Supplementary Material for "A Modified Orthant-Wise Limited Memory Quasi-Newton Method with Convergence Analysis"

A. BFGS and L-BFGS

For self-containedness, we briefly review the update of the inverse Hessian matrix in the BFGS and L-BFGS (Jorge & Stephen, 1999). Assume that we are given an approximate inverse Hessian matrix H^k at $\mathbf{x} = \mathbf{x}^k$. BFGS updates the inverse Hessian matrix H^{k+1} at $\mathbf{x} = \mathbf{x}^{k+1}$ as:

$$H^{k+1} = (V^k)^T H^k V^k + \rho^k \mathbf{s}^k (\mathbf{s}^k)^T,$$
(31)

where $V^k = I - \rho^k \mathbf{y}^k (\mathbf{s}^k)^T$, $\mathbf{s}^k = \mathbf{x}^{k+1} - \mathbf{x}^k$, $\mathbf{y}^k = \nabla l(\mathbf{x}^{k+1}) - \nabla l(\mathbf{x}^k)$, $\rho^k = ((\mathbf{y}^k)^T \mathbf{s}^k)^{-1}$. It is easy to verify that $H^{k+1} \succ 0$, if $H^k \succ 0$ and $\rho^k > 0$ (Jorge & Stephen, 1999).

L-BFGS updates the inverse Hessian matrix by unrolling the update from BFGS back to m steps:

$$\begin{aligned} H^{k} &= (V^{k-1})^{T} H^{k-1} V^{k-1} + \rho^{k-1} \mathbf{s}^{k-1} (\mathbf{s}^{k-1})^{T} \\ &= (V^{k-1})^{T} (V^{k-2})^{T} H^{k-2} V^{k-2} V^{k-1} \\ &+ (V^{k-1})^{T} \mathbf{s}^{k-2} \rho^{k-2} (\mathbf{s}^{k-2})^{T} V^{k-1} \\ &+ \rho^{k-1} \mathbf{s}^{k-1} (\mathbf{s}^{k-1})^{T} \\ &= (U^{k,m})^{T} H^{k-m} U^{k,m} \\ &+ \rho^{k-m} (U^{k,m-1})^{T} \mathbf{s}^{k-m} (\mathbf{s}^{k-m})^{T} U^{k,m-1} \\ &+ \rho^{k-m+1} (U^{k,m-2})^{T} \mathbf{s}^{k-m+1} (\mathbf{s}^{k-m+1})^{T} U^{k,m-2} \\ &+ \cdots \\ &+ \rho^{k-2} (V^{k-1})^{T} \mathbf{s}^{k-2} (\mathbf{s}^{k-2})^{T} V^{k-1} \\ &+ \rho^{k-1} \mathbf{s}^{k-1} (\mathbf{s}^{k-1})^{T}, \end{aligned}$$
(32)

where $U^{k,m} = V^{k-m}V^{k-m+1}\cdots V^{k-1}$. For the L-BFGS, we need *not* explicitly store the approximated inverse Hessian matrix. Instead, we only require matrix-vector multiplications at each iteration, which can be implemented by a two-loop recursion with a time complexity of O(mn) (Jorge & Stephen, 1999). Thus, we only store 2m vectors of length n: $\mathbf{s}^{k-1}, \mathbf{s}^{k-2}, \cdots, \mathbf{s}^{k-m}$ and $\mathbf{y}^{k-1}, \mathbf{y}^{k-2}, \cdots, \mathbf{y}^{k-m}$ with a storage complexity of O(mn), which is very useful when n is large. In practice, L-BFGS updates H^{k-m} as $\mu^k I$, where $\mu^k = (\mathbf{s}^k)^T \mathbf{y}^k / ||\mathbf{y}^k||^2$.

B. Properties of L-BFGS

We first show that some key sequences are bounded, which are critical for establishing some important properties of L-BFGS.

Proposition 6 The sequence $\{\mathbf{x}^k\}$ generated by the mOWL-QN algorithm is bounded. Let $\mathbf{s}^k = \mathbf{x}^{k+1} - \mathbf{x}^k$, $\mathbf{y}^k = \nabla l(\mathbf{x}^{k+1}) - \nabla l(\mathbf{x}^k)$. Then $\{\mathbf{s}^k\}$, $\{\mathbf{y}^k\}$ and $\{\mathbf{v}^k\}$ are also bounded.

Proof Proposition 5 guarantees that both line search criteria in QN-step (Eq. (7)) and GD-step (Eq. (8)) can be satisfied in a finite number of trials with some $\alpha^k > 0$. By Eqs. (11), (7), (8), we have

$$f(\mathbf{x}^{k}) - f(\mathbf{x}^{k+1}) \ge \gamma \alpha^{k} (\mathbf{v}^{k})^{T} \mathbf{d}^{k} \ge 0 \text{ (QN-step)},$$

or $f(\mathbf{x}^{k}) - f(\mathbf{x}^{k+1}) \ge \frac{\gamma}{2\alpha^{k}} \|\mathbf{x}^{k+1} - \mathbf{x}^{k}\|^{2} \ge 0 \text{ (GD-step)},$ (33)

which imply that $\{f(\mathbf{x}^k)\}$ is decreasing. Hence for all $k \ge 1$, $f(\mathbf{x}^k) \le f(\mathbf{x}^0)$. Assume that $\{\mathbf{x}^k\}$ is unbounded. Then there exists a subsequence $\{\mathbf{x}^k\}_{\tilde{\mathcal{K}}}$ such that $\{\|\mathbf{x}^k\|_1\}_{\tilde{\mathcal{K}}} \to \infty$. Recall that $l(\mathbf{x})$ is bounded from below (see Section 2). Thus, we have $\{f(\mathbf{x}^k)\}_{\tilde{\mathcal{K}}} \to \infty$, which leads to a contradiction with that $f(\mathbf{x}^k) \le f(\mathbf{x}^0), \forall k \ge 1$. Therefore, $\{\mathbf{x}^k\}$ is bounded, which immediately imply that $\{\mathbf{s}^k\}$ is also bounded. Recalling that $\nabla l(\mathbf{x})$ is L-Lipschitz continuous, we obtain that $\|\mathbf{y}^k\| \le L \|\mathbf{x}^k - \mathbf{x}^{k+1}\|$ and hence $\{\mathbf{y}^k\}$ is bounded. Since $-\mathbf{v}^k \in \partial f(\mathbf{x}^k)$, then based on the Proposition B.24(b) in Bertsekas (1999), we obtain that $\{\mathbf{v}^k\}$ is bounded. Based on Proposition 6, we present the following important properties of L-BFGS.

Proposition 7 In the course of the inversion Hessian matrix update using L-BFGS, let $\{H^0\}$ and $\{H^{k-m}\}$ be bounded and positive definite, and $\{\mathbf{x}^k\}$, $\{\mathbf{y}^k\}$, $\{\mathbf{y}^k\}$ and $\{\rho^k\}$ be bounded, where $\mathbf{s}^k = \mathbf{x}^{k+1} - \mathbf{x}^k$, $\mathbf{y}^k = \nabla l(\mathbf{x}^{k+1}) - \nabla l(\mathbf{x}^k)$ and $\rho^k = ((\mathbf{y}^k)^T \mathbf{s}^k)^{-1}$. Then there exists a positive constant M such that for all $\mathbf{x} \in \mathbb{R}^n$ and all $k \ge 1$: $\mathbf{x}^T H^k \mathbf{x} \le M \|\mathbf{x}\|^2$. That is, the eigenvalues of H^k are uniformly bounded from above by M. Moreover, $\{\mathbf{d}^k\}$ and $\{\mathbf{p}^k\}$ are bounded.

Proof When $k \leq m$ (*m* is the unrolling steps of L-BFGS), L-BFGS is equivalent to BFGS and H^k is updated by the recursive relationship in Eq. (31). When k > m, H^k is updated by the recursive relationship in Eq. (32). Thus, Eqs. (31), (32) and the boundedness of $\{H^0\}$, $\{H^{k-m}\}$, $\{\mathbf{s}^k\}$, $\{\mathbf{y}^k\}$, $\{\mathbf{v}^k\}$ and $\{\rho^k\}$ immediately imply that $\{||H^k||_F\}$ is bounded. That is, there exist an M > 0 such that $||H^k||_F \leq M$ for all $k \geq 1$. Thus, for all $k \geq 1$, $\lambda_{\max}(H^k) \leq ||H^k||_F \leq M$, where $\lambda_{\max}(H^k)$ is the largest eigenvalue of H^k . That is, there exists a positive constant M such that for all $\mathbf{x} \in \mathbb{R}^n$ and all $k \geq 1$: $\mathbf{x}^T H^k \mathbf{x} \leq M ||\mathbf{x}||^2$. Thus, the eigenvalues of H^k are uniformly bounded from above by M. It easily follows that $\{\mathbf{d}^k\}$ and $\{\mathbf{p}^k\}$ are bounded by noticing that $\{\mathbf{v}^k\}$ is bounded.

Remark 4 We discuss how to guarantee that the conditions in Proposition 7 are satisfied in practical L-BFGS updates. We usually choose H^0 and H^{k-m} as multiple identity matrices such that $\{H^0\}$ and $\{H^{k-m}\}$ are bounded and positive definite. Proposition 6 guarantees that $\{\mathbf{x}^k\}$, $\{\mathbf{s}^k\}$, $\{\mathbf{v}^k\}$ and $\{\mathbf{y}^k\}$ are bounded. To guarantee that $\{\rho^k\}$ is also bounded, we adopt a similar strategy presented in Byrd et al. (1995); Andrew & Gao (2007): choose a small positive constant δ and perform L-BFGS updates only when $(\mathbf{s}^k)^T \mathbf{y}^k \ge \delta$.

Remark 5 To guarantee the eigenvalues of H^k are uniformly bounded from below by a positive constant, we can add a small positive diagonal matrix νI to H^k (e.g., $\nu = 10^{-12}$). Thus, the eigenvalues of H^k are both uniformly bounded from below by ν and uniformly bounded from above by M, respectively.

C. Proof of Proposition 5 and Auxiliary Propositions

We present the following proposition which is useful to prove Proposition 5.

Proposition 8 At the point $\mathbf{x} = \mathbf{x}^k$ with the vector $\mathbf{v}^k = -\diamond f(\mathbf{x}^k)$, if $\mathbf{p}^k = \pi(\mathbf{d}^k; \mathbf{v}^k)$ is a non-zero vector, then $f'(\mathbf{x}^k; \mathbf{p}^k) = -(\mathbf{v}^k)^T \mathbf{p}^k < 0$, where $f'(\mathbf{x}^k; \mathbf{p}^k)$ denotes the directional derivative of $f(\mathbf{x})$ at $\mathbf{x} = \mathbf{x}^k$ along the direction \mathbf{p}^k defined as follows:

$$f'(\mathbf{x}^k; \mathbf{p}^k) = \lim_{\alpha \downarrow 0} \frac{f(\mathbf{x}^k + \alpha \mathbf{p}^k) - f(\mathbf{x}^k)}{\alpha}.$$
(34)

Proof According to the property of the directional derivative of a convex function (Bertsekas, 1999), we have

$$f'(\mathbf{x}^k; \mathbf{p}^k) = \max_{\mathbf{g}^k \in \partial f(\mathbf{x}^k)} (\mathbf{g}^k)^T \mathbf{p}^k = \sum_{i=1}^n \max_{g_i^k \in \partial_i f(\mathbf{x}^k)} g_i^k p_i^k.$$

Noticing that $\diamond_i f(\mathbf{x}^k) = \nabla_i l(\mathbf{x}^k) + \lambda \sigma(x_i^k)$ is the unique element of $\partial_i f(\mathbf{x}^k)$ whenever $x_i^k \neq 0$, we have

$$\begin{aligned} f'(\mathbf{x}^k; \mathbf{p}^k) &= \sum_{i \in \mathcal{A}_k} \diamond_i f(\mathbf{x}^k) p_i^k + \sum_{i \in \mathcal{A}_k^c} \max_{g_i^k \in \partial_i f(\mathbf{x}^k)} g_i^k p_i^k. \\ &= \sum_{i \in \mathcal{A}_k} \diamond_i f(\mathbf{x}^k) p_i^k + \sum_{i \in \mathcal{A}_k^c} \max_{g_i^k \in \partial_i f(\mathbf{x}^k)} g_i^k \sigma(v_i^k) |p_i^k|. \end{aligned}$$

where $A_k = \{i : x_i^k \neq 0\}$, $A_k^c = \{i : x_i^k = 0\}$ and the last equality is due to $p_i^k = \pi_i(d_i^k; v_i^k)$. We now focus on $x_i^k = 0$ in the following three cases:

- (1) If $v_i^k > 0$, then $\diamond_i f(\mathbf{x}^k) = \nabla_i l(\mathbf{x}^k) + \lambda < 0$ and hence $\nabla_i l(\mathbf{x}^k) \lambda \leq g_i^k \leq \nabla_i l(\mathbf{x}^k) + \lambda < 0$. Thus, we should choose $g_i^k = \diamond_i f(\mathbf{x}^k)$ to make $g_i^k \sigma(v_i^k) |p_i^k|$ achieve the maximum value.
- (2) If $v_i^k < 0$, then $\diamond_i f(\mathbf{x}^k) = \nabla_i l(\mathbf{x}^k) \lambda > 0$ and hence $0 < \nabla_i l(\mathbf{x}^k) \lambda \le g_i^k \le \nabla_i l(\mathbf{x}^k) + \lambda$. Thus, we should choose $g_i^k = \diamond_i f(\mathbf{x}^k)$ to make $g_i^k \sigma(v_i^k) |p_i^k|$ achieve the maximum value.

(3) If $v_i^k = 0$, then $g_i^k \sigma(v_i^k) |p_i^k| = 0$ for any $g_i^k \in \partial_i f(\mathbf{x}^k)$.

Combining the above three cases, we have:

$$f'(\mathbf{x}^k; \mathbf{p}^k) = \sum_{i \in \mathcal{A}_k} \diamond_i f(\mathbf{x}^k) p_i^k + \sum_{i \in \mathcal{A}_k^c} \diamond_i f(\mathbf{x}^k) \sigma(v_i^k) |p_i^k|$$
$$= \sum_{i \in \mathcal{A}_k} \diamond_i f(\mathbf{x}^k) p_i^k + \sum_{i \in \mathcal{A}_k^c} \diamond_i f(\mathbf{x}^k) p_i^k$$
$$= \diamond f(\mathbf{x}^k)^T \mathbf{p}^k = -(\mathbf{v}^k)^T \mathbf{p}^k < 0,$$

where the last inequality follows from that $\mathbf{p}^k = \pi(\mathbf{d}^k; \mathbf{v}^k)$ and the condition $\mathbf{p}^k \neq \mathbf{0}$.

Based on Proposition 8, we prove Proposition 5 as follows:

Proposition 5 (a) For QN-step, let's define

$$\mathcal{B}_{k} = \{i : x_{i}^{k} p_{i}^{k} < 0\} \text{ and } \bar{\alpha}_{1}^{k} = \begin{cases} \min_{i \in \mathcal{B}_{k}} \frac{|x_{i}^{k}|}{|p_{i}^{k}|}, & \text{if } \mathcal{B}_{k} \neq \emptyset, \\ +\infty, & \text{otherwise.} \end{cases}$$

Then for all $\alpha \in (0, \bar{\alpha}_1^k)$, we have

$$\mathbf{x}^{k}(\alpha) = \pi(\mathbf{x}^{k} + \alpha \mathbf{p}^{k}; \boldsymbol{\xi}^{k}) = \mathbf{x}^{k} + \alpha \mathbf{p}^{k}.$$
(35)

Define

$$s(\alpha) = f(\mathbf{x}^k + \alpha \mathbf{p}^k), \ h(\alpha) = \frac{s(\alpha) - s(0)}{\alpha}.$$

Since f is convex, $s(\alpha)$ is convex. Let $0 < \alpha \leq \alpha'$. Then the convexity of $s(\alpha)$ leads to

$$s(\alpha) \le \frac{\alpha}{\alpha'} s(\alpha') + \frac{\alpha' - \alpha}{\alpha'} s(0)$$

Thus,

$$\frac{s(\alpha) - s(0)}{\alpha} \le \frac{s(\alpha') - s(0)}{\alpha'},$$

which indicates that $h(\alpha)$ is an increasing function in the interval $(0, \infty)$. Recalling the definition of the directional derivative in Eq. (34), $\gamma \in (0, 1)$ and Proposition 8, we have

$$\lim_{\alpha \downarrow 0} \frac{s(\alpha) - s(0)}{\alpha} = -(\mathbf{v}^k)^T \mathbf{p}^k \le -(\mathbf{v}^k)^T \mathbf{d}^k < -\gamma (\mathbf{v}^k)^T \mathbf{d}^k,$$

where the first inequality follows from Eq. (11) and the last inequality follows from $\gamma \in (0, 1)$ and $(\mathbf{v}^k)^T \mathbf{d}^k > 0$ whenever \mathbf{x}^k is not a global minimizer of problem (1) [see Eq. (11) and Proposition 9]. Thus, there exists an $\bar{\alpha}_2^k \in (0, \min(\alpha_0, \bar{\alpha}_1^k))$ such that

$$\frac{s(\alpha) - s(0)}{\alpha} \le -\gamma(\mathbf{v}^k)^T \mathbf{d}^k, \ \forall 0 < \alpha \le \bar{\alpha}_2^k.$$
(36)

Recall that $h(\alpha)$ is continuous and increasing in the interval $(0, \infty)$. Thus, considering Eq. (36) and the backtracking form of the line search in QN-step (Eq. (7)), there exists an α with $\alpha \ge \bar{\alpha}^k = \beta \bar{\alpha}_2^k > 0$ such that

$$\frac{s(\alpha) - s(0)}{\alpha} \le -\gamma (\mathbf{v}^k)^T \mathbf{d}^k.$$
(37)

Substituting the definition of $s(\alpha)$ into Eq. (37) and considering that Eq. (35) holds for all $\alpha \in (0, \bar{\alpha}_1^k)$, we obtain that there exists an $\alpha \in [\bar{\alpha}^k, \alpha_0]$ such that the line search criterion in Eq. (7) is satisfied.

(b) For GD-step, we have

$$\nabla l(\mathbf{x}^k)^T(\mathbf{x}^k(\alpha) - \mathbf{x}^k) + \frac{1}{2\alpha} \|\mathbf{x}^k(\alpha) - \mathbf{x}^k\|^2 + \lambda \|\mathbf{x}^k(\alpha)\|_1 \le \lambda \|\mathbf{x}^k\|_1.$$
(38)

Noticing that $\nabla l(\mathbf{x})$ is Lipschitz continuous with constant L, we have

$$l(\mathbf{x}^{k}(\alpha)) \leq l(\mathbf{x}^{k}) + \nabla l(\mathbf{x}^{k})^{T}(\mathbf{x}^{k}(\alpha) - \mathbf{x}^{k}) + \frac{L}{2} \|\mathbf{x}^{k}(\alpha) - \mathbf{x}^{k}\|^{2},$$

which together with Eq. (38) and $f(\mathbf{x}) = l(\mathbf{x}) + \lambda ||\mathbf{x}||_1$ implies that

$$f(\mathbf{x}^{k}(\alpha)) \leq f(\mathbf{x}^{k}) - \frac{1 - \alpha L}{2\alpha} \|\mathbf{x}^{k}(\alpha) - \mathbf{x}^{k}\|^{2}.$$

Thus, the line search in Eq. (8) is satisfied if

$$\gamma \leq 1 - \alpha L$$
 and $0 < \alpha \leq \alpha_0$.

Considering the backtracking form of the line search in GD-step (Eq. (8)), we obtain that the line search criterion in Eq. (8) is satisfied whenever $\alpha \ge \beta \min(\alpha_0, (1 - \gamma)/L)$.

D. More Optimality Conditions for Problem (1)

Proposition 9 Let $\mathbf{d}^k = H^k \mathbf{v}^k$, $\mathbf{p}^k = \pi(\mathbf{d}^k; \mathbf{v}^k)$, $\mathbf{q}^k_\alpha = \frac{1}{\alpha}(\pi(\mathbf{x}^k + \alpha \mathbf{p}^k; \boldsymbol{\xi}^k) - \mathbf{x}^k)$. Then for all $\alpha \in (0, \infty)$, \mathbf{x}^k is a global minimizer of problem (1) $\Leftrightarrow \mathbf{d}^k = \mathbf{0} \Leftrightarrow \mathbf{v}^k = \mathbf{0} \Leftrightarrow \mathbf{p}^k = \mathbf{0} \Leftrightarrow \mathbf{q}^k_\alpha = \mathbf{0}$.

Proof Based on Proposition 3 and its proof, we know that \mathbf{x}^k is a global minimizer of problem (1) if and only if $\mathbf{v}^k = \mathbf{0}$. Thus, we only need to prove the following equivalence to complete the proof of Proposition 9:

$$\mathbf{d}^k = \mathbf{0} \Leftrightarrow \mathbf{v}^k = \mathbf{0} \Leftrightarrow \mathbf{p}^k = \mathbf{0} \Leftrightarrow \mathbf{q}^k_{\alpha} = \mathbf{0}$$

(i) We first prove $\mathbf{d}^k = \mathbf{0} \Leftrightarrow \mathbf{v}^k = \mathbf{0}$.

This equivalence immediately follows from that $\mathbf{d}^k = H^k \mathbf{v}^k$ and H^k is positive definite.

(ii) We next prove $\mathbf{v}^k = \mathbf{0} \Leftrightarrow \mathbf{p}^k = \mathbf{0}$.

- If $\mathbf{v}^k = \mathbf{0}$, then $\mathbf{p}^k = \mathbf{0}$ by the definition of \mathbf{p}^k .
- If $\mathbf{p}^k = \mathbf{0}$, then for all $i \in \{1, \dots, n\}, d_i^k v_i^k \leq 0$ by the definition of \mathbf{p}^k . Thus, we have

$$(\mathbf{v}^k)^T H^k \mathbf{v}^k = \sum_{i=1}^n d_i^k v_i^k \le 0.$$

On the other hand, due to the positive definiteness of H^k , we have

$$(\mathbf{v}^k)^T H^k \mathbf{v}^k \ge 0.$$

Thus, $(\mathbf{v}^k)^T H^k \mathbf{v}^k = 0$ and hence $\mathbf{v}^k = \mathbf{0}$.

- (iii) We finally prove $\mathbf{p}^k = \mathbf{0} \Leftrightarrow \mathbf{q}^k_{\alpha} = \mathbf{0}$.
 - If p^k = 0, then q^k_α = ¹/_α(π(x^k; ξ^k) x^k). We consider the following two cases:
 (1) If x^k_i = 0, then (q^k_α)_i = (0 0)/α = 0.
 (2) If x^k_i ≠ 0, then (q^k_α)_i = (x^k_i x^k_i)/α = 0.

Combing the above two cases, we obtain that $\mathbf{q}_{\alpha}^k = \mathbf{0}$.

- If $\mathbf{q}_{\alpha}^{k} = \mathbf{0}$, then $\pi(\mathbf{x}^{k} + \alpha \mathbf{p}^{k}; \boldsymbol{\xi}^{k}) = \mathbf{x}^{k}$. We consider the following two cases:
 - (1) If $x_i^k = 0$, then $\pi_i(x_i^k + \alpha p_i^k; \xi_i^k) = 0$. Thus, $(0 + \alpha p_i^k)\xi_i^k = \alpha p_i^k \sigma(v_i^k) \le 0$, which together with $p_i^k = \pi_i(d_i^k; v_i^k)$ implies $p_i^k \sigma(v_i^k) = |p_i^k| \le 0$. Therefore, $p_i^k = 0$.
 - (2) If $x_i^k \neq 0$, then $\pi_i(x_i^k + \alpha p_i^k; \xi_i^k) = x_i^k$. By the definition of $\pi_i(\cdot)$, we have $\pi_i(x_i^k + \alpha p_i^k; \xi_i^k) = x_i^k + \alpha p_i^k$ or 0. Thus, by recalling that $x_i^k \neq 0$ and $\pi_i(x_i^k + \alpha p_i^k; \xi_i^k) = x_i^k$, we must have $x_i^k + \alpha p_i^k = x_i$. Therefore, $p_i^k = 0$.

Combing the above two cases, we obtain that $\mathbf{p}^k = \mathbf{0}$.