Supplementary Material for "A Modified Orthant-Wise Limited Memory Quasi-Newton Method with Convergence Analysis"

A. BFGS and L-BFGS

For self-containedness, we briefly review the update of the inverse Hessian matrix in the BFGS and L-BFGS (Jorge \& Stephen, 1999). Assume that we are given an approximate inverse Hessian matrix H^{k} at $\mathbf{x}=\mathbf{x}^{k}$. BFGS updates the inverse Hessian matrix H^{k+1} at $\mathrm{x}=\mathrm{x}^{k+1}$ as:

$$
\begin{equation*}
H^{k+1}=\left(V^{k}\right)^{T} H^{k} V^{k}+\rho^{k} \mathbf{s}^{k}\left(\mathbf{s}^{k}\right)^{T} \tag{31}
\end{equation*}
$$

where $V^{k}=I-\rho^{k} \mathbf{y}^{k}\left(\mathbf{s}^{k}\right)^{T}, \mathbf{s}^{k}=\mathbf{x}^{k+1}-\mathbf{x}^{k}, \mathbf{y}^{k}=\nabla l\left(\mathbf{x}^{k+1}\right)-\nabla l\left(\mathbf{x}^{k}\right), \rho^{k}=\left(\left(\mathbf{y}^{k}\right)^{T} \mathbf{s}^{k}\right)^{-1}$. It is easy to verify that $H^{k+1} \succ 0$, if $H^{k} \succ 0$ and $\rho^{k}>0$ (Jorge \& Stephen, 1999).
L-BFGS updates the inverse Hessian matrix by unrolling the update from BFGS back to m steps:

$$
\begin{align*}
H^{k} & =\left(V^{k-1}\right)^{T} H^{k-1} V^{k-1}+\rho^{k-1} \mathbf{s}^{k-1}\left(\mathbf{s}^{k-1}\right)^{T} \\
& =\left(V^{k-1}\right)^{T}\left(V^{k-2}\right)^{T} H^{k-2} V^{k-2} V^{k-1} \\
& +\left(V^{k-1}\right)^{T} \mathbf{s}^{k-2} \rho^{k-2}\left(\mathbf{s}^{k-2}\right)^{T} V^{k-1} \\
& +\rho^{k-1} \mathbf{s}^{k-1}\left(\mathbf{s}^{k-1}\right)^{T} \\
& =\left(U^{k, m}\right)^{T} H^{k-m} U^{k, m} \\
& +\rho^{k-m}\left(U^{k, m-1}\right)^{T} \mathbf{s}^{k-m}\left(\mathbf{s}^{k-m}\right)^{T} U^{k, m-1} \\
& +\rho^{k-m+1}\left(U^{k, m-2}\right)^{T} \mathbf{s}^{k-m+1}\left(\mathbf{s}^{k-m+1}\right)^{T} U^{k, m-2} \\
& +\cdots \\
& +\rho^{k-2}\left(V^{k-1}\right)^{T} \mathbf{s}^{k-2}\left(\mathbf{s}^{k-2}\right)^{T} V^{k-1} \\
& +\rho^{k-1} \mathbf{s}^{k-1}\left(\mathbf{s}^{k-1}\right)^{T}, \tag{32}
\end{align*}
$$

where $U^{k, m}=V^{k-m} V^{k-m+1} \cdots V^{k-1}$. For the L-BFGS, we need not explicitly store the approximated inverse Hessian matrix. Instead, we only require matrix-vector multiplications at each iteration, which can be implemented by a twoloop recursion with a time complexity of $O(m n)$ (Jorge \& Stephen, 1999). Thus, we only store $2 m$ vectors of length n : $\mathbf{s}^{k-1}, \mathbf{s}^{k-2}, \cdots, \mathbf{s}^{k-m}$ and $\mathbf{y}^{k-1}, \mathbf{y}^{k-2}, \cdots, \mathbf{y}^{k-m}$ with a storage complexity of $O(m n)$, which is very useful when n is large. In practice, L-BFGS updates H^{k-m} as $\mu^{k} I$, where $\mu^{k}=\left(\mathbf{s}^{k}\right)^{T} \mathbf{y}^{k} /\left\|\mathbf{y}^{k}\right\|^{2}$.

B. Properties of L-BFGS

We first show that some key sequences are bounded, which are critical for establishing some important properties of L-BFGS.

Proposition 6 The sequence $\left\{\mathbf{x}^{k}\right\}$ generated by the mOWL-QN algorithm is bounded. Let $\mathbf{s}^{k}=\mathbf{x}^{k+1}-\mathbf{x}^{k}, \mathbf{y}^{k}=$ $\nabla l\left(\mathbf{x}^{k+1}\right)-\nabla l\left(\mathbf{x}^{k}\right)$. Then $\left\{\mathbf{s}^{k}\right\},\left\{\mathbf{y}^{k}\right\}$ and $\left\{\mathbf{v}^{k}\right\}$ are also bounded.

Proof Proposition 5 guarantees that both line search criteria in QN-step (Eq. (7)) and GD-step (Eq. (8)) can be satisfied in a finite number of trials with some $\alpha^{k}>0$. By Eqs. (11), (7), (8), we have

$$
\begin{align*}
f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k+1}\right) & \geq \gamma \alpha^{k}\left(\mathbf{v}^{k}\right)^{T} \mathbf{d}^{k} \geq 0(\text { QN-step }), \\
\text { or } f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k+1}\right) & \geq \frac{\gamma}{2 \alpha^{k}}\left\|\mathbf{x}^{k+1}-\mathbf{x}^{k}\right\|^{2} \geq 0 \text { (GD-step) } \tag{33}
\end{align*}
$$

which imply that $\left\{f\left(\mathbf{x}^{k}\right)\right\}$ is decreasing. Hence for all $k \geq 1, f\left(\mathbf{x}^{k}\right) \leq f\left(\mathbf{x}^{0}\right)$. Assume that $\left\{\mathbf{x}^{k}\right\}$ is unbounded. Then there exists a subsequence $\left\{\mathbf{x}^{k}\right\}_{\tilde{\mathcal{K}}}$ such that $\left\{\left\|\mathrm{x}^{k}\right\|_{1}\right\}_{\tilde{\mathcal{K}}} \rightarrow \infty$. Recall that $l(\mathbf{x})$ is bounded from below (see Section 2). Thus, we have $\left\{f\left(\mathbf{x}^{k}\right)\right\}_{\tilde{\mathcal{K}}} \rightarrow \infty$, which leads to a contradiction with that $f\left(\mathrm{x}^{k}\right) \leq f\left(\mathrm{x}^{0}\right), \forall k \geq 1$. Therefore, $\left\{\mathrm{x}^{k}\right\}$ is bounded, which immediately imply that $\left\{\mathbf{s}^{k}\right\}$ is also bounded. Recalling that $\nabla l(\mathbf{x})$ is L-Lipschitz continuous, we obtain that $\left\|\mathbf{y}^{k}\right\| \leq L\left\|\mathbf{x}^{k}-\mathbf{x}^{k+1}\right\|$ and hence $\left\{\mathbf{y}^{k}\right\}$ is bounded. Since $-\mathbf{v}^{k} \in \partial f\left(\mathbf{x}^{k}\right)$, then based on the Proposition B.24(b) in Bertsekas (1999), we obtain that $\left\{\mathbf{v}^{k}\right\}$ is bounded.

Based on Proposition 6, we present the following important properties of L-BFGS.
Proposition 7 In the course of the inversion Hessian matrix update using L-BFGS, let $\left\{H^{0}\right\}$ and $\left\{H^{k-m}\right\}$ be bounded and positive definite, and $\left\{\mathbf{x}^{k}\right\},\left\{\mathbf{s}^{k}\right\},\left\{\mathbf{v}^{k}\right\},\left\{\mathbf{y}^{k}\right\}$ and $\left\{\rho^{k}\right\}$ be bounded, where $\mathbf{s}^{k}=\mathbf{x}^{k+1}-\mathbf{x}^{k}, \mathbf{y}^{k}=\nabla l\left(\mathbf{x}^{k+1}\right)-\nabla l\left(\mathbf{x}^{k}\right)$ and $\rho^{k}=\left(\left(\mathbf{y}^{k}\right)^{T} \mathbf{s}^{k}\right)^{-1}$. Then there exists a positive constant M such that for all $\mathbf{x} \in \mathbb{R}^{n}$ and all $k \geq 1: \mathbf{x}^{T} H^{k} \mathbf{x} \leq M\|\mathbf{x}\|^{2}$. That is, the eigenvalues of H^{k} are uniformly bounded from above by M. Moreover, $\left\{\mathbf{d}^{k}\right\}$ and $\left\{\mathbf{p}^{k}\right\}$ are bounded.

Proof When $k \leq m$ (m is the unrolling steps of L-BFGS), L-BFGS is equivalent to BFGS and H^{k} is updated by the recursive relationship in Eq. (31). When $k>m, H^{k}$ is updated by the recursive relationship in Eq. (32). Thus, Eqs. (31), (32) and the boundedness of $\left\{H^{0}\right\},\left\{H^{k-m}\right\},\left\{\mathbf{s}^{k}\right\},\left\{\mathbf{y}^{k}\right\},\left\{\mathbf{v}^{k}\right\}$ and $\left\{\rho^{k}\right\}$ immediately imply that $\left\{\left\|H^{k}\right\|_{F}\right\}$ is bounded. That is, there exist an $M>0$ such that $\left\|H^{k}\right\|_{F} \leq M$ for all $k \geq 1$. Thus, for all $k \geq 1, \lambda_{\max }\left(H^{k}\right) \leq\left\|H^{k}\right\|_{F} \leq M$, where $\lambda_{\max }\left(H^{k}\right)$ is the largest eigenvalue of H^{k}. That is, there exists a positive constant M such that for all $\mathbf{x} \in \mathbb{R}^{n}$ and all $k \geq 1: \mathbf{x}^{T} H^{k} \mathbf{x} \leq M\|\mathbf{x}\|^{2}$. Thus, the eigenvalues of H^{k} are uniformly bounded from above by M. It easily follows that $\left\{\mathbf{d}^{k}\right\}$ and $\left\{\mathbf{p}^{k}\right\}$ are bounded by noticing that $\left\{\mathbf{v}^{k}\right\}$ is bounded.

Remark 4 We discuss how to guarantee that the conditions in Proposition 7 are satisfied in practical L-BFGS updates. We usually choose H^{0} and H^{k-m} as multiple identity matrices such that $\left\{H^{0}\right\}$ and $\left\{H^{k-m}\right\}$ are bounded and positive definite. Proposition 6 guarantees that $\left\{\mathbf{x}^{k}\right\},\left\{\mathbf{s}^{k}\right\},\left\{\mathbf{v}^{k}\right\}$ and $\left\{\mathbf{y}^{k}\right\}$ are bounded. To guarantee that $\left\{\rho^{k}\right\}$ is also bounded, we adopt a similar strategy presented in Byrd et al. (1995); Andrew \& Gao (2007): choose a small positive constant δ and perform L-BFGS updates only when $\left(\mathbf{s}^{k}\right)^{T} \mathbf{y}^{k} \geq \delta$.

Remark 5 To guarantee the eigenvalues of H^{k} are uniformly bounded from below by a positive constant, we can add a small positive diagonal matrix νI to $H^{k}\left(e . g ., \nu=10^{-12}\right)$. Thus, the eigenvalues of H^{k} are both uniformly bounded from below by ν and uniformly bounded from above by M, respectively.

C. Proof of Proposition 5 and Auxiliary Propositions

We present the following proposition which is useful to prove Proposition 5.
Proposition 8 At the point $\mathbf{x}=\mathbf{x}^{k}$ with the vector $\mathbf{v}^{k}=-\diamond f\left(\mathbf{x}^{k}\right)$, if $\mathbf{p}^{k}=\pi\left(\mathbf{d}^{k} ; \mathbf{v}^{k}\right)$ is a non-zero vector, then $f^{\prime}\left(\mathbf{x}^{k} ; \mathbf{p}^{k}\right)=-\left(\mathbf{v}^{k}\right)^{T} \mathbf{p}^{k}<0$, where $f^{\prime}\left(\mathbf{x}^{k} ; \mathbf{p}^{k}\right)$ denotes the directional derivative of $f(\mathbf{x})$ at $\mathbf{x}=\mathbf{x}^{k}$ along the direction \mathbf{p}^{k} defined as follows:

$$
\begin{equation*}
f^{\prime}\left(\mathbf{x}^{k} ; \mathbf{p}^{k}\right)=\lim _{\alpha \downarrow 0} \frac{f\left(\mathbf{x}^{k}+\alpha \mathbf{p}^{k}\right)-f\left(\mathbf{x}^{k}\right)}{\alpha} \tag{34}
\end{equation*}
$$

Proof According to the property of the directional derivative of a convex function (Bertsekas, 1999), we have

$$
f^{\prime}\left(\mathbf{x}^{k} ; \mathbf{p}^{k}\right)=\max _{\mathbf{g}^{k} \in \partial f\left(\mathbf{x}^{k}\right)}\left(\mathbf{g}^{k}\right)^{T} \mathbf{p}^{k}=\sum_{i=1}^{n} \max _{g_{i}^{k} \in \partial_{i} f\left(\mathbf{x}^{k}\right)} g_{i}^{k} p_{i}^{k}
$$

Noticing that $\diamond_{i} f\left(\mathbf{x}^{k}\right)=\nabla_{i} l\left(\mathbf{x}^{k}\right)+\lambda \sigma\left(x_{i}^{k}\right)$ is the unique element of $\partial_{i} f\left(\mathbf{x}^{k}\right)$ whenever $x_{i}^{k} \neq 0$, we have

$$
\begin{aligned}
f^{\prime}\left(\mathbf{x}^{k} ; \mathbf{p}^{k}\right) & =\sum_{i \in \mathcal{A}_{k}} \diamond_{i} f\left(\mathbf{x}^{k}\right) p_{i}^{k}+\sum_{i \in \mathcal{A}_{k}^{c}} \max _{i}^{g_{i}^{k} \in \partial_{i} f\left(\mathbf{x}^{k}\right)} g_{i}^{k} p_{i}^{k} \\
& =\sum_{i \in \mathcal{A}_{k}} \diamond_{i} f\left(\mathbf{x}^{k}\right) p_{i}^{k}+\sum_{i \in \mathcal{A}_{k}^{c}} \max _{i} g_{i}^{k} \in \partial_{i} f\left(\mathbf{x}^{k}\right)
\end{aligned} g_{i}^{k} \sigma\left(v_{i}^{k}\right)\left|p_{i}^{k}\right|,
$$

where $\mathcal{A}_{k}=\left\{i: x_{i}^{k} \neq 0\right\}, \mathcal{A}_{k}^{c}=\left\{i: x_{i}^{k}=0\right\}$ and the last equality is due to $p_{i}^{k}=\pi_{i}\left(d_{i}^{k} ; v_{i}^{k}\right)$. We now focus on $x_{i}^{k}=0$ in the following three cases:
(1) If $v_{i}^{k}>0$, then $\diamond_{i} f\left(\mathbf{x}^{k}\right)=\nabla_{i} l\left(\mathbf{x}^{k}\right)+\lambda<0$ and hence $\nabla_{i} l\left(\mathbf{x}^{k}\right)-\lambda \leq g_{i}^{k} \leq \nabla_{i} l\left(\mathbf{x}^{k}\right)+\lambda<0$. Thus, we should choose $g_{i}^{k}=\diamond_{i} f\left(\mathbf{x}^{k}\right)$ to make $g_{i}^{k} \sigma\left(v_{i}^{k}\right)\left|p_{i}^{k}\right|$ achieve the maximum value.
(2) If $v_{i}^{k}<0$, then $\diamond_{i} f\left(\mathbf{x}^{k}\right)=\nabla_{i} l\left(\mathbf{x}^{k}\right)-\lambda>0$ and hence $0<\nabla_{i} l\left(\mathbf{x}^{k}\right)-\lambda \leq g_{i}^{k} \leq \nabla_{i} l\left(\mathbf{x}^{k}\right)+\lambda$. Thus, we should choose $g_{i}^{k}=\diamond_{i} f\left(\mathbf{x}^{k}\right)$ to make $g_{i}^{k} \sigma\left(v_{i}^{k}\right)\left|p_{i}^{k}\right|$ achieve the maximum value.
(3) If $v_{i}^{k}=0$, then $g_{i}^{k} \sigma\left(v_{i}^{k}\right)\left|p_{i}^{k}\right|=0$ for any $g_{i}^{k} \in \partial_{i} f\left(\mathbf{x}^{k}\right)$.

Combining the above three cases, we have:

$$
\begin{aligned}
f^{\prime}\left(\mathbf{x}^{k} ; \mathbf{p}^{k}\right) & =\sum_{i \in \mathcal{A}_{k}} \diamond_{i} f\left(\mathbf{x}^{k}\right) p_{i}^{k}+\sum_{i \in \mathcal{A}_{k}^{c}} \diamond_{i} f\left(\mathbf{x}^{k}\right) \sigma\left(v_{i}^{k}\right)\left|p_{i}^{k}\right| \\
& =\sum_{i \in \mathcal{A}_{k}} \diamond_{i} f\left(\mathbf{x}^{k}\right) p_{i}^{k}+\sum_{i \in \mathcal{A}_{k}^{c}} \diamond_{i} f\left(\mathbf{x}^{k}\right) p_{i}^{k} \\
& =\diamond f\left(\mathbf{x}^{k}\right)^{T} \mathbf{p}^{k}=-\left(\mathbf{v}^{k}\right)^{T} \mathbf{p}^{k}<0
\end{aligned}
$$

where the last inequality follows from that $\mathbf{p}^{k}=\pi\left(\mathbf{d}^{k} ; \mathbf{v}^{k}\right)$ and the condition $\mathbf{p}^{k} \neq \mathbf{0}$.
Based on Proposition 8, we prove Proposition 5 as follows:
Proposition 5 (a) For QN-step, let's define

$$
\mathcal{B}_{k}=\left\{i: x_{i}^{k} p_{i}^{k}<0\right\} \text { and } \bar{\alpha}_{1}^{k}= \begin{cases}\min _{i \in \mathcal{B}_{k}} \frac{\left|x_{i}^{k}\right|}{\left|p_{i}^{k}\right|}, & \text { if } \mathcal{B}_{k} \neq \emptyset \\ +\infty, & \text { otherwise }\end{cases}
$$

Then for all $\alpha \in\left(0, \bar{\alpha}_{1}^{k}\right)$, we have

$$
\begin{equation*}
\mathbf{x}^{k}(\alpha)=\pi\left(\mathbf{x}^{k}+\alpha \mathbf{p}^{k} ; \boldsymbol{\xi}^{k}\right)=\mathbf{x}^{k}+\alpha \mathbf{p}^{k} \tag{35}
\end{equation*}
$$

Define

$$
s(\alpha)=f\left(\mathbf{x}^{k}+\alpha \mathbf{p}^{k}\right), h(\alpha)=\frac{s(\alpha)-s(0)}{\alpha}
$$

Since f is convex, $s(\alpha)$ is convex. Let $0<\alpha \leq \alpha^{\prime}$. Then the convexity of $s(\alpha)$ leads to

$$
s(\alpha) \leq \frac{\alpha}{\alpha^{\prime}} s\left(\alpha^{\prime}\right)+\frac{\alpha^{\prime}-\alpha}{\alpha^{\prime}} s(0)
$$

Thus,

$$
\frac{s(\alpha)-s(0)}{\alpha} \leq \frac{s\left(\alpha^{\prime}\right)-s(0)}{\alpha^{\prime}}
$$

which indicates that $h(\alpha)$ is an increasing function in the interval $(0, \infty)$. Recalling the definition of the directional derivative in Eq. (34), $\gamma \in(0,1)$ and Proposition 8, we have

$$
\lim _{\alpha \downarrow 0} \frac{s(\alpha)-s(0)}{\alpha}=-\left(\mathbf{v}^{k}\right)^{T} \mathbf{p}^{k} \leq-\left(\mathbf{v}^{k}\right)^{T} \mathbf{d}^{k}<-\gamma\left(\mathbf{v}^{k}\right)^{T} \mathbf{d}^{k}
$$

where the first inequality follows from Eq. (11) and the last inequality follows from $\gamma \in(0,1)$ and $\left(\mathbf{v}^{k}\right)^{T} \mathbf{d}^{k}>0$ whenever \mathbf{x}^{k} is not a global minimizer of problem (1) [see Eq. (11) and Proposition 9]. Thus, there exists an $\bar{\alpha}_{2}^{k} \in\left(0, \min \left(\alpha_{0}, \bar{\alpha}_{1}^{k}\right)\right)$ such that

$$
\begin{equation*}
\frac{s(\alpha)-s(0)}{\alpha} \leq-\gamma\left(\mathbf{v}^{k}\right)^{T} \mathbf{d}^{k}, \forall 0<\alpha \leq \bar{\alpha}_{2}^{k} \tag{36}
\end{equation*}
$$

Recall that $h(\alpha)$ is continuous and increasing in the interval ($0, \infty$). Thus, considering Eq. (36) and the backtracking form of the line search in QN-step (Eq. (7)), there exists an α with $\alpha \geq \bar{\alpha}^{k}=\beta \bar{\alpha}_{2}^{k}>0$ such that

$$
\begin{equation*}
\frac{s(\alpha)-s(0)}{\alpha} \leq-\gamma\left(\mathbf{v}^{k}\right)^{T} \mathbf{d}^{k} \tag{37}
\end{equation*}
$$

Substituting the definition of $s(\alpha)$ into Eq. (37) and considering that Eq. (35) holds for all $\alpha \in\left(0, \bar{\alpha}_{1}^{k}\right)$, we obtain that there exists an $\alpha \in\left[\bar{\alpha}^{k}, \alpha_{0}\right]$ such that the line search criterion in Eq. (7) is satisfied.
(b) For GD-step, we have

$$
\begin{equation*}
\nabla l\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}^{k}(\alpha)-\mathbf{x}^{k}\right)+\frac{1}{2 \alpha}\left\|\mathbf{x}^{k}(\alpha)-\mathbf{x}^{k}\right\|^{2}+\lambda\left\|\mathbf{x}^{k}(\alpha)\right\|_{1} \leq \lambda\left\|\mathbf{x}^{k}\right\|_{1} \tag{38}
\end{equation*}
$$

Noticing that $\nabla l(\mathbf{x})$ is Lipschitz continuous with constant L, we have

$$
l\left(\mathbf{x}^{k}(\alpha)\right) \leq l\left(\mathbf{x}^{k}\right)+\nabla l\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}^{k}(\alpha)-\mathbf{x}^{k}\right)+\frac{L}{2}\left\|\mathbf{x}^{k}(\alpha)-\mathbf{x}^{k}\right\|^{2}
$$

which together with Eq. (38) and $f(\mathbf{x})=l(\mathbf{x})+\lambda\|\mathbf{x}\|_{1}$ implies that

$$
f\left(\mathbf{x}^{k}(\alpha)\right) \leq f\left(\mathbf{x}^{k}\right)-\frac{1-\alpha L}{2 \alpha}\left\|\mathbf{x}^{k}(\alpha)-\mathbf{x}^{k}\right\|^{2}
$$

Thus, the line search in Eq. (8) is satisfied if

$$
\gamma \leq 1-\alpha L \text { and } 0<\alpha \leq \alpha_{0}
$$

Considering the backtracking form of the line search in GD-step (Eq. (8)), we obtain that the line search criterion in Eq. (8) is satisfied whenever $\alpha \geq \beta \min \left(\alpha_{0},(1-\gamma) / L\right)$.

D. More Optimality Conditions for Problem (1)

Proposition 9 Let $\mathbf{d}^{k}=H^{k} \mathbf{v}^{k}, \mathbf{p}^{k}=\pi\left(\mathbf{d}^{k} ; \mathbf{v}^{k}\right)$, $\mathbf{q}_{\alpha}^{k}=\frac{1}{\alpha}\left(\pi\left(\mathbf{x}^{k}+\alpha \mathbf{p}^{k} ; \boldsymbol{\xi}^{k}\right)-\mathbf{x}^{k}\right)$. Then for all $\alpha \in(0, \infty), \mathbf{x}^{k}$ is a global minimizer of problem $(1) \Leftrightarrow \mathbf{d}^{k}=\mathbf{0} \Leftrightarrow \mathbf{v}^{k}=\mathbf{0} \Leftrightarrow \mathbf{p}^{k}=\mathbf{0} \Leftrightarrow \mathbf{q}_{\alpha}^{k}=\mathbf{0}$.

Proof Based on Proposition 3 and its proof, we know that \mathbf{x}^{k} is a global minimizer of problem (1) if and only if $\mathbf{v}^{k}=\mathbf{0}$. Thus, we only need to prove the following equivalence to complete the proof of Proposition 9:

$$
\mathbf{d}^{k}=\mathbf{0} \Leftrightarrow \mathbf{v}^{k}=\mathbf{0} \Leftrightarrow \mathbf{p}^{k}=\mathbf{0} \Leftrightarrow \mathbf{q}_{\alpha}^{k}=\mathbf{0}
$$

(i) We first prove $\mathbf{d}^{k}=\mathbf{0} \Leftrightarrow \mathbf{v}^{k}=\mathbf{0}$.

This equivalence immediately follows from that $\mathbf{d}^{k}=H^{k} \mathbf{v}^{k}$ and H^{k} is positive definite.
(ii) We next prove $\mathbf{v}^{k}=\mathbf{0} \Leftrightarrow \mathbf{p}^{k}=\mathbf{0}$.

- If $\mathbf{v}^{k}=\mathbf{0}$, then $\mathbf{p}^{k}=\mathbf{0}$ by the definition of \mathbf{p}^{k}.
- If $\mathbf{p}^{k}=\mathbf{0}$, then for all $i \in\{1, \cdots, n\}, d_{i}^{k} v_{i}^{k} \leq 0$ by the definition of \mathbf{p}^{k}. Thus, we have

$$
\left(\mathbf{v}^{k}\right)^{T} H^{k} \mathbf{v}^{k}=\sum_{i=1}^{n} d_{i}^{k} v_{i}^{k} \leq 0
$$

On the other hand, due to the positive definiteness of H^{k}, we have

$$
\left(\mathbf{v}^{k}\right)^{T} H^{k} \mathbf{v}^{k} \geq 0
$$

Thus, $\left(\mathbf{v}^{k}\right)^{T} H^{k} \mathbf{v}^{k}=0$ and hence $\mathbf{v}^{k}=\mathbf{0}$.
(iii) We finally prove $\mathbf{p}^{k}=\mathbf{0} \Leftrightarrow \mathbf{q}_{\alpha}^{k}=\mathbf{0}$.

- If $\mathbf{p}^{k}=\mathbf{0}$, then $\mathbf{q}_{\alpha}^{k}=\frac{1}{\alpha}\left(\pi\left(\mathbf{x}^{k} ; \boldsymbol{\xi}^{k}\right)-\mathbf{x}^{k}\right)$. We consider the following two cases:
(1) If $x_{i}^{k}=0$, then $\left(q_{\alpha}^{k}\right)_{i}=(0-0) / \alpha=0$.
(2) If $x_{i}^{k} \neq 0$, then $\left(q_{\alpha}^{k}\right)_{i}=\left(x_{i}^{k}-x_{i}^{k}\right) / \alpha=0$.

Combing the above two cases, we obtain that $\mathbf{q}_{\alpha}^{k}=\mathbf{0}$.

- If $\mathbf{q}_{\alpha}^{k}=\mathbf{0}$, then $\pi\left(\mathbf{x}^{k}+\alpha \mathbf{p}^{k} ; \boldsymbol{\xi}^{k}\right)=\mathbf{x}^{k}$. We consider the following two cases:
(1) If $x_{i}^{k}=0$, then $\pi_{i}\left(x_{i}^{k}+\alpha p_{i}^{k} ; \xi_{i}^{k}\right)=0$. Thus, $\left(0+\alpha p_{i}^{k}\right) \xi_{i}^{k}=\alpha p_{i}^{k} \sigma\left(v_{i}^{k}\right) \leq 0$, which together with $p_{i}^{k}=\pi_{i}\left(d_{i}^{k} ; v_{i}^{k}\right)$ implies $p_{i}^{k} \sigma\left(v_{i}^{k}\right)=\left|p_{i}^{k}\right| \leq 0$. Therefore, $p_{i}^{k}=0$.
(2) If $x_{i}^{k} \neq 0$, then $\pi_{i}\left(x_{i}^{k}+\alpha p_{i}^{k} ; \xi_{i}^{k}\right)=x_{i}^{k}$. By the definition of $\pi_{i}(\cdot)$, we have $\pi_{i}\left(x_{i}^{k}+\alpha p_{i}^{k} ; \xi_{i}^{k}\right)=x_{i}^{k}+\alpha p_{i}^{k}$ or 0 . Thus, by recalling that $x_{i}^{k} \neq 0$ and $\pi_{i}\left(x_{i}^{k}+\alpha p_{i}^{k} ; \xi_{i}^{k}\right)=x_{i}^{k}$, we must have $x_{i}^{k}+\alpha p_{i}^{k}=x_{i}$. Therefore, $p_{i}^{k}=0$.

Combing the above two cases, we obtain that $\mathbf{p}^{k}=\mathbf{0}$.

