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1. Proof of Theorem 2 in Section 3.2
Proof. Let us consider the limit when T → ∞. According to (3), based on the second-order statistical information, one
can uniquely determine Ak and A′k, that is,

Ak = A′k. (S1)

We can then determine the error term ~et. Then the corresponding random vector ~e follows both the representation (5) and

~e = L′ẽ′, (S2)

where
L′ = [I A′A′

2 · · ·A′k−1], (S3)

and ẽ′ = (e′
(0)
1 , ..., e′

(0)
n , e′

(1)
1 , ..., e′

(1)
n , ..., e′

(k−1)
1 , ..., e′

(k−1)
n )ᵀ with e′(l)i , l = 0, ..., k − 1, having the same distribution

pe′i .

According to Proposition 1, each column of L′ is a scaled version of a column of L. Denote by Lln+i, l = 0, ..., k − 1;
i = 1, ..., n, the (ln + i)th column of L, and similarly for L′ln+i. According to the Uniqueness Theorem in (Eriksson &
Koivunen, 2004) (which directly follows (ii) of Lemma 1), we know that under condition A2, for each i, there exists one and
only one j such that the distribution of e(l)

i , l = 0, ..., k−1 (which have the same distribution), is the same as the distribution
of e′(l)j , l = 0, ..., k − 1, up to changes of location and scale. As a consequence, the columns {L′ln+j | l = 0, ..., k − 1}
correspond to {Lln+i | l = 0, ..., k − 1} up to the permutation and scaling arbitrariness. We now show that L′ln+j

corresponds to Lln+i and that j = i.

According to assumption A1, all eigenvalues of A have modulus smaller than one, and hence the eigenvalues of AAᵀ are
smaller than 1. Then we know that for any n-dimensional vector v,

||Av|| ≤ ||A|| · ||v|| =
√
||AAᵀ|| · ||v|| < ||v||.

According to the structure of L, L(l+1)n+i = ALln+i. Considering Lln+i as v in the above equation, one can see
||L(l+1)n+i|| < ||Lln+i||, and similarly we have ||L′(l+1)n+j || < ||L′ln+j ||. Hence, L′ln+j is proportional to Lln+i; more
specifically, we have L′ln+j = λliLln+i, where ∀ l, λli have the same absolute value but possibly different signs. In
particular, L′j = λ0iLi. Bearing in mind that Li and L′j must be columns of I, as implied by the structure of L and L′, we
can see that λ0i = 1 and that i = j. Consequently, for l > 0, λli must be 1 or −1. Also considering the structures of L (4)
and L′ (S3), we see that ∀l > 0, A′l = AlDl, where Dl are diagonal matrices with 1 or −1 as their diagonal entries. If
both A′ and A have positive diagonal entries, D must be the identity matrix, i.e., A′ = A. Therefore statement (i) is true.

We have shown that
L′ln+i = λliLln+i, (S4)

where λ0i = 1 and for l > 0, λli are 1 or −1. We are now ready to prove (ii). If each pei is asymmetric, ei and −ei have
different distributions. Consequently, the representation (S2) does not hold any more if one changes the signs of a subset
of, but not all, non-zero elements of {L′ln+j | l = 0, ..., k − 1}. This implies that for non-zero Lln+i, λli, including λ0i,
have the same sign, and they are therefore 1 since λ0i = 1. Setting l = 1 in (S4) gives A′ = A. That is, (ii) is true.

Let us now show that (iii) holds. If k = 1, this statement trivially holds. Now consider the case where k > 1. Because of
(S1), we have

Ak−1A = A′
k−1

A′. (S5)

Since A is of full rank, Ak−1 is also invertible. Recall A′l = AlDl. Denote by dl,i the (i, i)th entry of Dl. Multiplying
both sides of the above equation with A−(k−1) from the left gives A = Dk−1AD1, i.e., ∀ i & j, aij = aijdk−1,id1,j .
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Thus, ∀ i & j with aij 6= 0 we have dk−1,id1,j = 1. Since aii are not zero, we have dk−1,i = d1,i. Consequently,
aij = aijd1,id1,j , and ∀ i & j with aij 6= 0, d1,id1,j = 1, or d1,i = d1,j . Furthermore, since the graph implied by
A is weakly connected, for any two nodes i′ and j′, we know that there is a undirected path connecting them, such that
d1,i′ = d1,j′ . In words, D1 is either I or−I. Finally, if k > 1 is odd, A′k−1

= (AD1)k−1 = Ak−1, and then (S5) implies
that A′ = A. (iii) then holds.

2. Proof of Theorem 3 in Section 3.3
Proof. Suppose the model of Granger causality with instantaneous effects, (2), holds, the VAR error terms of x̃t can be
written as a linear transformation of n independent variables; denote by W this linear transformation.

On the other hand, the error terms ~et admit the representation (5). Since A is not diagonal, L contains at least (n + 1)
columns none of which is proportional to each other. Since all of eit are non-Gaussian, Lemma 1 (i) implies that all
columns in L are proportional to some columns in W. This implies that W has at least (n+ 1) columns none of which is
proportional to each other; however, W has only n columns, resulting in a contradiction. Therefore the model of Granger
causality with instantaneous effects does not hold.

3. Details of the EM Algorithm in Section 4.1
Instead of directly maximizing the data log-likelihood

∑
t ln p(x̃t|x̃t−1,Θ), the EM algorithm maximizes the lower bound

of the data log-likelihood, i.e.,

L(q,Θ) =
∑
t

∑
zt

∫
q(zt, ẽt) ln

p(x̃t, ẽt, zt|x̃t−1,Θ)

q(zt, ẽt)
dẽt, (S6)

with respect to the distribution q(zt, ẽt) and the parameters Θ alternately until convergence.

E step In the E step, given the parameters Θ′ from the previous M step, the lower bound is maximized with
respect to q(zt, ẽt). The maximum lower bound is obtained when q(zt, ẽt|Θ′) equals the posterior distribution
p(zt|x̃t, x̃t−1,Θ

′)p(ẽt|zt, x̃t, x̃t−1,Θ
′). The posterior distribution is obtained as

p(zt|x̃t, x̃t−1,Θ
′) =

p(x̃t|x̃t−1, zt)p(zt)∑
z′t
p(x̃t|x̃t−1, z′t)p(z

′
t)
, (S7)

p(ẽt|zt, x̃t, x̃t−1,Θ
′) =N (ẽt|µ̃zt

+ Σ̃ᵀ
zt
Lᵀ(LΣ̃zt

Lᵀ + Λ)−1

(x̃t −Akx̃t−1 − Lµ̃zt
), Σ̃zt

− Σ̃ᵀ
zt

Lᵀ(LΣ̃ztL
ᵀ + Λ)−1LΣ̃zt), (S8)

where µ̃zt = (µ̃1,zt,1 , ..., µ̃nk,zt,nk
)ᵀ and Σ̃zt = diag(σ̃2

1,zt,1 , ..., σ̃
2
nk,zt,nk

).

M step In the M step, given the posterior distributions (S7) (S8) from the E step, the parameters are updated by maxi-
mizing the lower bound with respect to Θ. The lower bound can be decompsed into four terms each of which only contains
a subset of the parameters, i.e.,

L(q,Θ) = L1(q, w) + L2(q, µ, σ) + L3(q,A) + L4(q). (S9)

The four terms are calculated as

L1 =
∑
t

nk∑
i=1

m∑
zt,i=1

p(zt,i|x̃t, x̃t−1,Θ
′) ln p(zt,i) =

∑
t

nk∑
i=1

p∑
zt,i=1

p(zt,i|x̃t, x̃t−1,Θ
′) ln w̃i,zt,i , (S10)

L2 =
∑
t

nk∑
i=1

m∑
zt,i=1

∫
p(ẽt,i, zt,i|x̃t, x̃t−1,Θ

′) ln p(ẽt,i|zt,i)dẽt,i

= −1

2

∑
t

nk∑
i=1

m∑
zt,i=1

∫
p(ẽt,i, zt,i|x̃t, x̃t−1,Θ

′)

(
(ẽi − µ̃i,zt,i)

2

σ̃2
i,zt,i

+ ln 2π + 2 ln σ̃i,zt,i

)
dẽt,i, (S11)
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L3 =
∑
t

∫
p(ẽt|x̃t, x̃t−1,Θ

′) ln p(x̃t|x̃t−1, ẽt)dẽt,

= −1

2

∑
t

{[
(x̃t −Akx̃t−1)ᵀΛ−1(x̃t −Akx̃t−1)

]
− 2(x̃t −Akx̃t−1)ᵀΛ−1L 〈ẽt〉p(ẽt|x̃t,x̃t−1,Θ′))

+Tr
(
LᵀΛ−1L 〈ẽtẽᵀt 〉p(ẽt|x̃t,x̃t−1,Θ′)

)
+ ln |Λ|+ n ln 2π

}
, (S12)

L4 = −
∑
t

∑
zt

∫
p(zt, ẽt|x̃t, x̃t−1,Θ

′) ln p(zt, ẽt|x̃t, x̃t−1,Θ
′)dẽt, (S13)

where 〈f(e)〉p(e) =
∫
p(e)f(e)de.

Due to the zero mean constraints on the noises, µi,c and wi,c are updated by maximize L1 + L2 with the constraints∑m
c=1 wi,c = 1,

∑m
c=1 wi,cµi,c = 0, i = 1, ..., n. This is a constrained nonlinear programming problem and we solve it

using interior point methods.

After updating µi,c and wi,c, σ can be updated by maximizing L2, which gives

σ2
i,c =

∑
t

∑k
j=1

〈
ẽ2
t,i+n(j−1) − 2µi,cẽt,i+n(j−1)

〉
p(ẽt,i+n(j−1),zt,i+n(j−1)=c|xt,xt−1)∑

t

∑k
j=1 p(zt,i+n(j−1) = c|xt,xt−1)

+ µ2
i,c, (S14)

Since there is no analytic solution to A, we update A using conjugate gradient descent algorithm. The gradient of L3 with
respect to A is given by

∂L(A)

∂Aij
= −1

2

∑
t

{
Tr

[
−2(Λ−1(x̃t −Akx̃t−1)x̃ᵀ

t−1)ᵀ
k−1∑
r=0

ArJijAk−1−r

]

−2

{
Tr

[
−(Λ−1L 〈ẽt〉xᵀ

t )ᵀ
k−1∑
r=0

ArJijAk−1−r

]

+

k−1∑
l=1

Tr

[
(Λ−1(x̃t −Akx̃t−1)

〈
ẽᵀt,l

〉
)ᵀ

l−1∑
r=0

ArJijAl−1−r

]}

+Tr

(
〈ẽtẽᵀt 〉

∂U

∂Aij

)}
, (S15)

where U = LᵀΛ−1L and Jij is a matrix whose ij-th element is 1 and all the other elements are 0. U is composed of k ∗ k
blocks of n ∗ n matrices. Each sub-matrix is Umn = (Am)ᵀΛ−1An,m = 0, ..., k − 1, n = 0, ..., k − 1. The gradient of
each sub-matrix Umn is

∂(Umn)kl
∂Aij

= Tr

[(
mati′ j′

∂((Am)ᵀΛ−1An)kl
∂Am

i′ j′

)ᵀ
∂Am

∂Aij

]

+ Tr

[(
mati′ j′

∂((Am)ᵀΛ−1An)kl
∂An

i′ j′

)ᵀ
∂An

∂Aij

]

= Tr

[(
mati′ j′ (δkj′ (Λ

−1An)i′ l)
)ᵀ m−1∑

r=0

ArJijAm−1−r

]

+ Tr

[(
mati′ j′ (δlj′ ((A

m)ᵀΛ−1)ki′ )
)ᵀ n−1∑

r=0

ArJijAn−1−r

]
, (S16)

where mati′ j′ f(i
′
, j
′
) is a matrix whose i

′
j
′
-th element is f(i

′
, j
′
).
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