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Abstract
Training of large-scale deep neural networks is
often constrained by the available computational
resources. We study the effect of limited preci-
sion data representation and computation on neu-
ral network training. Within the context of low-
precision fixed-point computations, we observe
the rounding scheme to play a crucial role in de-
termining the network’s behavior during train-
ing. Our results show that deep networks can be
trained using only 16-bit wide fixed-point num-
ber representation when using stochastic round-
ing, and incur little to no degradation in the
classification accuracy. We also demonstrate an
energy-efficient hardware accelerator that imple-
ments low-precision fixed-point arithmetic with
stochastic rounding.

1. Introduction
To a large extent, the success of deep learning techniques is
contingent upon the underlying hardware platform’s ability
to perform fast, supervised training of complex networks
using large quantities of labeled data. Such a capability
enables rapid evaluation of different network architectures
and a thorough search over the space of model hyperpa-
rameters. It should therefore come as no surprise that re-
cent years have seen a resurgence of interest in deploy-
ing large-scale computing infrastructure designed specif-
ically for training deep neural networks. Some notable
efforts in this direction include distributed computing in-
frastructure using thousands of CPU cores (Dean et al.,
2012; Chilimbi et al., 2014), or high-end graphics proces-
sors (GPUs) (Ciresan et al., 2010; Krizhevsky et al., 2012),
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or a combination of CPUs and GPUs scaled-up to multiple
nodes (Coates et al., 2013; Wu et al., 2015).

At the same time, the natural error resiliency of neu-
ral network architectures and learning algorithms is well-
documented, setting them apart from more traditional
workloads that typically require precise computations and
number representations with high dynamic range. It is well
appreciated that in the presence of statistical approxima-
tion and estimation errors, high-precision computation in
the context of learning is rather unnecessary (Bottou &
Bousquet, 2007). Moreover, the addition of noise during
training has been shown to improve the neural network’s
performance (Murray & Edwards, 1994; Bishop, 1995; An,
1996; Audhkhasi et al., 2013). With the exception of em-
ploying the asynchronous version of the stochastic gradi-
ent descent algorithm (Recht et al., 2011) to reduce net-
work traffic, the state-of-the-art large-scale deep learning
systems fail to adequately capitalize on the error-resiliency
of their workloads. These systems are built by assembling
general-purpose computing hardware designed to cater to
the needs of more traditional workloads, incurring high and
often unnecessary overhead in the required computational
resources.

This work is built upon the idea that algorithm-level noise
tolerance can be leveraged to simplify underlying hard-
ware requirements, leading to a co-optimized system that
achieves significant improvements in computational perfor-
mance and energy efficiency. Allowing the low-level hard-
ware components to perform approximate, possibly non-
deterministic computations and exposing these hardware-
generated errors up to the algorithm level of the comput-
ing stack forms a key ingredient in developing such sys-
tems. Additionally, the low-level hardware changes need
to be introduced in a manner that preserves the program-
ming model so that the benefits can be readily absorbed at
the application-level without incurring significant software
redevelopment costs.
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As a first step towards achieving this cross-layer co-design,
we explore the use of low-precision fixed-point arithmetic
for deep neural network training with a special focus on
the rounding mode adopted while performing operations on
fixed-point numbers. The motivation to move to fixed-point
arithmetic (from the conventional floating-point computa-
tions) is two-fold. Firstly, fixed-point compute units are
typically faster and consume far less hardware resources
and power than floating-point engines. The smaller logic
footprint of the fixed-point arithmetic circuits would allow
for the instantiation of many more such units for a given
area and power budget. Secondly, low-precision data rep-
resentation reduces the memory footprint, enabling larger
models to fit within the given memory capacity and lower-
ing the bandwidth requirements. Cumulatively, this could
provide dramatically improved data-level parallelism.

The key finding of our exploration is that deep neural net-
works can be trained using low-precision fixed-point arith-
metic, provided that the stochastic rounding scheme is ap-
plied while operating on fixed-point numbers. We test
the validity of the proposed approach by training deep
neural networks for the MNIST (Lecun & Cortes) and
CIFAR10 (Krizhevsky et al., 2012) image classification
tasks. Deep networks trained using 16-bit wide fixed-point
and stochastic rounding achieve nearly the same perfor-
mance as that obtained when trained using 32-bit floating-
point computations. Furthermore, we present a hardware
accelerator design, prototyped on an FPGA, that achieves
high throughput and low power using a large number of
fixed-point arithmetic units, a dataflow architecture, and
compact stochastic rounding modules.

2. Related Work
Determining the precision of the data representation and
the compute units is a critical design choice in the hard-
ware (analog or digital) implementation of artificial neural
networks. Not surprisingly, a rich body of literature exists
that aims to quantify the effect of this choice on the net-
work’s performance. However, a disproportionately large
majority of these studies are focused primarily on imple-
menting just the feed-forward (inference) stage, assuming
that the network is trained offline using high precision com-
putations. Some recent studies that embrace this approach
have relied on the processor’s vector instructions to per-
form multiple 8 bit operations in parallel (Vanhoucke et al.,
2011), or employ reconfigurable hardware (FPGAs) for
high-throughput, energy-efficient inference (Farabet et al.,
2011; Gokhale et al., 2014), or take the route of custom
hardware implementations (Kim et al., 2014; Merolla et al.,
2014).

Previous studies have also investigated neural network
training using different number representations. Iwata et

al. (Iwata et al., 1989) implements the back-propagation al-
gorithm using 24-bit floating-point processing units. Ham-
merstrom (Hammerstrom, 1990) presents a framework for
on-chip learning using 8 to 16 bit fixed-point arithmetic.
In (Holt & Hwang, 1993), the authors perform theoretical
analysis to understand a neural network’s ability to learn
when trained in a limited precision setting. Results from
empirical evaluation of simple networks indicate that in
most cases, 8-16 bits of precision is sufficient for back-
propagation learning. In (Höhfeld & Fahlman, 1992),
probabilistic rounding of weight updates is used to further
reduce (< 8 bits) the precision requirements in gradient-
based learning techniques. While these studies provide
valuable insights into the behavior of the limited precision
training of neural networks, the networks considered are
often limited to variants of the classical multilayer percep-
tron containing a single hidden layer and only a few hid-
den units. Extrapolating these results to the state-of-the-art
deep neural networks that can easily contain millions of
trainable parameters is non-trivial. Consequently, there is a
need to reassess the impact of limited precision computa-
tions within the context of more contemporary deep neural
network architectures, datasets, and training procedures.

A recent work (Chen et al., 2014) presents a hardware ac-
celerator for deep neural network training that employs
fixed-point computation units, but finds it necessary to
use 32-bit fixed-point representation to achieve conver-
gence while training a convolutional neural network on
the MNIST dataset. In contrast, our results show that
it is possible to train these networks using only 16-bit
fixed-point numbers, so long as stochastic rounding is used
during fixed-point computations. To our knowledge, this
work represents the first study of application of stochastic
rounding while training deep neural networks using low-
precision fixed-point arithmetic.

3. Limited Precision Arithmetic
Standard implementations of deep neural network train-
ing via the back-propagation algorithm typically use 32-bit
floating-point (float) representation of real numbers for
data storage and manipulation. Instead, consider the gener-
alized fixed-point number representation: [QI.QF], where
QI and QF correspond to the integer and the fractional part
of the number, respectively. The number of integer bits
(IL) plus the number of fractional bits (FL) yields the to-
tal number of bits used to represent the number. The sum
IL + FL is referred to as the word length WL. In this pa-
per, we use the notation 〈IL, FL〉 to denote a fixed-point
representation in which IL (FL) correspond to the length
of the integer (fractional) part of the number. We also em-
ploy ε to denote the smallest positive number that may be
represented in the given fixed-point format. Therefore, the
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〈IL, FL〉 fixed-point format limits the precision to FL bits,
sets the range to

[
−2IL−1, 2IL−1 − 2−FL

]
, and defines ε to

be equal to 2−FL.

3.1. Rounding Modes

As will be evident in the sections to follow, the round-
ing mode adopted while converting a number (presumably
represented using the float or a higher precision1 fixed-
point format) into a lower precision fixed-point represen-
tation turns out to be a matter of important consideration
while performing computations on fixed-point numbers.
Given a number x and the target fixed-point representation
〈IL, FL〉, we define bxc as the largest integer multiple of
ε (= 2−FL) less than or equal to x and consider the follow-
ing rounding schemes:

• Round-to-nearest

Round(x, 〈IL, FL〉) ={
bxc if bxc ≤ x ≤ bxc+ ε

2

bxc+ ε if bxc+ ε
2 < x ≤ bxc+ ε

• Stochastic rounding: The probability of rounding x to
bxc is proportional to the proximity of x to bxc:

Round (x, 〈IL, FL〉) =

{
bxc w.p. 1− x−bxc

ε

bxc+ ε w.p. x−bxcε

Stochastic rounding is an unbiased rounding scheme and
possesses the desirable property that the expected round-
ing error is zero, i.e. E (Round (x, 〈IL, FL〉)) = x

Irrespective of the rounding mode used, if x lies outside the
range of 〈IL, FL〉, we saturate the result to either the lower
or the upper limit of 〈IL, FL〉:

Convert (x, 〈IL, FL〉) =
−2IL−1 if x ≤ −2IL−1

2IL−1 − 2−FL if x ≥ 2IL−1 − 2−FL

Round(x, 〈IL, FL〉) otherwise

(1)

3.2. Multiply and accumulate (MACC) operation

Consider two d-dimensional vectors a and b such that
each component is represented in the fixed-point format
〈IL, FL〉, and define c0 = a.b as the inner product of a
and b. c0 is also represented in some fixed-point format
〈 ~IL, ~IF〉. We split the computation of c0 into the following
two steps:

1We call 〈IL1, FL1〉 to be a higher precision representation
than 〈IL2, FL2〉 iff FL1 > FL2

1. Compute z =
∑d
i=1 aibi

The product of ai and bi produces a fixed-point num-
ber in the 〈2 ∗ IL, 2 ∗ FL〉 format. z can be thought of
as a temporary fixed-point register with enough width
(number of bits) to prevent saturation/overflow and avoid
any loss of precision while accumulating the sum over
all products aibi. The requirement on the width of z is
log2d + 2WL in the worst case. Note that the worst case
is extremely rare and occurs when all ai and bi are satu-
rated to either the lower or the upper limit of 〈IL, FL〉.

2. Convert: c0 = Convert(z, 〈 ~IL, ~IF〉)
This step invokes the Convert() function defined pre-
viously in eq. 1, resulting in either clipping the value in
z to the limits set by 〈 ~IL, ~IF〉 or rounding to ~FL bits of
fractional precision using the specified rounding mode.

Adopting this two-step approach has several advantages.
Firstly, it closely mimics the behavior of the hardware im-
plementation of vector inner product using the the hard-
ware DSP2 units in FPGAs. These DSP units accept 18-bit
inputs and accumulate the results of the MACC operation in
a 48-bit wide register. Secondly, by invoking the rounding
mode only after the accumulation of all the sums, we sig-
nificantly reduce the hardware overhead in implementing
the stochastic rounding scheme. Lastly, the adoption of this
approach allows us to efficiently simulate fixed-point com-
putations using CPUs/GPUs and vendor-supplied BLAS3

libraries. For instance, matrix multiplication of two fixed-
point matricesA andB can be simulated by first converting
them into float matrices, calling the hardware-optimized
SGEMM routine and applying the Convert() function to
each element of the resulting float matrix.

4. Training Deep Networks
In this section, we present the results of our investigation
into the effect of employing limited precision data rep-
resentation during the training of deep neural networks.
We consider both fully connected deep neural networks
(DNN) as well as convolutional neural networks (CNN)
and present results for the MNIST and the CIFAR10
datasets. As a baseline for comparison, we first evalu-
ate the network performance (in terms of the rate of re-
duction of both the training error and the error on the test
set) using the conventional 32-bit floating-point arithmetic.
Subsequently, we constrain the neural network parameters
(weights W l, biases Bl), as well as the other intermedi-
ate variables generated during the back-propagation algo-
rithm (layer outputs Y l, back-propagated error δl, weight

2Digital Signal Processing units are hardware units in the
FPGA fabric that can implement several mathematical and log-
ical operations including fixed-point multiplication and addition.

3Basic Linear Algebra Subprograms
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Figure 1. MNIST dataset using fully connected DNNs: Training error (a, c) and the test error (b, d) for training using fixed-point number
representation and rounding mode set to either “Round to nearest” (top) or “Stochastic rounding” (bottom). The word length for fixed-
point numbers WL is kept fixed at 16 bits and results are shown for three different fractional (integer) lengths: 8(8), 10(6), and 14(2) bits.
Results using float are also shown for comparison.

updates ∆W l, bias updates ∆Bl) to be represented in the
fixed-point format and train the network again starting from
random initialization of the parameters. While training us-
ing fixed-point, the different model hyperparameters such
as weight initialization, regularization parameters, learning
rates etc. are kept unchanged from the ones used during the
baseline evaluation. The word length WL for the fixed-point
format is set to 16 bits i.e. the number of bits allocated to
represent the integer and the fractional parts add up to 16.

This fairly restrictive choice of number representation has
some important implications. From the perspective of neu-
ral network training, an aggressive reduction of the preci-
sion with which the parameter updates are computed and
stored may result in the loss of the gradient information if
the updates are significantly smaller than the ε for the given
fixed-point format. As a consequence, this may impede the
progress of the gradient descent algorithm, or worse, in-
troduce instabilities during the training procedure. Note
that in the round-to-nearest scheme, any parameter update
in the range

(
− ε

2 ,
ε
2

)
is always rounded to zero, as op-

posed to the stochastic rounding scheme which maintains
a non-zero probability of small parameter updates to round
to ±ε. Secondly, since the fixed-point format offers only
a limited range, outputs of the ReLU activation function
may get clipped to the upper limit set by 〈IL, FL〉. From
a hardware perspective, the use of 16-bits for data stor-
age (instead of float) corresponds to a factor 2 reduction

in the amount of memory and communication bandwidth
needed for training a given network. Moreover, the use of
the same word length for all network variables carries with
it the added advantage of simplifying the hardware imple-
mentation.

4.1. MNIST

4.1.1. FULLY CONNECTED DNN

In the first set of experiments, we construct a fully con-
nected neural network with 2 hidden layers, each contain-
ing 1000 units with ReLU activation function and train
this network to recognize the handwritten digits from the
MNIST dataset. This dataset comprises of 60, 000 training
images and 10, 000 test images – each image is 28× 28
pixels containing a digit from 0 to 9. The pixel values
are normalized to lie in the [0, 1] range. No other form
of data pre-processing or augmentation is performed. The
weights in each layer are initialized by sampling random
values from N (0, 0.01) while the bias vectors are initial-
ized to 0. The network is trained using minibatch stochas-
tic gradient descent (SGD) with a minibatch size of 100 to
minimize the cross entropy objective function. The float
baseline achieves a test error of 1.4%.

Next, we retrain the network using fixed-point computa-
tions and set WL to 16 bits. Figure 1 shows the results for
the two rounding modes: Round-to-nearest and Stochas-
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Figure 2. MNIST dataset using CNNs: Training error (a) and the test error (b) for training using fixed-point number representation and
rounding mode set to either “Round to nearest” or “Stochastic rounding”. The word length for fixed-point numbers WL is kept fixed at 16
bits and results are shown for different fractional (integer) lengths for weights and weight updates: 12(4), and 14(2) bits. Layer outputs
use 〈6, 10〉 format in all cases. Results using float are also shown for comparison.

tic rounding. In both cases, allocating 14 bits to the frac-
tional part4 produces no noticeable degradation in either
the convergence rate or the classification accuracy. A re-
duction in the precision below 14 bits begins to negatively
impact the network’s ability to learn when the round-to-
nearest scheme is adopted. This is primarily because at
reduced fractional precision, most of the parameter updates
are rounded down to zero. In contrast, the stochastic round-
ing preserves the gradient information, atleast statistically,
and the network is able to learn with as few as 8 bits of pre-
cision without any significant loss in performance. Note,
however, at a precision lower than 8 bits, even the stochas-
tic rounding scheme is unable to fully prevent the loss of
gradient information.

4.1.2. CNN

Using the MNIST dataset, we also evaluate a CNN with
an architecture similar to LeNet-5 (LeCun et al., 1998). It
comprises of 2 convolutional layers with 5 × 5 filters and
ReLU activation function. The first layer has 8 feature
maps while the second convolutional layer produces 16 fea-
ture maps. Each convolutional layer is followed by a pool-
ing/subsampling layer. The pooling layers implement the
max pooling function over non-overlapping pooling win-
dows of size 2× 2. The output of the second pooling layer
feeds into a fully connected layer consisting of 128 ReLU
neurons, which is then connected into a 10-way softmax
output layer.

For training this network, we adopt an exponentially de-
creasing learning rate – scaling it by a factor of 0.95 af-
ter every epoch of training. The learning rate for the first
epoch is set to 0.1. Momentum (p = 0.9) is used to speed

4Using up 14 bits for the fractional part leaves only 2 bits (in-
cluding the sign bit) for representing the integer portion of the
number. This does not seem to adversely affect the network per-
formance.

up SGD convergence. The weight decay parameter is set
to 0.0005 for all layers. When trained using float, the
network achieves a test error of 0.77%. As was done previ-
ously for DNNs, we retrain the network using fixed-point
computations with WL set to 16 bits. However, in this case,
saturating the output of the convolutional layers to a low
integer value created some difficulty in jump-starting the
training procedure. As a result, we increase the number of
bits allocated for the integer part at the expense of reducing
the precision and choose the 〈6, 10〉 format for representing
the layer outputs. Figure 2 compiles the results obtained us-
ing the two different rounding modes. Unlike in the case of
DNNs, when the round-to-nearest scheme is adopted dur-
ing fixed-point computations, the training procedure fails
to converge. When stochastic rounding is used, we achieve
a test error of 0.83% and 0.90% for 14-bit and 12-bit pre-
cision, respectively – corresponding to only a slight degra-
dation from the float baseline.

4.2. CIFAR10

To further test the validity of the stochastic rounding ap-
proach, we consider another commonly used image classi-
fication benchmark: CIFAR10. The training set consists of
50, 000 RGB images of size 32 × 32 pixels. The images
are divided into 10 classes, each containing 5, 000 images.
The test set has 10, 000 images. We scale the image RGB
values to [0,1] range and do not perform any other form of
data pre-processing or augmentation. For this dataset, we
construct a CNN with 3 convolutional layers each followed
by a subsampling/pooling layer. The convolutional layers
consist of 64 5×5 filters and the subsampling layers imple-
ment the max pooling function over a window of size 3×3
using a stride of 2. The 3rd pooling layer connects to a 10-
way softmax output layer. This architecture is similar to the
one introduced in (Hinton et al., 2012) with the exception
that it does not implement local response normalization or
dropout layers.
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Figure 3. CIFAR10 dataset using CNNs: Training error (a) and the test error (b) for training using fixed-point number representation and
rounding mode set to either “Round to nearest” or “Stochastic rounding”. The word length for fixed-point numbers WL is kept fixed at
16 bits and results are shown for different fractional (integer) lengths for weights and weight updates: 12(4), and 14(2) bits. The black
arrows indicate the epoch after which the training is carried out using WL = 20 bits. Results using float are also shown for comparison.

The network training starts off with a learning rate of 0.01
and reduced by a factor of 2 after 50, 75, and 100 epochs.
Using 32-bit floating point numbers for training, this net-
work configuration misclassifies approximately 24.6% of
the images in the test set. This serves as the baseline for
comparing the results obtained while training the network
using fixed-point computations. Similar to earlier experi-
ments, we set the WL for fixed-point number to 16 and test
the different rounding modes and fractional precision. The
layer outputs are represented in the 〈4, 12〉 format. As ob-
served previously and as shown in Figure 3, training us-
ing fixed-point with round-to-nearest scheme begins to col-
lapse after only a few epochs. On the contrary, the stochas-
tic rounding scheme appears to bestow upon the training
procedure a significantly higher degree of stability. For
14 bits of fractional precision and the stochastic rounding
scheme, the network’s behavior is quite similar to that ob-
served during the baseline evaluation and achieves a test
error of 25.4%.

If the precision is reduced further (to 12 bits) the conver-
gence rate degrades as the learning proceeds and after a
point, SGD stops making progress. This is expected since
at reduced precision, the parameter updates tend to become
sparser (despite stochastic rounding) due to the perilous
combination of smaller gradients and diminished learning
rates. The network’s performance suffers as a result and
the minimum achievable test error saturates at 28.8%. For-
tunately, this damage is reversible as shown in Figure 3.
After training for 100 epochs using the 〈4, 12〉 format, we
relax the constraint on WL slightly and increase WL by 4 bits
to 20 bits. This increases the fractional precision to 16 bits
(〈4, 16〉 format) and subsequent training results in a rapid
improvement in the network’s performance. After an addi-
tional 15-20 epochs of training using the higher precision
representation, the test error approaches that obtained using
float.

This result reveals a promising (and possibly more robust)
strategy for deep neural network training in which the net-
work is first trained using low-precision fixed-point arith-
metic and stochastic rounding. At the point where learning
shows stagnation, the network can be “fine-tuned” using
only a few epochs of higher-precision fixed-point computa-
tions. Such a concept of employing mixed-precision com-
putations has been explored previously in the context of
floating point arithmetic (Baboulin et al., 2009), motivated
largely by the fact that most modern processors achieve a
factor 2 to 4 higher computational throughput for single-
precision (32-bit) floating-point as compared with double-
precision (64-bit) floating-point. Similar concepts, in con-
junction with stochastic rounding, can be extended to per-
form mixed-precision fixed-point arithmetic.5

5. Hardware Prototyping
The execution time of the mini-batch stochastic gradient
descent algorithm is dominated by a series of GEMM op-
erations in the feed-forward, error back-propagation and
weight update calculation steps6. As a result, an improve-
ment in the computational throughput of the GEMM oper-
ation translates into an improvement in the training time.
GPUs offering a large number of parallel vector proces-
sors and high memory bandwidth have therefore been very
effective in accelerating these workloads. However, cur-
rently available GPUs are heavily optimized for improving
floating-point performance.

5While preparing this paper, we became aware of a very re-
cent work (Courbariaux et al., 2014) that shares our motivations
but adopts an orthogonal approach. The authors propose the use
of dynamic fixed-point (a hybrid of the fixed-point and the con-
ventional floating-point arithmetic) for training deep neural net-
works. However, hardware implications of this approach are not
immediately obvious.

6Convolution may also be rewritten as a GEMM operation
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Figure 4. Block diagram of the FPGA-based fixed-point matrix
multiplier depicting the systolic array of multipliers (compute
unit), on-chip block RAM-based L2 cache (storage unit), and var-
ious controllers that orchestrate the movement of data within the
FPGA and communication with the off-chip memory

In this section we describe a FPGA7-based hardware ac-
celerator for fixed-point matrix multiplication. Our choice
of using FPGAs as the hardware substrate is motivated by
two factors. Firstly, FPGAs enable fast hardware develop-
ment times and significantly lower costs when compared to
ASICs8. Secondly, modern FPGAs have a large number of
hard-wired fixed-point DSP units that are well-suited for
implementing the fixed-point arithmetic described in the
earlier sections, and can potentially yield gains in perfor-
mance and energy efficiency.

Our prototype is implemented on an off-the-shelf FPGA
card featuring a Xilinx Kintex325T FPGA and 8 GB DDR3
memory, and communicating with the host PC over a PCIe
bus. This FPGA has 840 DSP multiply-accumulate units
and almost 2 MB of on-chip block RAM. The peak data
bandwidth between the off-chip DDR3 memory and the
FPGA is 6.4 GB/s. This memory bandwidth must be care-
fully managed to prevent the compute engine from stalling.
The typical dimensions of the input matrices preclude stor-
ing entire matrices in on-chip RAM. Thus, these matrices
are stored in the DDR3 memory and parts of the matri-
ces are brought into the FPGA for performing the com-
putations. The off-chip communication bandwidth limi-
tation necessitates that we reuse the on-chip data to the
highest extent possible to make the achievable throughput,
measured in giga-operations/second (G-ops/s), compute-
bound.

5.1. System Description

Figure 4 presents a block diagram of the our fixed-point
matrix multiplier. The DSP units within the FPGA are or-
ganized as a massively parallel 2-dimensional systolic ar-
ray (SA) (Kung, 1982) of size n such that n2 < 840.
This forms the core of the multiplier and will be described
in greater detail in the next subsection. Most of the block

7Field-Programmable Gate Array
8Application Specific Integrated Circuits

RAM on the FPGA is designated as the L2 cache where
a fraction of the input matrices are stored. The READ
logic sends data requests to the DDR3 memory and orga-
nizes the incoming data into the L2 cache. The WRITE
logic sends back computed results to the external memory.
The L2-to-SA circuit moves relevant rows and columns
from the L2 cache to the array. The TOP controller coordi-
nates the entire process. The FPGA also contains Xilinx-
supplied IP blocks that interface to the DDR3 memory.

The operation sequence of the multiplier is as follows. As-
sume the first input matrix A has dimensions l × k and the
second input matrix B has dimensions k ×m. Initially n
columns of matrix B and pn rows of matrix A, where p is
the largest integer we can choose based on on-chip memory
capacity constraints, are brought into the FPGA to compute
pn2 elements of the result matrix. The next n columns of
matrix B are then brought in and processed. This contin-
ues until all m columns of matrix B have been multiplied
with the first pn rows of matrix A. This entire sequence is
repeated l/pn times to process all rows of matrix A. Dou-
ble buffering is employed to hide the latency of bringing in
new subsets of the matrices in to the chip. This sequence of
operation ensures that elements of matrix A are reused m
times once brought into the FPGA while those of matrix B
are reused pn times. This reuse allows efficient use of the
bandwidth between the FPGA and the DDR3 memory.

5.2. Systolic Array Architecture

Figure 5 shows the logical organization of the systolic ar-
ray. Each node of the systolic array (DSP MACC) has a
DSP unit that implements two operations (multiply and ac-
cumulate) in every clock cycle. Elements of input matrices
A andB brought in from L2-cache are staged in local block
RAM units configured as FIFO (First In First Out) queues.
Each FIFO contains elements from either a row of A or a
column of B. In each clock cycle, one element is read out
from the FIFO. Elements from earlier cycles are cascaded
right (for A) or down (for B) and the corresponding partial
products are accumulated at the DSP units. After accumu-
lation of all partial products, output data is cascaded out to
stochastic rounding units (DSP ROUND) that are also im-
plemented with DSP units. Rounded results are stored in
output FIFOs (one per column) before final readout to ex-
ternal memory. Throughput of the array depends on the
number of DSPs available and the maximum operating fre-
quency at which the system can be operated without tim-
ing errors. This is an example of a wavefront-type systolic
array where all connections are local, i.e. only between
neighboring DSPs and edge FIFOs, which limits intercon-
nect delays and improves maximum operating frequency.
Output paths from local registers to the edge of the array
are also cascaded.
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Figure 5. Schematic of the systolic core for matrix multiplication.
Rows of matrix A and columns of matrix B are initially stored in
Input FIFOs. During the operation of the systolic core, inputs are
cascaded (as shown by the blue arrows) through the Multiply-and-
Accumulate (DSP MACC) units. Each DSP MACC unit produces
one element of the result matrix. The accumulated results are then
cascaded out through a chain of local storage registers to stochas-
tic rounding units (DSP ROUND) and stored in the Output FI-
FOs before readout to eternal memory. The use of one stochastic
rounding block per column of the 2-D array of multipliers keeps
hardware overhead of stochastic rounding small.

Word length of the result elements after MACC operations
are much larger (typically 48 bits if using 7-series DSPs)
than word length of the inputs (typically 18 bits or less).
Before transferring to output FIFOs, result elements must
be trimmed through the stochastic rounding of least sign-
ficant bits (LSB) and truncation of excess MSB bits (af-
ter detection of overflow/underflow). Both operations can
be efficiently achieved using a single DSP unit per output.
At each column, linear feedback shift register (LFSR) is
used to generate a random number whose width is equal to
the number of LSB bits being rounded off. The DSP unit
adds the random number to the incoming result and drops
rounded off LSB bits. Pattern-detect capabilities built into
the DSP are used to determine if excess MSB bits are iden-
tical (all “0s” or all “1s”). If not, an overflow/underflow
condition is detected, and result values are saturated to the
max/min 2’s complement values9. The result is then trans-
ferred to output column FIFOs awaiting writeback to exter-

9A more direct stochastic rounding approach is multi-bit mag-
nitude comparison of result LSB vs. a random number, followed
by a conditional addition and examining excess MSBs. The ap-
proach in this section achieves the same result but removes the
first full multi-bit comparison, enabling compact implementation
on a single DSP unit.

nal memory. The overhead of stochastic rounding is thus
the logic occupied by DSP ROUND units, which in our case
is 28 DSP units – corresponding to less than 4% overhead
in hardware resources.

5.3. Results

For a 28 × 28 systolic array implemented on the
KintexK325T FPGA, Xilinx’s Vivado synthesis and place-
and-route tool estimated a maximum circuit operation fre-
quency of 166 MHz and a power consumption of 7 W. This
translates to a throughput of 260 G-ops/s at a power ef-
ficiency of 37 G-ops/s/W. This compares very favorably
against the Intel i7-3720QM CPU, the NVIDIA GT650m
and the GTX780 GPUs, all of which achieve power effi-
ciency in the range of 1-5 G-ops/s/W (Gokhale et al., 2014).
Table 1 presents a summary of the utilization of various
resources in the FPGA. Throughput numbers can benefit
from migration to newer Xilinx FPGAs, such as the Ultra-
scale series, that have much higher number of DSP units
and can potentially operate at higher frequencies.

Table 1. FPGA resource utilization.

RESOURCE USAGE
AVAILABLE ON
XCVK325T

UTILIZATION
RATIO

LUTS 62922 203800 31%
FLIP-FLOPS 146510 407600 36%
DSP 812 840 97%
BLOCK RAM 334 445 75%

6. Conclusion
In this paper, we embrace a top-down approach exploit-
ing the noise-tolerance of deep neural networks and their
training algorithms to influence the design of low-level
compute units. Specifically, the substitution of floating-
point units with fixed-point arithmetic circuits comes with
significant gains in the energy efficiency and computa-
tional throughput, while potentially risking the neural net-
work’s performance. For low-precision fixed-point compu-
tations, where conventional rounding schemes fail, adopt-
ing stochastic rounding during deep neural network train-
ing delivers results nearly identical as 32-bit floating-
point computations. Additionally, we implement a high-
throughput, energy-efficient architecture for matrix multi-
plication that incorporates stochastic rounding with very
little overhead. Extrapolating, we envision the emergence
of hardware-software co-designed systems for large-scale
machine learning based on relaxed, inexact models of com-
puting running on non-deterministic components all across
the stack, right down to low-level hardware circuitry.
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