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A. BFGS and L-BFGS
For self-containedness, we briefly review the update of the inverse Hessian matrix in the BFGS and L-BFGS
(Jorge & Stephen, 1999). Assume that we are given an approximate inverse Hessian matrix Hk at x = xk. BFGS updates
the inverse Hessian matrix Hk+1 at x = xk+1 as:

Hk+1 = (V k)THkV k + ρksk(sk)T , (31)

where V k = I − ρkyk(sk)T , sk = xk+1 − xk, yk = ∇l(xk+1) −∇l(xk), ρk = ((yk)T sk)−1. It is easy to verify that
Hk+1 ≻ 0, if Hk ≻ 0 and ρk > 0 (Jorge & Stephen, 1999).

L-BFGS updates the inverse Hessian matrix by unrolling the update from BFGS back to m steps:

Hk = (V k−1)THk−1V k−1 + ρk−1sk−1(sk−1)T

= (V k−1)T (V k−2)THk−2V k−2V k−1

+ (V k−1)T sk−2ρk−2(sk−2)TV k−1

+ ρk−1sk−1(sk−1)T

=
(
Uk,m

)T
Hk−mUk,m

+ ρk−m
(
Uk,m−1

)T
sk−m(sk−m)TUk,m−1

+ ρk−m+1
(
Uk,m−2

)T
sk−m+1(sk−m+1)TUk,m−2

+ · · ·
+ ρk−2(V k−1)T sk−2(sk−2)TV k−1

+ ρk−1sk−1(sk−1)T , (32)

where Uk,m = V k−mV k−m+1 · · ·V k−1. For the L-BFGS, we need not explicitly store the approximated inverse Hessian
matrix. Instead, we only require matrix-vector multiplications at each iteration, which can be implemented by a two-
loop recursion with a time complexity of O(mn) (Jorge & Stephen, 1999). Thus, we only store 2m vectors of length n:
sk−1, sk−2, · · · , sk−m and yk−1,yk−2, · · · ,yk−m with a storage complexity of O(mn), which is very useful when n is
large. In practice, L-BFGS updates Hk−m as µkI , where µk = (sk)Tyk/∥yk∥2.

B. Properties of L-BFGS
We first show that some key sequences are bounded, which are critical for establishing some important properties of
L-BFGS.

Proposition 6 The sequence {xk} generated by the mOWL-QN algorithm is bounded. Let sk = xk+1 − xk, yk =
∇l(xk+1)−∇l(xk). Then {sk}, {yk} and {vk} are also bounded.

Proof Proposition 5 guarantees that both line search criteria in QN-step (Eq. (7)) and GD-step (Eq. (8)) can be satisfied in
a finite number of trials with some αk > 0. By Eqs. (11), (7), (8), we have

f(xk)− f(xk+1) ≥ γαk(vk)Tdk ≥ 0 (QN-step),

or f(xk)− f(xk+1) ≥ γ

2αk
∥xk+1 − xk∥2 ≥ 0 (GD-step), (33)

which imply that {f(xk)} is decreasing. Hence for all k ≥ 1, f(xk) ≤ f(x0). Assume that {xk} is unbounded. Then
there exists a subsequence {xk}K̃ such that {∥xk∥1}K̃ → ∞. Recall that l(x) is bounded from below (see Section 2).
Thus, we have {f(xk)}K̃ → ∞, which leads to a contradiction with that f(xk) ≤ f(x0), ∀k ≥ 1. Therefore, {xk} is
bounded, which immediately imply that {sk} is also bounded. Recalling that ∇l(x) is L-Lipschitz continuous, we obtain
that ∥yk∥ ≤ L∥xk − xk+1∥ and hence {yk} is bounded. Since −vk ∈ ∂f(xk), then based on the Proposition B.24(b) in
Bertsekas (1999), we obtain that {vk} is bounded.
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Based on Proposition 6, we present the following important properties of L-BFGS.

Proposition 7 In the course of the inversion Hessian matrix update using L-BFGS, let {H0} and {Hk−m} be bounded and
positive definite, and {xk}, {sk}, {vk}, {yk} and {ρk} be bounded, where sk = xk+1−xk, yk = ∇l(xk+1)−∇l(xk) and
ρk = ((yk)T sk)−1. Then there exists a positive constant M such that for all x ∈ Rn and all k ≥ 1: xTHkx ≤ M∥x∥2.
That is, the eigenvalues of Hk are uniformly bounded from above by M . Moreover, {dk} and {pk} are bounded.

Proof When k ≤ m (m is the unrolling steps of L-BFGS), L-BFGS is equivalent to BFGS and Hk is updated by the
recursive relationship in Eq. (31). When k > m, Hk is updated by the recursive relationship in Eq. (32). Thus, Eqs. (31),
(32) and the boundedness of {H0}, {Hk−m}, {sk}, {yk}, {vk} and {ρk} immediately imply that {∥Hk∥F } is bounded.
That is, there exist an M > 0 such that ∥Hk∥F ≤ M for all k ≥ 1. Thus, for all k ≥ 1, λmax(H

k) ≤ ∥Hk∥F ≤ M ,
where λmax(H

k) is the largest eigenvalue of Hk. That is, there exists a positive constant M such that for all x ∈ Rn and
all k ≥ 1: xTHkx ≤ M∥x∥2. Thus, the eigenvalues of Hk are uniformly bounded from above by M . It easily follows
that {dk} and {pk} are bounded by noticing that {vk} is bounded.

Remark 4 We discuss how to guarantee that the conditions in Proposition 7 are satisfied in practical L-BFGS updates.
We usually choose H0 and Hk−m as multiple identity matrices such that {H0} and {Hk−m} are bounded and positive
definite. Proposition 6 guarantees that {xk}, {sk}, {vk} and {yk} are bounded. To guarantee that {ρk} is also bounded,
we adopt a similar strategy presented in Byrd et al. (1995); Andrew & Gao (2007): choose a small positive constant δ and
perform L-BFGS updates only when (sk)Tyk ≥ δ.

Remark 5 To guarantee the eigenvalues of Hk are uniformly bounded from below by a positive constant, we can add a
small positive diagonal matrix νI to Hk (e.g., ν = 10−12). Thus, the eigenvalues of Hk are both uniformly bounded from
below by ν and uniformly bounded from above by M , respectively.

C. Proof of Proposition 5 and Auxiliary Propositions
We present the following proposition which is useful to prove Proposition 5.

Proposition 8 At the point x = xk with the vector vk = − ⋄ f(xk), if pk = π(dk;vk) is a non-zero vector, then
f ′(xk;pk) = −(vk)Tpk < 0, where f ′(xk;pk) denotes the directional derivative of f(x) at x = xk along the direction
pk defined as follows:

f ′(xk;pk) = lim
α↓0

f(xk + αpk)− f(xk)

α
. (34)

Proof According to the property of the directional derivative of a convex function (Bertsekas, 1999), we have

f ′(xk;pk) = max
gk∈∂f(xk)

(gk)Tpk =
n∑

i=1

max
gk
i ∈∂if(xk)

gki p
k
i .

Noticing that ⋄if(xk) = ∇il(x
k) + λσ(xk

i ) is the unique element of ∂if(xk) whenever xk
i ̸= 0, we have

f ′(xk;pk) =
∑
i∈Ak

⋄if(xk)pki +
∑
i∈Ac

k

max
gk
i ∈∂if(xk)

gki p
k
i .

=
∑
i∈Ak

⋄if(xk)pki +
∑
i∈Ac

k

max
gk
i ∈∂if(xk)

gki σ(v
k
i )|pki |,

where Ak = {i : xk
i ̸= 0}, Ac

k = {i : xk
i = 0} and the last equality is due to pki = πi(d

k
i ; v

k
i ). We now focus on xk

i = 0 in
the following three cases:

(1) If vki > 0, then ⋄if(xk) = ∇il(x
k) + λ < 0 and hence ∇il(x

k) − λ ≤ gki ≤ ∇il(x
k) + λ < 0. Thus, we should

choose gki = ⋄if(xk) to make gki σ(v
k
i )|pki | achieve the maximum value.

(2) If vki < 0, then ⋄if(xk) = ∇il(x
k) − λ > 0 and hence 0 < ∇il(x

k) − λ ≤ gki ≤ ∇il(x
k) + λ. Thus, we should

choose gki = ⋄if(xk) to make gki σ(v
k
i )|pki | achieve the maximum value.
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(3) If vki = 0, then gki σ(v
k
i )|pki | = 0 for any gki ∈ ∂if(x

k).

Combining the above three cases, we have:

f ′(xk;pk) =
∑
i∈Ak

⋄if(xk)pki +
∑
i∈Ac

k

⋄if(xk)σ(vki )|pki |

=
∑
i∈Ak

⋄if(xk)pki +
∑
i∈Ac

k

⋄if(xk)pki

= ⋄f(xk)Tpk = −(vk)Tpk < 0,

where the last inequality follows from that pk = π(dk;vk) and the condition pk ̸= 0.

Based on Proposition 8, we prove Proposition 5 as follows:

Proposition 5 (a) For QN-step, let’s define

Bk = {i : xk
i p

k
i < 0} and ᾱk

1 =

{
mini∈Bk

|xk
i |

|pk
i |
, if Bk ̸= ∅,

+∞, otherwise.

Then for all α ∈ (0, ᾱk
1), we have

xk(α) = π(xk + αpk; ξk) = xk + αpk. (35)

Define

s(α) = f(xk + αpk), h(α) =
s(α)− s(0)

α
.

Since f is convex, s(α) is convex. Let 0 < α ≤ α′. Then the convexity of s(α) leads to

s(α) ≤ α

α′ s(α
′) +

α′ − α

α′ s(0).

Thus,

s(α)− s(0)

α
≤ s(α′)− s(0)

α′ ,

which indicates that h(α) is an increasing function in the interval (0,∞). Recalling the definition of the directional
derivative in Eq. (34), γ ∈ (0, 1) and Proposition 8, we have

lim
α↓0

s(α)− s(0)

α
= −(vk)Tpk ≤ −(vk)Tdk < −γ(vk)Tdk,

where the first inequality follows from Eq. (11) and the last inequality follows from γ ∈ (0, 1) and (vk)Tdk > 0 whenever
xk is not a global minimizer of problem (1) [see Eq. (11) and Proposition 9]. Thus, there exists an ᾱk

2 ∈ (0,min(α0, ᾱ
k
1))

such that

s(α)− s(0)

α
≤ −γ(vk)Tdk, ∀0 < α ≤ ᾱk

2 . (36)

Recall that h(α) is continuous and increasing in the interval (0,∞). Thus, considering Eq. (36) and the backtracking form
of the line search in QN-step (Eq. (7)), there exists an α with α ≥ ᾱk = βᾱk

2 > 0 such that

s(α)− s(0)

α
≤ −γ(vk)Tdk. (37)

Substituting the definition of s(α) into Eq. (37) and considering that Eq. (35) holds for all α ∈ (0, ᾱk
1), we obtain that there

exists an α ∈ [ᾱk, α0] such that the line search criterion in Eq. (7) is satisfied.
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(b) For GD-step, we have

∇l(xk)T (xk(α)− xk) +
1

2α
∥xk(α)− xk∥2 + λ∥xk(α)∥1 ≤ λ∥xk∥1. (38)

Noticing that∇l(x) is Lipschitz continuous with constant L, we have

l(xk(α)) ≤ l(xk) +∇l(xk)T (xk(α)− xk) +
L

2
∥xk(α)− xk∥2,

which together with Eq. (38) and f(x) = l(x) + λ∥x∥1 implies that

f(xk(α)) ≤ f(xk)− 1− αL

2α
∥xk(α)− xk∥2.

Thus, the line search in Eq. (8) is satisfied if

γ ≤ 1− αL and 0 < α ≤ α0.

Considering the backtracking form of the line search in GD-step (Eq. (8)), we obtain that the line search criterion in Eq. (8)
is satisfied whenever α ≥ βmin(α0, (1− γ)/L).

D. More Optimality Conditions for Problem (1)
Proposition 9 Let dk = Hkvk, pk = π(dk;vk), qk

α = 1
α (π(x

k + αpk; ξk) − xk). Then for all α ∈ (0,∞), xk is a
global minimizer of problem (1)⇔ dk = 0⇔ vk = 0⇔ pk = 0⇔ qk

α = 0.

Proof Based on Proposition 3 and its proof, we know that xk is a global minimizer of problem (1) if and only if vk = 0.
Thus, we only need to prove the following equivalence to complete the proof of Proposition 9:

dk = 0⇔ vk = 0⇔ pk = 0⇔ qk
α = 0.

(i) We first prove dk = 0⇔ vk = 0.

This equivalence immediately follows from that dk = Hkvk and Hk is positive definite.

(ii) We next prove vk = 0⇔ pk = 0.

• If vk = 0, then pk = 0 by the definition of pk.

• If pk = 0, then for all i ∈ {1, · · · , n}, dki vki ≤ 0 by the definition of pk. Thus, we have

(vk)THkvk =
n∑

i=1

dki v
k
i ≤ 0.

On the other hand, due to the positive definiteness of Hk, we have

(vk)THkvk ≥ 0.

Thus, (vk)THkvk = 0 and hence vk = 0.

(iii) We finally prove pk = 0⇔ qk
α = 0.

• If pk = 0, then qk
α = 1

α (π(x
k; ξk)− xk). We consider the following two cases:

(1) If xk
i = 0, then (qkα)i = (0− 0)/α = 0.

(2) If xk
i ̸= 0, then (qkα)i = (xk

i − xk
i )/α = 0.
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Combing the above two cases, we obtain that qk
α = 0.

• If qk
α = 0, then π(xk + αpk; ξk) = xk. We consider the following two cases:

(1) If xk
i = 0, then πi(x

k
i +αpki ; ξ

k
i ) = 0. Thus, (0+αpki )ξ

k
i = αpki σ(v

k
i ) ≤ 0, which together with pki = πi(d

k
i ; v

k
i )

implies pki σ(v
k
i ) = |pki | ≤ 0. Therefore, pki = 0.

(2) If xk
i ̸= 0, then πi(x

k
i + αpki ; ξ

k
i ) = xk

i . By the definition of πi(·), we have πi(x
k
i + αpki ; ξ

k
i ) = xk

i + αpki or 0.
Thus, by recalling that xk

i ̸= 0 and πi(x
k
i + αpki ; ξ

k
i ) = xk

i , we must have xk
i + αpki = xi. Therefore, pki = 0.

Combing the above two cases, we obtain that pk = 0.




