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Abstract
Non-negative matrix factorization (NMF) is a
natural model of admixture and is widely used
in science and engineering. A plethora of al-
gorithms have been developed to tackle NMF,
but due to the non-convex nature of the prob-
lem, there is little guarantee on how well these
methods work. Recently a surge of research
have focused on a very restricted class of NMFs,
called separable NMF, where provably correct
algorithms have been developed. In this paper,
we propose the notion of subset-separable NMF,
which substantially generalizes the property of
separability. We show that subset-separability is
a natural necessary condition for the factorization
to be unique or to have minimum volume. We de-
veloped the Face-Intersect algorithm which prov-
ably and efficiently solves subset-separable NMF
under natural conditions, and we prove that our
algorithm is robust to small noise. We explored
the performance of Face-Intersect on simulations
and discuss settings where it empirically outper-
formed the state-of-art methods. Our work is a
step towards finding provably correct algorithms
that solve large classes of NMF problems.

1. Introduction
In many settings in science and engineering the observed
data are admixtures of multiple latent sources. We would
typically want to infer the latent sources as well as
the admixture distribution given the observations. Non-
negative matrix factorization (NMF) is a natural mathemat-
ical framework to model many admixture problems.

In NMF we are given an observation matrix M ∈ Rn×m,
where each row of M corresponds to a data-point in Rm.
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We assume that there are r latent sources, modeled by the
unobserved matrix W ∈ Rr×m, where each row of M
characterizes one source. Each observed data-point is a
linear combination of the r sources and the combination
weights are encoded in a matrix A ∈ Rn×r. Moreover, in
many natural settings, the sources are non-negative and the
combinations are additive. The computational problem is
then is to factor a given matrix M as M = AW , where all
the entries of M,A and W are non-negative. We call r the
inner-dimension of the factorization, and the smallest pos-
sible r is usually called the nonnegative rank of M . NMF
was first purposed by (Lee & Seung, 1999), and has been
widely applied in computer vision (Lee & Seung, 2000),
document clustering (Xu et al., 2003), hyperspectral un-
mixing(Nascimento & Dias, 2004; Gomez et al., 2007),
computational biology (Devarajan, 2009), etc. We give two
concrete examples

Example 1. In topic modeling, M is the n-by-m word-by-
document matrix, where n is the vocabulary size and m is
the number of documents. Each column of M corresponds
to one document and the entry M(i, j) is the frequency
with which word i appears in document j. The topics are
the columns ofA, andA(i, k) is the probability that topic k
uses word i. W is the topic-by-document matrix and cap-
tures how much each topic contributes to each document.
Since all the entries of M,A and W are frequencies, they
are all non-negative. GivenM from a corpus of documents,
we would like to factor M = AW and recover the relevant
topics in these documents. (Note that in this example A
is the matrix of “sources” and W is the matrix of mixing
weights, so it is the transpose of what we just introduced.
We use this notation to be consistent with previous works
(Arora et al., 2012).)

Example 2. In many bio-medical applications, we col-
lect samples and for each sample perform multiple mea-
surements (e.g. expression of 104 genes or DNA methy-
lation at 106 positions in the genome; all the values are
non-negative). M is the sample-by-measurement matrix,
where M(i, j) is the value of the jth measurement in sam-
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ple i. Each sample, whether taken from humans or animals,
is typically a composition of several cell-types that we do
not directly observe. Each row of W corresponds to one
cell-type, and W (k, j) is the value of cell-type k in mea-
surement j. The entry A(i, k) is the fraction of sample i
that consists of cell-type k. Experiments give us the matrix
M , and we would like to factor M = AW to identify the
relevant cell-types and their compositions in our samples.

Despite the simplicity of its formulation, NMF is a chal-
lenging problem. First, the NMF problem may not be iden-
tifiable, and hence we can not hope to recover the true A
and W . Moreover, even ignoring the identifiabilityVavasis
(2009) showed that finding any factorization M = AW
with inner-dimension r is an NP -hard problem. Arora
et al. (2012) showed under reasonable assumptions we can-
not hope to find a factorization in time (mn)o(r), and the
best algorithm known is Moitra (2013) that runs in time
O(2rmn)O(r2).

Many heuristic algorithms have been developed for NMF
but they do not have guarantees for when they would actu-
ally converge to the true factorization (Lee & Seung, 2000;
Lin, 2007). More recently, there has been a surge of interest
in constructing practical NMF algorithms with strong theo-
retical guarantees. Most of this activity (e.g. Arora et al.
(2012); Bittorf et al. (2012); Kumar et al. (2012); Gillis
(2012); Gillis & Vavasis (2014), see more in Gillis (2014))
are based on the notion of separability(Donoho & Stodden,
2003) which is a very strict condition that requires that all
the rows of W appear as rows in M . While this might hold
in some document corpus, it is unlikely to be true in other
engineering and bio-medical applications.
Our Results In this paper, we develop the notion of sub-
set separability, which is a significantly weaker and more
general condition than separability. In topic models, for ex-
ample, separability states that there is a word that is unique
to each topic. Subset separability means that there is a com-
bination of words that is unique to each topic. We show
that subset separability arise naturally as a necessary con-
dition when the NMF is identifiable or when we are seeking
the minimal volume factorization. We characterize settings
when subset-separable NMF can be solved in polynomial-
time, and this include the separable setting as a special case.
We construct the Face-Intersect algorithm which provably
and robustly solves the NMF even in the presence of ad-
versarial noise. We use simulations to explore conditions
where our algorithm achieves more accurate inference than
current state-of-art algorithms.
Organization We first describe the geometric interpre-
tation of NMF (Sec. 2), which leads us to the notion of
subset-separable NMF (Sec. 3). We then develop our Face-
Intersect algorithm and analyze its robustness (Sec. 4). Our
main result, Theorem 4.2, states that for subset-separable
NMF, if the facets are properly filled in a way that de-

pends on the magnitude of the adversarial noise, then Face-
Intersect is guaranteed to find a factorization that is close
to the true factorization in polynomial time. We discuss
the algorithm in more detail in Sections 5 and 6, and an-
alyze a generative model that give rise to properly filled
facets in Section 7. Finally we present experiments to ex-
plore settings where Face-Intersect outperforms state-of-art
NMF algorithms (Sec. 8). Due to space constraints, all the
proofs are presented in the appendix. Throughout the pa-
per, we give intuitions behind proofs of the main results.

2. Geometric intuition
For a matrix M ∈ Rn×m, we use M i ∈ Rm to denote the
i-th row of M , but it is viewed as a column vector. Given
a factorization M = AW , without loss of generality we
can assume the rows of M,A,W all sum up to 1 (this can
always be done, see (Arora et al., 2012)). In this way we
can view the rows of W as vertices of an unknown sim-
plex, and the rows of M are all in the convex hull of these
vertices. The NMF is then equivalent to the following geo-
metric problem:

NMF, Geometric Interpretation There is an unknown
W -simplex whose vertices are the rows of W ∈ Rm,
W 1, ...,W r. We observe n points M1,M2, ...,Mn ∈ Rm
(corresponding to rows of M ) that lie in the W -simplex.
The goal is to identify the vertices of the W -simplex.

When clear from context, we also call the W matrix as the
simplex, and the goal is to find the vertices of this simplex.
There is one setting where it is easy to identify all the ver-
tices.

Definition 2.1 (separability). A NMF is separable if all the
vertices W j’s appear in the points M i’s that we observe.

Separability was introduced in Donoho & Stodden (2003).
When the NMF is separable, the problem simplifies as we
only need to identify which of the points M j’s are vertices
of the simplex. This can be done in time polynomial in
n,m and r (Arora et al., 2012). Separability is a highly
restrictive condition and it takes advantage of only the 0-
dimensional structure (vertices) of the simplex. In this
work, we use higher dimensional structures of the simplex
to solve the NMF. We use the following standard definition
of facets:

Definition 2.2 (facet). A facet S ⊂ [r] of the W -simplex
is the convex hull of vertices {W j : j ∈ S}. We call S a
filled facet if there is at least one point M i in the interior
of S (or if |S| = 1 and there is one point M i that is equal
to that vertex; such M i is called an anchor).

Conventions When it’s clear from context, we inter-
changeably represent a facet S both by the indices of its
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vertices and by the convex hull of these vertices. A facet
also corresponds to a unique linear subspace QS with di-
mension |S| that is the span of {W j : j ∈ S}. In the
rest of the paper, it’s convenient to use linear algebra to
quantify various geometric ideas. We will represent a d-
dimensional subspace of Rm using a matrix U ∈ Rm×d,
the columns of matrix U is an arbitrary orthonormal basis
for the subspace (hence the representation is not unique).
We use PU = UUT to denote the projection matrix to sub-
space U , and U⊥ ∈ Rm×(m−d) to denote an arbitrary rep-
resentation of the orthogonal subspace. For two subspaces
U and V of the same dimension, we define their distance to
the the sin of the principle angle between the two subspaces
(this is the largest angle between vectors u, v for u ∈ U
and v ∈ V ). This distance can be computed as the spectral
norm ‖PU⊥V ‖ (and has many equivalent formulations).

3. Subset Separability
NMF is not identifiable up to scalings and permutations of
the rows of W . Ignoring such transformations, there can
still be multiple non-negative factorizations of the same
matrix M . This arise when there are different sets of r ver-
tices in the non-negative orthant that contain all the points
M i in its convex hull. For example, suppose M = AW
and the A matrix has all positive entries. All the points M i

are in the interior of the W -simplex. Then it is possible to
perturb the vertices of W while still maintaining all of the
M i’s in its convex hull. This give rise to a different factor-
ization M = ÂŴ . When the factorization is not unique,
we may want find a solution where theW -simplex has min-
imal volume, in the sense that it is impossible to move a
single vertex and shrink the volume while maintaining the
validity of the solution.

It’s clear that in order for W to be the minimal volume
solution to the NMF, there must be some points M i that
lie on the boundary of the W -simplex. We show that a
necessary condition for W to be volume minimizing is for
the filled facets (facets of W with points in its interior) to
be subset-separable. Intuitively, this means that each vertex
of W is the unique intersection point of a subset of filled
facets.

Definition 3.1 (subset-separable). A NMF M = AW is
subset-separable if there is a set of filled facets S1, ..., Sk ⊂
[r] such that ∀j ∈ [r], there is a subset of Sj1 , Sj2 , ..., Sjkj

whose intersection is exactly j.

Proposition 3.1. Suppose W is a minimal volume rank
r solution of the NMF M = AW . Then W is subset-
separable.

It is easy to see that the factorization M = AW is
subset-separable is equivalent to the property that for ev-
ery j1 6= j2 ∈ [r], there is a row i of A such that

0
0

W1

W2 W3

M = A W

1
1

0
0

0

0

anchors

{W1
, W

2}
facet

{W2
, W

3}
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interior
points

Figure 1. Illustration of the NMF geometry.

Ai,j1 = 0 and Ai,j2 6= 0. The previously proposed sep-
arability condition corresponds to the special case where
the filled facets S1, ..., Sk correspond to the singleton sets
{W 1}, ..., {W r}.

Example. We illustrate the subset-separable condition in
Figure 1. In this figure, the circles correspond to data points
M i’s and they are colored according to the facet that they
belong. The filled facets are S1 = {1}, S2 = {3}, S3 =
{1, 2} and S4 = {2, 3}. The facet {W 1,W 3} is not filled
since there are no points in its interior. The singleton facets
S1 and S2 are also called anchors. This NMF is subset-
separable since W 2 is the unique intersection of S3 and
S4, but it is not separable. The figure also illustrates the
corresponding A matrix, where the rows are grouped by
facets and the shaded entries denote the support of each
row.

The geometry of the simplex suggests an intuitive meta-
algorithm for solving subset-separable NMFs, which is the
basis of our Face-Intersect algorithm.

1. Identify the filled facets, S1, ..., Sk, r ≤ k ≤ n.

2. Take intersections of the facets to recover all the rows
of W (vertices of the simplex).

3. Use M and W to solve for A.

4. Robust algorithm for subset-separable
NMF

In order to carry out the meta-algorithm, the key computa-
tional challenge is to efficiently and correctly identify the
filled facets of the W simplex. Finding filled facets is re-
lated to well-studied problems in subspace clustering (Vi-
dal, 2010) and subspace recovery(Hardt & Moitra, 2013).
In subspace clustering we are given points in k different
subspaces and the goal is to cluster the points according
to which subspace it belong to. This problem is in gen-
eral NP-hard (Elhamifar & Vidal, 2009) and can only be
solved under strong assumptions. Subspace recovery tries
to find a unique subspace a fraction p of the points. Hardt
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& Moitra (2013) showed this problem is hard unless p is
large compared to the ratio of the dimensions. Techniques
and algorithms from subspace clustering and recovery typ-
ically make strong assumptions about the independence of
subspaces or the generative model of the points, and can-
not be directly applied to our problem. Moreover, our filled
facets have the useful property that they are on the bound-
ary of the convex hull of the data points, which is not con-
sidered in general subspace clustering/discovery methods.
We identified a general class of filled facets, called properly
filled facets that are computationally efficient to find.

Definition 4.1 (properly filled facets). Given a NMF M =
AW , a set of facets S1, ..., Sk ∈ [r] of W is properly filled
if it satisfies the following properties:

1. For any facet |Si| > 1, the rows of A with support
equal to Si (i.e. points that lie on this facet) has a
|Si|−1-dimensional convex hull. Moreover, there is at
least one row of A that is in the interior of the convex
hull.

2. (General positions property.) For any subspace of di-
mension 1 < t < r, if it contains more than t rows in
M , then the subspace contains at least one Si which
is not a singleton facet.

Condition 1 ensures that each Si has sufficiently many
points to be non-degenerate. Condition 2 says that points
that are not in the lower dimensional facets S1, ..., Sk are
in general positions, so that no random subspace look like
a properly filled facet. A set of properly filled facets
S1, ..., Sk may contain singleton sets corresponding some
of the rowsW j if these rows also appear as rows inM . We
first state the main results and then state the Face-Intersect
algorithm.

Theorem 4.1. Suppose M = AW is subset separable by
S1, ..., Sk and these facets are properly filled, then given
M the Face-Intersect algorithm computesA andW in time
polynomial in n, m and r (and in particular the factoriza-
tion is unique).

In many applications, we have to deal with noisy NMF
M̂ = AW + noise where (potentially correlated) noise is
added to rows of the data matrix M . Suppose every row is
perturbed by a small noise ε (in `2 norm), we would like
the algorithm to be robust to such additive noise. We need
a generalization of properly filled facets.

Definition 4.2 ((N,H, γ) properly filled facets). Given a
NMF M = AW , a set of facets S1, ..., Sk ∈ [r] of W is
(N,H, γ) properly filled if it satisfies the following proper-
ties:

1. In any set |Si| > 1, there is a row i∗ in A whose
support is equal to Si, and is in the convex hull

of other rows of A. There exists a convex combi-
nation M i∗ =

∑
i∈[n]\i∗ wiM

i, such that the ma-
trix

∑
i∈[n]\i∗ wi(M

i)(M i)T has rank |Si|, and the
smallest nonzero singular value is at least γ. We call
this special point M i∗ the center for this facet.

2. For any set |Si| > 1, there are at least N rows in A
whose support is exactly equal to Si.

3. For any subspace Q of dimension 1 < t < r, if there
are at least N rows of M in an ε-neighborhood of
Q, then there exists a non-singleton set Si with corre-
sponding subspace Qi such that ‖PQ⊥Qi‖ ≤ Hε.

Intuitively, if we represent the center point as a convex
combination of other points, the only points that have a
nonzero contribution must be on the same facet as the cen-
ter. Condition 1 then ensures there is a “nice” convex com-
bination that allows us to robustly recover the subspace cor-
responding to the facet even in presence of noise. Con-
dition 2 shows every properly filled facets contain many
points, which is why they are different from other sub-
spaces and are the facets of the true solution. Condition
3 is a generalization of the general position propery, which
essentially says “every subspace that contains many points
must be close to a properly filled facet”. In Section 7 we
show that under a natural generative model, the NMF has
(N,H, γ)-properly filled facets with high probability.

Properly filled facets is a property of how the points M i

are distributed on the facets of W . The geometry of the
W -simplex itself also affects the accuracy of our Face-
Intersect algorithm.

Definition 4.3. A matrix W ∈ Rr×m(r ≤ m) is α-robust
if its rows have norm bounded by 1, and its r-th singular
value is at least α.

Under these assumptions we prove that Face-Intersect ro-
bustly learns the unknown simplex W .

Theorem 4.2. Suppose M = AW is subset separable by
S1, ..., Sk and these facets are (N,H, γ) properly filled,
and the matrix W is α-robust. Then given M̂ whose rows
are within `2 distance ε to M , with ε < o(α4γ/Hr3), Al-
gorithm Face-Intersect finds Ŵ such that there exists a per-
mutation π and for all i ‖Ŵi −Wπ(i)‖ ≤ O(Hr2ε/α2γ).
The running time is polynomial in n,m and r.

A vertex j ∈ [r] is an intersection vertex if there exists a
subset of properly filled facets {Sjk : |Sjk | ≥ 2} such that
j = ∩kSjk . Since the first module of Face-Intersect, Al-
gorithm 3, only finds non-singleton facets, the intersection
vertices are all the vertices that we could find using these
facets. The last module of Face-Intersect finds all the re-
maining vertices of the simplex.
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Algorithm 1 Face-Intersect
Run Algorithm 3 to find subspaces that correspond to
properly filled facets S1, S2, ..., Sk where |Si| ≥ 2.
Run Algorithm 5 to find the intersection vertices P .
Run Algorithm 5 (similar to Algorithm 4 in (Arora et al.,
2013)) to find the singleton points (anchors).
Given M̂ , Ŵ , compute Â.

Our approach The main idea of our algorithm is to first
find the subspaces corresponding properly filled facets,
then take the intersections of these facets to find the in-
tersection vertices. Finally we adapt the algorithm from
(Arora et al., 2013) to find the remaining vertices that cor-
respond to singleton sets.

• Finding facets For each row ofM , we try to represent
it as the convex combination of other rows of M . We
use an iterative algorithm to make sure the span of
points used in this convex combination is exactly the
subspace corresponding to the facet.

• Removing false positives The previous step will gen-
erate subspaces that correspond to properly filled
facets, but it might also generate false positives (sub-
spaces that do not correspond to any properly filled
facets). Condition 3 in Definition 4.2 allows us to fil-
ter out these false positives as these subspaces will not
contain enough nearby points.

• Finding intersection vertices We design an algo-
rithm that systematically tries to take the intersections
of subspaces in order to find the intersection vertices.
This relies on the subset-separable property and ro-
bustness properties of the simplex. This step computes
at most O(nr) subspace intersection operations.

• Finding remaining vertices The remaining vertices
correspond to the singleton sets. This is similar to the
separable case and we use an algorithm from Arora
et al. (2013).

5. Finding properly filled facets
In this section we show how to find properly filled facets
Si with |Si| ≥ 2. The singleton facets (anchors) are not
considered in this section, since they will be found through
a separate algorithm. We first show how to find a properly
filled facet if we know its center (Condition 1 in Defini-
tion 4.2). Then to find all the properly filled facets we enu-
merate points to be the center and remove false positives.

Finding one properly filled facet Given the center point,
if there is no noise then when we represent this point as
convex combinations of other points, all the points with
positive weight will be on the same facet. Intuitively the
span of these points should be equal to the subspace cor-

responding to the facet. However there are two key chal-
lenges here: first we need to show that when there is noise,
points with large weights in the convex combination are
close to the true facet; second, it is possible that points
with large weights only span a lower dimensional subspace
of the facet. Condition 1 in Definition 4.2 guarantees that
there exists a nice convex combination that spans the en-
tire subspace (and robustly so because the smallest singu-
lar value is large compared to noise). In Algorithm 2, we
iteratively improve our convex combination and eventually
converge to this nice combination.

Algorithm 2 Finding a properly filled facet
input points v̂1, v̂2, ..., v̂n, and center point v̂0 (Condition

1 in Definition 4.2).
output the proper facet containing v̂0.

1: Maintain a subspace Q̂ (initially empty)
2: Iteratively solve the following optimization program:

max tr(PQ̂⊥
n∑
i=1

wiv̂
i(v̂i)TPQ̂⊥)

∀i ∈ [n] wi ≥ 0
n∑
i=1

wi = 1

‖v̂0 −
n∑
i=1

wiv̂
i‖ ≤ 2ε

diag(Q̂T

(
n∑
i=1

wiv̂
i(v̂i)T

)
Q̂) ≥ γ/2.

3: Let Q̂ be the top singular space of
(∑n

i=1 wiv̂
i(v̂i)T

)
for singular values larger than γ/2d.

4: Repeat until the dimension of Q̂ does not increase.

Theorem 5.1. Suppose ‖v̂i − vi‖ ≤ ε, v0 is the center
point of a properly filled facet S ⊂ [r] with |S| = d, and
the unknown simplex W is α-robust, when d

√
rε/αγ � 1

Algorithm 2 stops within d iterations, and the subspace Q̂
is within distance O(

√
rε/αγ) to the true subspace QS .

The intuition of Algorithm 2 is to maintain a convex com-
bination for the center point. We show for any convex
combination, the top singular space associated with the
combination, Q̂, is always close to a subspace of the true
space QS . The algorithm then tries to explore other di-
rections by maximizing the projection that is outside the
current subspace Q̂ (the objective function of the convex
optimization), while maintaining that the current subspace
have large singular values (the last constraint). In the proof
we show since there is a nice solution, the algorithm will
always be able to make progress until the final solution is a
nice convex combination.
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Finding all subsets Algorithm 2 can find one properly
filled facet, if we have its center point (Condition 1 in Def-
inition 4.2). In order to find all the properly filled facets,
we enumerate through rows of M and prune false positives
using Condition 3 in Definition 4.2

Algorithm 3 Finding all proper facets

input M̂ whose factorization is subset-separable with
(N,H, γ)-properly filled facets.

1: for i = 1 to n do
2: Let v̂0 = M̂ i and v̂1, ..., v̂n−1 be the rest of vertices.
3: Run Algorithm 2 to get a subspace Q.
4: If dim(Q) < r, and there are at least N points that

are within distance O(
√
rε/αγ) add it to the collec-

tion of subspaces.
5: end for
6: Let Q be a subspace in the collection, remove Q if

there is a subspace Q′ with dim(Q′) < dim(Q) and
‖PQ⊥Q′‖ ≤ O(H

√
rε/αγ)

7: Merge all subspaces that are within distance
O(H

√
rε/αγ) to each other.

Theorem 5.2. If H
√
rε/αγ = o(α), then the output

of Algorithm 3 contains only subspaces that are εS =
O(H

√
rε/αγ)-close to the properly filled facets, and for

every properly filled facet there is a subspace in the output
that is εS close.

6. Finding intersections
Given an subset-separable NMF with (N,H, γ)-properly
filled facets, let Qi denote the subspace associated with a
set Si of vertices: Qi = span(WSi). For all properly filled
facets with at least two vertices, Algorithm 3 returns noisy
versions of the subspaces Q̂i that are εS close to the true
subspaces. Without loss of generality, assume the first h
facets are non-singletons. Our goal is to find all the inter-
section vertices {W i : i ∈ P}. Recall that intersection ver-
tices are the unique intersections of subsets of S1, ..., Sh.
We can view this as a set intersection problem:

Set Intersections We are given sets S1, S2, ..., Sh ⊂ [r].
There is an unknown set P ⊂ [r] such that ∀i ∈ P there
exists {Sik} and i = ∩kSik . Our goal is to find the set P .

This problem is simple if we know the subsets of W j in
each facet. However, since what we really have access to
are subspaces, it is impossible to identify the vertices unless
we have a subspace of dimension 1. On the other hand, we
can perform intersection and linear-span for the subspaces,
which correspond to intersection and union for the sets. We
also know the size of a set by looking at the dimension of
the subspace. The main challenge here is that we cannot af-
ford to enumerate all the possible combinations of the sets,

Algorithm 4 Finding Intersection
input k sets S1, ..., Sh.
output A set P that has all the intersection vertices.

Initialize P = ∅, R = ∅.
for i = 1 to r do

Let S = [r]
for j = 1 to h do

if |S ∩ Sj | < |S| and S ∩ Sj 6⊆ R then
S = S ∩ Sj

end if
end for
R = R ∪ S
Add S to P if |S| = 1.

end for

and also there are vertices that are not intersection vertices
and they may or may not appear in the sets we have. The
idea of the algorithm is to keep vertices that we have al-
ready found in R, and try to avoid finding the same ver-
tices by making sure S is never a subset of R. We show
after every inner-loop one of the two cases can happen: in
the first case we find an element in P ; in the second case
S is a set that satisfies (S\R) ∩ P = ∅, so by adding S to
R we remove some of the vertices that are not in P . Since
the size of R increases by at least 1 in every iteration un-
til R = [r], the algorithm always ends in r iterations and
finds all the vertices in P . In practice, we implement all the
set operations in 4 using the analogous subspace operations
(see Algorithm 6 in Appendix). We prove the following :
Theorem 6.1. When W is α-robust and εS < o(α3/r2.5),
Algorithm 6 finds all the intersection vertices of W , with
error at most εv = 4r1.5εS/α.

Algorithm 5 Finding remaining vertices

input matrix M̂ , intersection vertices Ŵ 1, ..., Ŵ |P |.
output remaining vertices Ŵ |P |+1, ..., Ŵ r.

for i = |P |+ 1 TO r do
Let Q = span{Ŵ 1, ..., Ŵ i−1}.
Pick the point M̂ j with largest ‖PQ⊥M̂ j‖, let Ŵ i =

M̂ j .
end for

Finding the remaining vertices The remaining vertices
correspond to singleton sets in subset-separable assump-
tion. They appear in rows of M . The situation is very
similar to the separable NMF and we use an algorithm from
(Arora et al., 2013) to find the remaining vertices. For com-
pleteness we describe the algorithm here. By Lemma 4.5 in
(Arora et al., 2013) we directly get the following theorem:
Theorem 6.2. If vertices already found have accuracy εv
such that εv ≤ α/20r, Algorithm 5 outputs the remaining
vertices with accuracy O(ε/α2) < εv .
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Running time. Face-Intersect (Algorithm 1) has 3 parts:
find facets (Algorithm 3), find intersections (Algorithm 4)
and find remaining anchors (Algorithm 5). We discuss the
runtime of each part. We first do dimension reduction to
map the n points to an r-dimensional subspace to improve
the running time of later steps. The dimension reduction
takes O(nmr) time, where n,m are the number of rows
and columns of M , respectively, and r is the rank of the
factorization. Algorithm 3’s runtime isO(nd·OPT), where
d is the max dimension of properly filled facets (typically
d < r � m). OPT is the time to solve the convex opti-
mization problem in Algorithm 2. OPT is essentially equiv-
alent to solving an LP with n nonnegative variables and
r + d constraints. Algorithm 4’s runtime is O(kr4) where
k is the number of properly filled facets; typically k � n.
Algorithm 5’s runtime is O(nr3). The overall runtime of
Face-Intersect is O(mnr + nd · OPT + kr4 + nr3). Call-
ing the OPT routine is the most expensive part of the al-
gorithm. Empirically, we find that the algorithm converges
after ∼ k � nd calls to OPT.

7. Generative model of NMF naturally creates
properly filled facets

To better understand the generality of our approach, we
analyzed a simple generative model of subset-separable
NMFs and showed that properly filled facets naturally arise
with high probability.

Generative Model Given a simplex W that is α-robust
and a subset of facets S1, S2, ..., Sk that is subset separa-
ble. Let pi be the probability associated with facet i, and
let pmin = mini≤k pi and d = maxi∈[k] |Si|. For conve-
nience, denote S0 = [r] and p0 = 1−

∑k
i=1 pi. To generate

a sample, first sample facet Si with probability pi, and then
uniformly randomly sample a point within the convex hull
of the points {W j : j ∈ Si}. Here we think of d as a small
constant orO((log n)/ log log n) (in general d can be much
smaller than r). For example, separability assumption im-
plies d = 1, and it is already nontrivial when d = 2.

Theorem 7.1. Given n =
Ω(max{(4d)d log(d/η), kr2 log(d/pminη)}/pmin)
samples from the model, with high probability the
facets S1, ..., Sk are (pminn/2, 200r1.5/pminα, α

2/16d)
properly filled.

The proof relies on the following two lemmas. The first
lemma shows that once we have enough points in a sim-
plex, then there is a center point with high probability.

Lemma 7.2. Given n = Ω((4d)d log d/η) uniform points
v1, v2, ..., vn in a standard d-dimensional simplex (with
vertices e1, e2, ..., ed), with probability 1 − η there exists
a point vi such that vi =

∑
j 6=i wjv

j (wj ≥ 0,
∑
j 6=i wj =

1), and σmin(
∑
j 6=i wj(v

j)(vj)T ) ≥ 1/16d.

The next lemma shows unless a subspace contains a prop-
erly filled facet, it cannot contain too many points in its
neighborhood.
Lemma 7.3. Given n = Ω(d2 log(d/pminη)/pmin) uni-
form points v1, v2, ..., vn in a standard d-dimensional sim-
plex (with vertices e1, e2, ..., ed), with probability 1 − η
for all matrices A whose largest column norm is equal
to 1, there are at most pminn/4 points with ‖Avi‖ ≤
pmin/200d.

8. Experiments
While our algorithm has strong theoretical guarantees, we
additionally performed proof-of-concept experiments to
show that when the noise is relatively small, our algo-
rithm can outperform the state-of-art NMF algorithms. We
simulated data according to the generative NMF model
described in Section 7. We first randomly select r non-
negative vectors in Rm as rows of the W matrix. We
grouped the vertices W j into r groups, S1, ..., Sr of three
elements each, such that each vertex is the unique intersec-
tion of two groups. Each Si then corresponds to a 2-dim
facet. To generate the A matrix, for each Si, we randomly
sampled n1 rows of A with support Si, where each entry is
an i.i.d. from Unif(0, 1). An additional n2 rows of A were
sampled with full support. These correspond to points in
the interior of the simplex. We tested a range of settings
with m between 5 to 100, r between 3 to 10, and n1 and
n2 between 100 and 500. We generated the true data as
M = AW and added i.i.d. Gaussian noise to each entry of
M to generate the observed data M̃ .

There are many algorithms for solving NMF, most of them
are either iterative algorithms that have no guarantees, or
algorithms that work only under separability condition. We
choose two typical algorithms: the Anchor-Words algo-
rithm(Arora et al., 2013) for separable NMF, and Projected
Gradient (Lin, 2007) for iterative algorithms. For each
simulated NMF, we evaluated the output factors Â, Ŵ of
these algorithms on three criteria: accuracy of the recon-
structed anchors to the true anchors, ||W − Ŵ ||2; accu-
racy of the reconstructed data matrix to the observed data,
||M̃−ÂŴ ||2; accuracy of the reconstructed data to the true
data, ||M−ÂŴ ||2. In Figure 2, we show the results for the
three methods under the setting n1 = 100, n2 = 100,m =
10, r = 5. We grouped the results by the noise level of
the experiment, which is defined to be the ratio of the av-
erage magnitude of the noise vectors to the average mag-
nitude of the data points in Rm. Face-Intersect is substan-
tially more accurate in reconstructing the W matrix com-
pared to Anchor-Words and Projected Gradient. In terms
of reconstructing the M̃ and M matrices, Face-Intersect
slightly outperforms Anchor-Words (p < 0.05 t-test), and
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Figure 2. Reconstruction accuracy of the three NMF algorithm as a function of data noise. Standard error shown in the error bars.

they both were substantially more accurate than Projected
Gradient. As noise level increased, the accuracy of Face-
Intersect and Anchor-Words degrades and at noise around
12.5%, the accuracy of the three methods converged. In
many applications, we are more interested in accurate re-
construction of the latent W than of M . For example, in
bio-medical applications, each row of M is a sample and
each column is the measurement of that sample at a par-
ticular bio-marker. Each sample is typically a mixture of r
cell-types, and each cell-type corresponds to a row of W .
The A matrix gives the mixture weights of the cell-types
into the samples. Given measurement on a set of samples,
M , an important problem is to infer the values of the la-
tent cell-types at each bio-marker, W (Zou et al., 2014). To
create a more realistic simulation of this setting, we used
DNA methylation values measures at 100 markers in 5 cell-
types (Monocytes, B-cells, T-cells, NK-cells and Granulo-
cytes) as the true W matrix (Zou et al., 2014). From these
5 anchors we generated 600 samples–which is a typical
size of such datasets–using the same procedure as above.
Both Face-Intersect and Anchor-Words substantially out-
performed Projected Gradient across all three reconstruc-
tion criteria. In terms of reconstructing the biomarker ma-
trixW , Face-Intersect was significantly more accurate than
Anchor-Words. For reconstructing the data matrices M
and M̃ , Face-Intersect was statistically more accurate than

Anchor-Words when the noise is less than 8% (p < 0.05),
though the magnitude of the difference is small.

Discussion We have presented the notion of subset sep-
arability, which substantially generalizes separable NMFs
and is a necessary condition for the factorization to be
unique or to have minimal volume. This naturally led us to
develop the Face-Intersect algorithm, and we showed that
when the NMF is subset separable and have properly filled
facets, this algorithm provably recovers the true factoriza-
tion. Moreover, it is robust to small adversarial noise. We
show that the requirements for Face-Intersect to work are
satisfied by simple generative models of NMFs. The orig-
inal theoretical analysis of separable NMF led to a burst
of research activity. Several highly efficient NMF algo-
rithms were inspired by the theoretical ideas. We are hope-
ful that the idea of subset-separability will similarly lead
to practical and theoretically sound algorithms for a much
larger class of NMFs. Our Face-Intersect algorithm and
its analysis is a first proof-of-concept that this is a promis-
ing direction. In exploratory experiments, we showed that
under some settings where the relative noise is low, the
Face-Intersect algorithm can outperform state-of-art NMF
solvers. An important agenda of research will be to de-
velop more robust and scalable algorithms motivated by
our subset-separability analysis.
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