(14)

Using this new formulation of posterior of DPs, we can
write down an improved variant of the slice sampler for
DPs:

Step 1, 2, 3, 4: Same as the slice sampler.
Step 5: For each component k, sample component weights:

β | z, α ∼ Dir(n1, n2, . . . , nK , α). (15)

4. A Map–Reduce Sampler for DP
Through using the improved slice sampler described in
Section 3, it is possible to derive a parallel sampler for
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Algorithm 1 The M–R Sampler for DP

function map(yi, zi):
// Global: u∗, i∗, β, φ
if i == i∗ then ui ← u∗

else sample ui ∼ U(u∗, βzi)
Resample zi // Equation 10
emit sufficient statistics ψ(yi, zi)

function reduce({ψ(zi, yi)}):
Accumulate {ψi} to get {nk}Kk=1 and
other sufficient statistics {ψ′k}Kk=1

For k = 1, . . . ,K
Sample φk | nk, ψ′k \\ Equation 11

Sample β | n, α \\ Equation 15
Sample u∗, i∗ \\ Section 4.1
Instantiate new components: {φnew, βnew}
broadcast globals: (u∗, i∗, {βk, φk}K

∗

k=1})

the DP mixture model under the Map–Reduce framework.
First recall the full collection of variables to be represented
in the slice sampler, for the DP these are {α, φk, βk, zi, ui},
k = 1, 2, . . . ,K∗ and i = 1, 2, . . . , N . Here K∗ as defined
in Step 2 denotes the number of clusters that have to be
instantiated to guarantee all theAi are available when sam-
pling zi. The algorithm is given in Alg. 1.

All operations in the Map function can be executed in par-
allel. α is sampled as in Teh et al. (2006) and {φk}, {βk}
are sampled as described in the previous section. We fur-
ther improve the sampling efficiency of {ui} and {zi} as
follows.

4.1. Efficient Sampling of Slice Variable u’s

The number of clusters to be instantiated in Step 2 of Sec-
tion 3 depends on the value of u∗ in Step 1 that in turn de-
pends all the slice variables. So in order to update β of K
active clusters in Step 5 one has to sample all the local slice
variables before generating new empty clusters. This leads
to an awkward interleaved ordering in sampling global and
local variables: β1:K → {ui} → βK+1:K∗ → {zi}, and
even worse it involves two Map–Reduce operations for ev-
ery MCMC iteration. It is well understood that many global
sync operations could affect the scalability considerably in
a distributed system due to the high communication cost
and waiting time for slow workers. We propose here a more
efficient way to sample the slice level of clusters K∗ with-
out sampling all the slice variables in advance.

Let yk be the set of observations belonging to cluster k (i.e.,
yk = {yi : zi = k}). nk is then the number of elements
in yk. Denote the minimum slice variable in cluster k as
u∗k = mini:yi∈yk

ui. u∗ can be sampled by first sampling

all ui’s as in Step 1 and taking the minimum. Equivalently,
we can generate a sample of u∗ as

u∗ = min
k
u∗k, u∗k = βkbk, bk ∼ Be(1, nk) (16)

where the first equation follows the definition of u∗ and the
last two equations are due to the fact that u∗k is the mini-
mum statistics of nk i.i.d. random variables, {ui : yi ∈
yk}, each following U(0, βk). Equation 16 requires only
the sufficient statistics nk and therefore we can first sample
all the global variables and then the local variables as β1:K
→ u∗→ β1:K →{ui, zi} in one Map–Reduce operation as
shown in the Reduce function of Alg. 1.

Following the property of minimal order statistics for uni-
form distributions, given u∗ and the corresponding clus-
ter index k∗ we can sample the index of the slice variable
that achieves u∗ retrospectively as i∗ ∼ Uniform{i : yi ∈
yk∗}. For all the other slice variables, as anther property of
the minimum statistics, they are still independent with each
other and follow the truncated distribution:

ui ∼ U(u∗, βzi), ∀i 6= i∗, (17)

which remains parallelisable as shown in the Map function.

4.2. Efficient Sampling of Component Assignment
Variable z’s

Now we discuss how to improve the efficiency of sampling
the component assignment zi for each observation. Recall
that, conditioning on the slice level ui, each data item can
only join a cluster k if k ∈ Ai := {k : βk ≥ ui}. Since
these assignment variables are conditionally independent
with each other given {φk, βk}, they can be sampled in par-
allel on multiple workers. Then, the sufficient statistics are
collected and fed to a single reduce worker to re-sample
component parameters and weights. The conditional prob-
ability of each component assignment has been described
in Equation 10.

Empirically, we observe that component weights βk’s are
mostly concentrated in a small number of components
while the rest exhibits a heavy tail. This fast decaying be-
haviour was also noted by Newman et al. (2009) and is il-
lustrated in Figure 4. The slice sampler benefits from this
fast decay of the βk’s, because in order to sample zi one
only need to consider the clusters with βk ≥ ui. By re-
ordering the clusters according to βk, we can find Ai ef-
ficiently with a simple forward search. In contrast, in the
Gibbs sampler, the likelihoods of yi joining each cluster
have to be computed. In our experiments, it leads to a re-
duction up to 50% of running time for the slice sampler.
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Algorithm 2 The M–R Sampler for HDP

function map(yj·, zj·):
// Global: β, φ
For each observation yji
Sample slice variables uji //Eq. 23
While uji < β∗

Sample new components //Eq. 24, 25
Sample component labels zji // Eq. 18

emit sufficient statistics ψ(yj·, zj·)

function reduce(ψ(yj·, zj·)):
Accumulate ψ(yj·, zj·) to get {njk}
Sample β // Eq. 19
Sample φk | z, y, k = 1, . . . ,K //Eq. 20
broadcast global: ({βk, φk}, k = 1, . . . ,K)

5. A Map–Reduce Sampler for HDP
In this section, we present a Map–Reduce sampler for the
HDP model: the full collection of variables to be rep-
resented in the sampler is {φk, βk, πjk, zji, uji}, where
k = 1, 2, . . . ,K∗, j = 1, 2, . . . , J and i = 1, 2, . . . , Nj ,
where J is the number of groups and Nj is the number
of observations in group j. The conditional probability of
these variables are described below.

Step 1: For the i’th observation in group j, sample compo-
nent assignment zji:

p(zji = k | uji, yji, πj , φ)

∝

{
g(yji|φk) if k ∈ {c : πjc ≥ uji}
0 otherwise

. (18)

Step 2: Sample component weights and parameters simi-
larly as in Step 2 of the slice sampler of DPs:

β | z, α ∼ Dir(m·1,m·2, . . . ,m·K , γ), (19)

φk | z, y ∼ H(φk)
∏

(j,i:zj,i=k)

g(yj,i | φk). (20)

where mjk is a further set of auxiliary variables which are
independent with conditional distributions

p(mjk = m | z,β) ∝ s(njk,m)(αβk)
m, (21)

here s(·, ·) denotes Stirling numbers of the first kind.
Step 3: For each group j, sample group-level component
weights πj := (πj1, πj2, . . . , πjK , π

∗
j ):

πj ∼ Dir(nj1 + β1, nj2 + β2, . . . , njK + βK , α).
(22)

Step 4: For each group j, sample slice variables and com-
pute the minimum:

uji ∼ U(0, πzji), u∗j = min
i
uji. (23)

Step 5: Create new components until π∗j < u∗j , ∀j:

(a) Create new components similarly as Step 2 in the slice
sampler for DPs:

K∗ ← K∗ + 1, νK∗ ∼ Be(1, γ),
βK∗ = β∗νK∗ , φK∗ ∼ H,

β∗ ← β∗(1− νK∗).
(24)

(b) For each group j, create a new component:

vjK∗ ∼ Be
(
αβK∗ , α(1−

K∗∑
l=1

βl)
)
,

πj,K∗ = π∗j (1− νj,K∗),

π∗j = π∗j (1− vj,K∗).

(25)

In this sampler, component labels zji are independent
given component parameters φk and group-level compo-
nent weights πj . This means we can sample all component
labels in Step 1 in parallel. However, to instantiate new
clusters in Step 5, the technique for efficiently sampling
the minimum slice variable in Section 4.1 is still too ex-
pensive because we have to collect njk to the master from
all documents. In our implementation, an alternative solu-
tion is used by noting that new components can be sam-
pled on workers locally for each group, that is, whenever
uji < π∗j , the weight and parameter of a new component is
sampled with Equation 24 and 25. The difficulty, however,
is to ensure consistency of β and φ across all the com-
puting nodes. Notice that commonly used random number
generators produce pseudo-random numbers that are deter-
ministic given a random seed. Through sharing a random
seed across computing nodes, and ensuring that this ran-
dom seed is used for (24) only, we are guaranteed that the
sequence of (βk)∞K+1 and (φk)

∞
K+1 are the same for all ma-

chines. This idea of replaying random numbers by sharing
a random seed has been used in sequential Monte Carlo al-
gorithms to reduce memory cost (see e.g., Jun et al. (2012)).

6. Empirical Evaluations
The Map–Reduce pseudo code for our sampler is given by
algorithms 1 and 2. Every iteration of the sampling algo-
rithm is implemented by one Map step followed by one
Reduce step. In the Map step, the slice variable and clus-
ter indicator of every data point are sampled in parallel on
M map workers, and sufficient statistics are accumulated
locally. The time complexity will be O(K∗N/M) because
all O(N) computations will be performed in the Map step.
Thus, the Map–Reduce sampler would speed up linearly
with the number of map workers. In the Reduce step, the
sufficient statistics from every mapper are accumulated by
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Figure 1: Training log-likelihood with standard deviation for Gibbs (square),
SubC (cross), FSD (+), and M–R (o) on MNIST (first row) and CIFAR-10
(second row) data sets, with 1 (dashed lines) and 28 (solid lines) threads.
Insets in (b) and (d) are zoom-in of the top part.
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Figure 2: Speed-up ratio of M–R on
MNIST and CIFAR-10. 1 and 10
million CIFAR-10 patches are used
in distributed experiments.

one reducer. It then samples all the global variables, includ-
ing concentration α (and γ for HDP), component parame-
ters φ, and the component weights β. The time complex-
ity is O(KM + K∗). The communication cost between
mappers and the reducer depends on the total number of
variables to be transfered, DK∗M , where D is the dimen-
sionality of φk or that of the sufficient statistics.

In order to evaluate the performance and efficiency of the
proposed slice sampling algorithm, we run experiments on
a DP Gaussian mixture model with an conjugate normal-
inverse-Wishart prior, and a HDP Multinomial mixture
models with a Dirichlet prior. We evaluate our sampler in
two different settings: local thread-level parallelisation and
distributed machine-level parallelisation on Amazon EC2
clusters. Both experiments are performed using Amazon
EC2 instances with up to 32 cores. For experiments with
more than 32 cores, we use a cluster of c3.8xlarge instances
each with 32 cores.

6.1. The DP Gaussian Mixture Model

We study the performance of the DP sampler on two data
sets: the MNIST digit images and CIFAR-10 natural colour
images with standard pre-processing steps. For MNIST

data, we apply PCA whitening and reduce the dimension-
ality to 50. For CIFAR-10, we randomly draw 100K 8×8
patches with RGB channels, apply local contrast normal-
ization, then PCA and reduce the dimensionality to 72 re-
taining 99% of variance. We draw 1 million patches for the
distributed parallelisation experiment.

We compare our slice sampler (M–R) to the collapsed
Gibbs sampling based on the marginal representation
(Gibbs) (Neal, 2000), a subcluster-supercluster algorithm
Chang & Fisher III (2013) based on split-merge moves
(SubC), and an approximate inference algorithm with a fi-
nite symmetric Dirichlet prior (FSD) (Chang & Fisher III,
2013). The latter two algorithms are also parallelisable.
For the FSD, a truncation level of 100 is used in all the
experiments. We compare all the algorithms on a single
machine with 32 cores with local parallelisation (no dis-
tributed implementation is available yet for competitors).
For all experiments, we initialise the concentration param-
eter α ∼ G(1, 1) , and randomly assign all the observations
into 50 clusters. All algorithms are run 10 times to estimate
the standard deviation.
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Figure 3: NMI of Gibbs (square), SubC (cross), FSD (+), and M–R (o) on a
synthetic data set.
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6.1.1. MIXING RATE

We first study the mixing rate of all algorithms in terms
of joint log-likelihood of all the data. The first column of
Figure 1 shows the convergence of log-likelihood against
the number of iterations, and the dashed lines in the sec-
ond column are plotted against the actual running time of
single-threaded runs. Clearly, the collapsed Gibbs sampler
achieves the best mixing rate given the same number of it-
erations. This is as expected because the Gibbs sampler
marginalises over cluster weights and parameters. When
compared to FSD, the M–R sampler converges at a sim-
ilar rate per iteration but is much faster per running time
because FSD relies on a large truncation level in order to
guarantee a good approximation to DP. Also, M–R takes
advantage of the slice variable and achieves further speed
up as explained in Section 4.2. Lastly, SubC tends to mix
slowest among all the algorithms per iteration in Figure
1(a) and (c). This might be due to the special restricted
Gibbs sampling step that confines the new cluster assign-
ment in a subset of the mixture components.

6.1.2. STRUCTURE DISCOVERY

We also study the ability of recovering the true clustering
structure, we apply different samplers to a synthetic data
set that consists of 10,000 data points, sampled from a mix-
ture of 50 univariate Gaussian distributions. We assess the
quality of recovered structure using normalised mutual in-
formation (NMI, see e.g., Manning et al. (2008)) between
the true and inferred clustering components.

Figure 3 shows the estimated NMI with 28 parallel threads
over 10 runs. The comparison between the M–R and the
collapsed Gibbs is consistent with those on MNIST and
CIFAR-10 (Figure 1). Both algorithms converge to about
the same values of both log-likelihood (not shown due to
the space limit) and NMI. The slice sampler mixes slower
per iteration compared to the collapsed Gibbs sampler, but
significant faster per time unit. Surprisingly, we also ob-

serve that the split-merge based algorithm, SubC, mixes
slower than the slice sampler. However, we also notice that
given longer running time, the SubC sampler will eventu-
ally have better convergence than others. This is as ex-
pected because we use a non-informative prior on the mix-
ture component parameters and in that situation methods
based on pure Gibbs sampling are known to have difficulty
in generating new clusters.

6.1.3. SPEED-UP RATIO

Lastly, we study the benefits of parallelisation. The solid
lines in the second column of Figure 1 show the log-
likelihood against running time locally parallelised with 28
threads for all the algorithms except the collapsed Gibbs
sampler. The M–R sampler achieves the fastest conver-
gence rate. On the CIFAR-10 data set, its log-likelihood
reaches convergence about two orders of magnitude faster
than the Gibbs sampler, even before the Gibbs sampler fin-
ishes the first iteration. We also notice that SubC is stuck
at a sub-optimal state, and does not achieve the same log-
likelihood within 3, 000 seconds.

Figure 2(a) shows the speed-up ratio of the running time
with local parallelization. The M–R sampler achieves
nearly a linear speed-up. This suggests that the computa-
tion time spent on the reducer is negligible compared to the
mapper even with 28 workers. For distributed paralleliza-
tion, we test the scalability on CIFAR-10 data set with 1
and 10 million patches. Figure 2(b) shows the speed-up
ratio using up-to 16 machines with totally 512 cores. In
the distributed environment, scheduling and communica-
tion cost play an important role, and it is harder to obtain
a linear speed up. Nevertheless, we still reduces the run-
ning time per iteration from 6 min (2 cores) to 3.8 sec (512
cores) for the 1M data set, and from 12.7 min (8 cores)
to 18 sec (512 cores) for the 10M data set. For the latter
case, the discrepancy from a linear speed up is mainly due
to hyper-threading of EC2 instances, that is, there are only
16 physical cores on each 32 core machine.
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(b) Perplexity vs. running time.

Figure 5: Perplexity on the NIPS data set with 28 threads.
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Figure 6: Speed up of M–R on the
NIPS and Wikipedia corpus.

6.2. The HDP Multinomial Mixture Model

The performance of the proposed M–R sampler for the
HDP mixture model is evaluated on the NIPS corpus (1.9
million words) and a subset of the Wikipedia corpus con-
structed by randomly selecting 105 documents (roughly 40
million words). The algorithms under comparison are the
M–R sampler, the SubC (Chang & Fisher III, 2014), and
the collapsed Gibbs sampler based on the direct assignment
scheme (Teh et al., 2006). The performance is measured in
terms of predictive perplexities on 10% separate hold-out
test documents for both the NIPS and Wikipedia datasets.
To compute perplexity of these test documents, we used a
document completion approach described in Newman et al.
(2009).

6.2.1. MIXING RATE

Figure 5 shows the perplexity against iterations and running
time. We observe that the collapsed Gibbs and SubC sam-
plers have similar convergence given the same number of
iterations, both converge faster than the M–R sampler. This
result is not surprising because the M–R sampler does not
marginalise out component parameters. The performance
of the M–R is better than SubC and collapsed Gibbs in
terms of running time due to parallelisation. This result is
consistent with the experiment for the DP mixture model.

6.2.2. SPEED-UP RATIO

To evaluate the speed-up for the HDP M–R sampler,
we also varied the number of cores for the NIPS
dataset: {1, 4, 16, 28} with thread-level parallelisation
and {4, 8, 16, 32} with distributed parallelisation; for the
Wikipedia dataset {4, 8, 16, 32, 64, 128} with distributed
parallelisation. Figure 6 shows the speed up: For the NIPS
dataset we observe a near linear speed up with thread-level
parallelisation. We also observe similar speed up with
distributed parallelisation when the number of workers is
smaller than 16 but starts to level off when multiple ma-
chines are used. This is unsurprising because the NIPS

dataset is relative small, when the number of machines is
sufficiently large, communication overhead starts to domi-
nate. The running time per iteration on the NIPS data set
is reduced from 82.7 seconds (1 core) to 4.1 seconds (32
cores) where the reduce step in the latter case takes 2.4 sec-
onds. For the Wikipedia dataset, of which the dataset size
is much larger, speed up with distributed parallelisation is
better. The running time per iteration was reduced from 32
minutes (4 cores) to 73 seconds (128 cores).

7. Conclusion
We presented a simple yet efficient distributed inference al-
gorithm under the Map–Reduce framework for the DP and
HDP mixture model. The proposed sampler is based on
an exact slice sampling representation of infinite mixtures.
The performance of the sampler achieves state-of-the-art
modelling performance on image and text data sets using a
fraction of computing time of the standard collapsed Gibbs
sampler. Because the slice sampler does not involve any ap-
proximation (unlike e.g., FSD), it will converge to the true
posterior given enough running time. Moreover, we show
that the Map–Reduce sampler scales nicely with respect to
the number of computing units.
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