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Abstract
Off-policy learning in dynamic decision prob-
lems is essential for providing strong evidence
that a new policy is better than the one in use.
But how can we prove superiority without test-
ing the new policy? To answer this question,
we introduce the G-SCOPE algorithm that evalu-
ates a new policy based on data generated by the
existing policy. Our algorithm is both computa-
tionally and sample efficient because it greedily
learns to exploit factored structure in the dynam-
ics of the environment. We present a finite sam-
ple analysis of our approach and show through
experiments that the algorithm scales well on
high-dimensional problems with few samples.

1. Introduction
Reinforcement Learning (RL) algorithms learn to maxi-
mize rewards by analyzing past experience with an un-
known environment. Most RL algorithms assume that they
can choose which actions to explore to learn quickly. How-
ever, this assumption leaves RL algorithms incompatible
with many real-world business applications.

To understand why, consider the problem of on-line ad-
vertising: Each customer is successively presented with
one of several advertisements. The advertiser’s goal is to
maximize the probability that a user will click on an ad.
This probability is called the Click Through Rate (CTR,
Richardson et al. 2007). A marketing strategy, called a pol-
icy, chooses which ads to display to each customer. How-
ever, testing new policies could lose money for the com-
pany. Therefore, management would not allow a new pol-
icy to be tested unless there is strong evidence that the pol-
icy is not worse than the company’s existing policy. In
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other words, we would like to estimate the CTR of other
strategies using only data obtained from the company’s ex-
isting policy. In general, the problem of determining a pol-
icy’s value from data generated by another policy is called
off-policy evaluation, where the policy that generates the
data is called the behavior policy, and the policy we are
trying to evaluate is called the target policy. This problem
may be the primary reason batch RL algorithms are hardly
used in applications, despite the maturity of the field.

A simple approach to off-policy evaluation is given by the
MFMC algorithm Fonteneau et al. (2010), which constructs
complete trajectories for the target policy by concatenating
partial trajectories generated by the behavior policy. How-
ever, this approach may require a large number of sam-
ples to construct complete trajectories. One may think that
the number of samples is of little importance, since Inter-
net technology companies have access to billions of trans-
actions. Unfortunately, the dimensionality of real-world
problems is generally large (up to millions of dimensions)
and the events they want to predict can have extremely
small probability of occurring. Thus, sample efficient off-
policy evaluation is paramount.

An alternative way of looking at the problem is through
counterfactual (CF) analysis Bottou et al. (2013). Given the
outcome of an experiment, CF analysis is a framework for
reasoning about what would have happened if some aspect
of the experiment was different. In this paper, we focus on
the question: what would have been the expected reward
received for executing the target policy rather than the be-
havior policy? One approach that falls naturally into the
CF framework is Importance Sampling (IS) Bottou et al.
(2013); Li et al. (2014). IS methods evaluate the target pol-
icy by weighting rewards received by the behavior policy.
The weights are determined by the probability that the tar-
get policy would perform the same action as the one pre-
scribed by the behavior policy. Unfortunately, IS methods
suffer from high variance and typically assume that the be-
havior policy visits every state that the target policy visits
with nonzero probability.
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Even if this assumption holds, IS methods are not able to
exploit structure in the environment because their estima-
tors do not create a compact model of the environment. Ex-
ploiting this structure could drastically improve the qual-
ity of off-policy evaluation with small sample sizes (rel-
ative to the dimension of the state-space). Indeed, there
is broad empirical support that model-based methods are
more sample efficient than model-free methods Hester &
Stone (2009); Jong & Stone (2007). However, one broad
class of compact models are Factored-state Markov De-
cision Processes (FMDPs, Kearns & Koller 1999; Strehl
et al. 2007; Chakraborty & Stone 2011). An FMDP model
can often be learned with a number of samples logarith-
mic in the total number of states, if the structure is known.
Unfortunately, inferring the structure of an FMDP is gen-
erally computationally intractable for FMDPs with high-
dimensional state-spaces Chakraborty & Stone (2011), and
in real-world problems the structure is rarely known in ad-
vance.

Ideally, we would like to apply model-based methods to
off-policy evaluation because they are generally more sam-
ple efficient than model-free methods such as MFMC and
IS. In addition, we want to use algorithms that are compu-
tationally tractable. To this end, we introduce G-SCOPE,
which learns the structure of an FMDP greedily. G-SCOPE
is both sample efficient and computationally scalable. Al-
though G-SCOPE does not always learn the true struc-
ture, we provide theoretical analysis relating the num-
ber of samples to the error in evaluating the target pol-
icy. Furthermore, our experimental analysis demonstrates
that G-SCOPE is significantly more sample efficient than
model-free methods.

The main contributions of this paper are:

• a novel, scalable method for off-policy evaluation that
exploits unknown structure,

• a finite sample analysis of this method, and

• a demonstration through experiments that this ap-
proach is sample efficient.

2. Background
We consider dynamics that can be represented by a Markov
Decision Process (MDPs; Puterman 2009):

Definition 1. A Markov Decision Process (MDP) is a tuple
(S,A, P (s′|s, a), R(s, a), ρ) where S is the state space, A
is the action space, P represents the transition probabili-
ties from every state-action pair to another state, R repre-
sents the reward function fitting each state-action pair with
a random real number, and ρ is a distribution over the ini-
tial state of the process.

We denote by π a Markov policy that maps states to a
distribution over actions. The process horizon is T , and
applying a policy for T steps starting from s0 ∼ ρ re-
sults in a cumulative reward known as the value function:
V π(s0) = E

[∑T−1
t=0 R(st, at)|s0, π

]
, where the expecta-

tion is taken with respect to P,R and π. We assume R is
known and immediate rewards are bounded in [0, 1].

The system dynamics is as follows: First, an initial state
s0 is sampled from ρ. Then, for each time step t =
0, . . . , T − 1, an action at is sampled according to the pol-
icy π(st), a reward rt is awarded according toR(st, at) and
the next state st+1 is sampled by Pr(·|st, at). The quantity
of interest is the expected policy value νπ = ρ>V π .

2.1. Off-Policy Evaluation

We consider the finite horizon batch setup. Given are H
trajectories of length T sampled from an MDP with an ini-
tial state distribution ρ and behavior policy πb. The off-
policy evaluation problem is to estimate the T -step value
of a target policy π (different from πb). For the target pol-
icy π, we aim to minimize the difference between the true
and estimated policy value:

|νπ − ν̂π|. (1)

2.2. Factored MDPs

Suppose the state space can be decomposed intoD discrete
values. We denote the ith variable of X by X(i), and for a
given subset of indices Ψ ⊆ [D] , {1, 2, .., D}, let X(Ψ)
be the subset of corresponding variables {X(i)}i∈Ψ. We
define a factored MDP, similar to Guestrin et al. 2003:

Definition 2. A Factored MDP (FMDP) is an MDP
(S,A, P,R, ρ) such that the state X ∈ S is composed of
a set of D variables {X(i)}Di=1, where each variable can
take values from a finite domain, such that the probability
of the next state Y given that action a is performed in state
X satisfies

Pr(Y |X, a) =

D∏
i=1

Pr(Y (i)|X, a) . (2)

For simplicity, we assume that all variables lie in the same
domain Γ, i.e., X ∈ ΓD, where Γ is a finite set. Further-
more, each variable in the next state Y (i) only depends on
a subset of variables X(Φi) where Φi ⊆ [D]. The indices
in Φi are called the parents of i. When the size of the parent
sets are smaller than D, then the FMDP can be represented
more compactly:

Pr(Y |X, a) =

D∏
i=1

Pr(Y (i)|X(Φi), a) . (3)
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For a subset of indices Ψ ⊆ [D], a realization-action pair
(v, a) ∈ Γ|Ψ| × A is a specific instantiation of values
for the corresponding variables X(Ψ), a. We denote by
Fi = Γ|Φi| × A the set of all realization-action pairs for
the parents of node i, and mark Λ =

⋃D
i=1 Fi. Finally, de-

note by Ψ ⊆ [D] a subset of indices and by v ∈ Γ|Ψ| a
realization of the corresponding variables:

Pr(Y (i)|X(Ψ) = v, a) ,∑T
t=1 Pr(Y (i), X(Ψ) = v, a, t)∑T

t=1 Pr(X(Ψ) = v, a, t)

P̂r(Y (i) = y|X(Ψ) = v, a) ,
n(y, v, a)

n(v, a)
, (4)

where the probabilities in the right term of the first equa-
tion are conditioned on the behavior policy πb omitted for
brevity. Note that if Ψ ⊇ Φi then Pr(Y (i)|X(Ψ) =
v, a) = Pr(Y (i)|X(Φi) = v(Φi), a), and the policy de-
pendency cancels out.

2.3. Previous Work

Previous works on FMDPs focus on finding the optimal
policy. Early works assumed the dependency structure is
known Guestrin et al. (2002); Kearns & Koller (1999). De-
gris et al. (2006) proposed a general framework for iter-
atively learning the dependency structure (this work falls
within this framework), yet no theoretical results were pre-
sented for their approach. SLF-Rmax Strehl et al. (2007),
Met-Rmax Diuk et al. (2009) and LSE-Rmax Chakraborty
& Stone (2011) are algorithms for learning the complete
structure. Only the first two require as input the in-degree
of the DBN structure. The sample complexity of these al-
gorithms is exponential in the number of parents. Finally,
learning the structure of DBNs with no related reward is in
itself an active research topic Friedman et al. (1998); Tra-
belsi et al. (2013).

There has also been increasing interest in the RL commu-
nity regarding the topic of off-policy evaluation. Works fo-
cusing on model-based approaches mainly provide bounds
on the value function estimation error. For example, the
simulation lemma Kearns & Singh (2002) can be used to
provide sample complexity bounds on such errors. On the
other hand, model free approaches suggest estimators while
trying to reduce the bias. Precup (2000) presents several
methods based on applying importance sampling on eligi-
bility traces, along with an empirical comparison; Thomas
et al. (2015) had analyzed bounds on the estimation error
for this method. A different approach was suggested by
Fonteneau et al. (2010): evaluate the policy by generat-
ing artificial trajectories - a concatenation of one-step tran-
sitions from observed trajectories. The main problem of
these approaches besides the computational cost is that a

substantial amount of data required to generate reasonable
artificial trajectories.

3. Algorithm
In general, inferring the structure of an FMDP is exponen-
tial in D Strehl et al. (2007). Instead, we propose a naive
greedy algorithm which under some assumptions can be
shown to provide small estimation error on the transition
function (G-SCOPE - Algorithm 1).

Algorithm 1 G-SCOPE(H T -length traj., ε, δ, C2 = 0)
for i = 1 to D do

Φ̂i ⇐ ∅
repeat

Θi ⇐ {(v, v(j), a) ∈ Γ|Φ̂i|+1 ×A : j ∈ [D]\
Φ̂i, |n(v, v(j), a)| > N(ε, δ)}

For N(ε, δ) = 2Γ2

ε2 ln
(

2Γ
δ1

)
if |Θ| = 0 then

Break
end if
for j = 1 to D do

diffj ⇐ max(v,v(j),a)∈Θ

‖P̂r(Y (i)|X(Φ̂i ∪ j) = (v, v(j)), a)

−P̂r(Y (i)|X(Φ̂i) = v, a)‖1
end for
j∗ ⇐ arg maxj∈[D]diffj
if diffj∗ > C2 + 2ε then

Φ̂i ⇐ Φ̂i ∪ j∗
end if

until diffj∗ ≤ C2 + 2ε
end for
return {Φ̂i}Di=1

G-SCOPE (Greedy Structure learning of faCtored MDPs
for Off-Policy Evaluation) receives off-line batch data, two
confidence parameters ε, δ and a minimum acceptable
score C2. The outputs Φ̂i are the estimated parents of
each variable i. In the inner loop, the set Θ is defined
as the set of all realization-action pairs which had been
observed at least N(ε, δ) times; These are the only pairs
further considered. We then greedily add to Φ̂i the j’th
variable which maximizes the L1 difference between the
old distribution depending only on Φ̂i, and a distribution
conditioned on the additional variable as well. Parents are
no longer added when that difference is small, or when
all possible realizations were not observed N(ε, δ) times.
The computational complexity of a naive implementation
is O(HTΓD2), since G-SCOPE sweeps the data for every
input and output variable.

The idea beyond G-SCOPE is that having enough samples
will result in an adequate estimate of the conditional prob-
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abilities. Then, under regularity assumptions stated in Sec-
tion 4, adding a non parent variable is unlikely. If parents
have a higher effect than non-parents on the L1 distance
and non-parents have a weak effect, the arg max proce-
dure will most likely return only parents. When all promi-
nent parents were found, or when there is not enough data
for further inference, the algorithm stops. Once the set of
assumed parents is available, we can build an estimated
model and simulate any policy.

Notice that G-SCOPE algorithm does not necessarily find
the actual parents. Instead, we settle on finding a subset of
variables providing probably approximately correct transi-
tion probabilities. Hence, the number of considered par-
ents scales with data available, a desired quality linking the
model and sample complexity. Since we do not necessarily
detect all parents, non-parents can have a non-zero influ-
ence on the target variable after all prominent parents have
been detected. To avoid including these non-parents, the
threshold to add a parent is C2 plus some precision param-
eters. In practice, we use C2 = 0 because including non-
parents with an indirect influence on Y (i) may improve the
quality of the model. However, in our analysis, we present
Assumptions under which the true parents can be learned
and explain C2.

Finally, G-SCOPE can be modified to encode and con-
struct the conditional probability distributions using deci-
sion trees. A different decision tree is constructed for each
action and variable in the next state. Tree based models
can produce more compact representations of the model
than encoding the full conditional probability tables spec-
ified by Φ̂i. While we analyze G-SCOPE as an algorithm
that separates structure learning from estimating the condi-
tional probability tables, for simplicity and clarity, in our
experiments, we actually use a decision tree based algo-
rithm. The modifications to the analysis for the tree based
algorithm would add unnecessary complexity and distract
from the key points of the analysis.

4. Analysis
By using a scalable but greedy approach to structure
learning rather than a combinatorially exhaustive one,
G-SCOPE can only learn arbitrarily well a subclass of
models. In this section, we introduce three assumptions
on the FMDP that describe this subclass, and then analyze
the policy evaluation error for this subclass.

We divide Φi to non-overlapping “weak” (Φwi ) and
“strong” (Φsi ) parents. We define these subsets formally
later, but intuitively, parents in Φsi have a large influence
on Y (i) and are easy to detect while parents in Φwi have
a small influence that may be below the empirical noise
threshold and hence not be detected. Our assumptions state

State variables

Ti
m

e 1 2

1 2 3

3

X(1, 2)
Y (3)

1 1 1 0
1 2

1 2 0 1
2 1 0 1
2 2 0 1

X(1)
Y (1)

1 1 0
1 2

2 0 1

X(2)
Y (2)

1 1 0
1 2

2 0 1

Y (1)

0.5 0.5
1 2

Y (2)

0.5 0.5
1 2

Figure 1. An FMDP that fails to satisfy Assumption 1. The fac-
torization for a given action (not shown on the figure) is repre-
sented as a dynamic Bayesian network. States not relevant for the
explanation are omitted. In the conditional transition probability
tables, rows correspond to possible values of parent variables and
columns to possible values of the variable. Cells at the intersec-
tion contain conditional probability values.

that (1) “strong” parents are sufficiently better than non-
parents to be detected by G-SCOPE before non-parents;
(2) conditionally on “strong” parents, non-parent have too
little influence on Y (i) to be accepted by G-SCOPE and (3)
conditioning on some “weak” parents does not increase the
influence of other “weak” parents. The first two assump-
tions are used to bound the probability that G-SCOPE adds
non parents in Φ̂i or does not add some strong parents, the
last one to bound the error caused by the potential non-
detection of weak parents.

Assumption 1. Strong parent superiority. For every
i ∈ [D], there exists a “strong” subset of parents Φsi ⊆
Φi such that ∀Ψ ⊂ Φi, Φsi\Ψ 6= ∅, j ∈ D\Φi,
(v, v(j), a) ∈ Γ|Ψ∪{j}| × A, there exists k ∈ Φsi\Ψ, such
that ∀(v′, v′(k), a′) ∈ Γ|Ψ∪{k}| ×A : for some C1 ≥ 0,

‖Pr(Y (i)|X(Ψ ∪ {k}) = (v′, v′(k)), a′)

− Pr(Y (i)|X(Ψ) = v′, a′)‖1 ≥
‖Pr(Y (i)|X(Ψ ∪ {j}) = (v, v(j), a)

− Pr(Y (i)|X(Ψ) = v, a)‖1 + C1 .

(5)

Assumption 1 ensures that, in terms of influence on the
conditional distribution of the target, G-SCOPE finds at
least one “strong” parent variable k more attractive than
any non-parent variable j as long as Φsi\Φ̂i 6= ∅. This
prevents extreme cases where due to large correlation be-
tween parents and non-parents factors, large numbers of
non-parents could be added before finding the actual par-
ents, thus considerably increasing the sample complexity.
C1 quantifies how much more information a true parent
will provide than non-parents. The larger C1 the less likely
G-SCOPE will add a non-parent in Φ̂i.

Figure 1 illustrates a subset of the state variables and cor-
responding conditional transition probability distributions
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of an FMDP that, for the action implicitly considered, does
not satisfy Assumption 1. In this setting, for t ≥ 3 and
considering Ψ = ∅, we have

‖Pr(Y (3))− Pr(Y (3)|X(3) = i)‖1 = 2 ∀i ∈ {1, 2}
‖Pr(Y (3))− Pr(Y (3)|X(1) = j)‖1 = 1 ∀j ∈ {1, 2}.

G-SCOPE would add X(3), a non-parent, before any true
parent of Y (3) in the estimated parent set. Note that in this
particular case it does not matter, as X(3) perfectly deter-
mines Y (3). However, adding noise in the transition prob-
abilities would make X(3) less accurate than X(1) and
X(2) together.

Assumption 2. Non-parent conditional weakness. For
every i ∈ [D], Φsi as in Assumption 1, ∀Ψ : Φsi ⊆ Ψ ⊆ Φi,
j ∈ D\Φi, (v, v(j), a) ∈ Γ|Ψ∪{j}| ×A : for some C2 ≥ 0,

‖Pr(Y (i)|X(Ψ ∪ {j}) = (v, v(j), a)

− Pr(Y (i)|X(Ψ) = v, a)‖1 ≤ C2 .
(6)

Assumption 2 ensures that, after G-SCOPE has detected all
strong parents, non-parents have a low influence on the tar-
get variable and therefore G-SCOPE has a low probability
to add them to Φ̂i. If Φsi = Φi, then C2 = 0.

Assumption 3. Conditional diminishing returns. There
exists C3 ≥ 0 such that for every i ∈ [D], Φsi as in As-
sumptions 1 and 2, Ψ : Φsi ⊆ Ψ ⊆ Φi, j, k ∈ Φi \ Ψ,
(v, v(j), v(k), a) ∈ Γ|Ψ|+2 ×A, if

‖Pr(Y (i)|X(Ψ ∪ {j}) = (v, v(j)), a)

− Pr(Y (i)|X(Ψ) = v, a)‖1 ≥
‖Pr(Y (i)|X(Ψ ∪ {k}) = (v, v(k)), a)

− Pr(Y (i)|X(Ψ) = v, a)‖1,

(7)

then:

‖Pr(Y (i)|X(Ψ ∪ {j}) = (v, v(j)), a)

− Pr(Y (i)|X(Ψ) = v, a)‖1 ≥
‖Pr(Y (i)|X(Ψ ∪ {j, k}) = (v, v(j), v(k), a)

− Pr(Y (i)|X(Ψ ∪ {j}) = (v, v(j)), a)‖1 + C3 .

(8)

If conditioning on X(j) provides more knowledge on the
output distribution than conditioning on another variable
X(k), then it will also provide more knowledge than condi-
tioning onX(k) givenX(j). In simple words, Assumption
3 means that information inferred from variables is mono-
tonic, so influential parents cannot go undetected. This as-
sumption supports our greedy scheme, but there are trivial
cases where it does not hold.

State variables

Ti
m

e 1 2

3

Y (3)
X(1, 2)

1 1 1 0
1 2

1 2 0 1
2 1 0 1
2 2 1 0

Y(1)

0.5 0.5
1 2

Y(2)

0.5 0.5
1 2

Figure 2. An FMDP that does not satisfy Assumption 3. See Fig-
ure 1 for an explanation of the representation.

Consider the substructure represented in Figure 2:

‖Pr(Y (3)|X(1) = i)− Pr(Y (3))‖1︸ ︷︷ ︸
=0

6≥

‖Pr(Y (3)|X(1, 2) = (i, j))− Pr(Y (3)|X(1) = i)‖1︸ ︷︷ ︸
=1

.

Even though X(1, 2) are together very informative about
variable Y (3), any single one of them is not. In such a
situation, useful variables cannot be detected by a greedy
scheme. Assumption 3 prevents this problem.

These assumptions form the core hardness of the structure
learning problem. From one side, there may be implicit
dependencies between variables induced by the dynamics
- making it hard to separate non-parents. From the other
side, the conditional probabilities may belong to a family
of XOR like function - initially hiding attractive true par-
ents. Finally, while these assumptions are crucial for proper
analysis, non-parent variables may have a beneficial effect
on the actual evaluation error as they still contain informa-
tion on the true parents values, and subsequently informa-
tion on the output variable.

Theorem 1. Suppose Assumptions 1, 2 and 3 hold, and let
C1

4 > ε + C2

4 , ε > 0, δ1 > 0, and m = maxi∈[D] |Φi|.
Then there exists

H(ε, δ1) = O

(
Γ2

δ1ε2
ln

(
Γ

δ1

))
such that if G-SCOPE is given H trajectories, with prob-
ability at least 1 − 2AD(m + 2)(D + 1 − m)Γm+1δ1,
G-SCOPE returns an evaluation of π satisfying:

|ν − ν̃| ≤ T 2(δ∗ + ε∗D) (9)

where

ε∗ = (4m+ 1)ε+mC2 +m2C3, δ∗ = AΓm
D∑
i=1

ψiδ1

ψi = max
(v,a)∈Fi

∑T
t=1 Pr(Xt(Φi) = v, at = a|π)∑T
t=1 Pr(Xt(Φi) = v, at = a|πb)

.

(10)
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The proof of Theorem 1 is divided in 4 parts, detailed
in the supplementary material. First, we derive a simula-
tion lemma for MDPs stating that for the target policy two
MDPs with similar transition probability distributions have
proximate value functions. We then consider the number
of samples needed to estimate the transition probabilities
of various realization-action pairs. Samples within a trajec-
tory may not be independent so we derive a bound based on
Azuma’s inequality for martingales. Subsequently, we con-
sider the number of trajectories needed to derive a model
that evaluates the target policy accurately. If the behavior
policy visits enough the parent realizations that the target
policy is likely to visit, then the number of trajectories can
be small. On the other hand, if the behavior never visits par-
ent realizations that the target policy visits, then the number
of trajectories may be infinite. This is captured by ψi. Fi-
nally, we bound the error due to greedy parent selection
under Assumptions 1, 2 and 3.

The evaluation error bound depends on the horizon T , on
the number of variables D, on the error bound ε∗ on most
transition probability values of the FMDP constructed by
G-SCOPE and on the probability Tδ∗ that a trajectory will
not visit a state with badly estimated probability values.
The dependency of ε∗ on m is the first advantage of the
factorization. The constants C1, C2 and C3, from Assump-
tions 1, 2 and 3, respectively, indicate the effect of the
model “hardness” on the bound. When C1 is large enough
and C2 = C3 = 0 (the latter happens if all parents are
strong parents), the true structure can be learned greedily
and the error can be driven arbitrarily close to 0. In other
cases, G-SCOPE may learn the wrong structure resulting
in some approximation error.

Next, observe the probability that the bounds in Theorem 1
hold. The multiplicative termAΓm is unavoidable since for
each parents realization and action pair the estimation error
on the transition probability must be bounded. The main
advantage of this theorem is the lack of a ΓD multiplica-
tive term, which means the effective state space decreased
exponentially. The factorm+2 is due to the number of iter-
ations of G-SCOPEwhere a parent is added, andD−m+1
is due to bounds on non-parents that must be valid for all
these iterations.

In δ∗, the ψi values characterize the mismatch between the
behavior policy and the target policy. If the behavior pol-
icy visits all of the parent-action realizations that the tar-
get policy visits with sufficiently high probability, then the
ψi parameters will be small. But if the target policy visits
parent-action realizations that are never visited by the be-
havior policy, then the ψi values may be infinite. The ψi
values are similar to importance sampling weights used by
some model-free off-policy algorithms. However, unlike
model-free approaches that depend on the differences in

the state visitation distributions of the behavior policy and
the target policy, the ψi values depend on the differences in
the parent realization visitation distributions between the
behavior policy and the target policy. This is more flexible
because the ψi values can be small even when the behav-
ior policy and the target policy visit different regions of the
state-space.

5. Experiments
We compared G-SCOPE to other off-policy evaluation al-
gorithms in the Taxi domain Dietterich (1998), randomly
generated FMDPs, and the Space Invaders domain Belle-
mare et al. (2013). Since the domains compared in our
experiments have different reward scales, we normalized
the errors to compare |ν−ν̃||ν| . The evaluation error always
refers to the target policy’s evaluation error, and all trajec-
tory data is generated by the behavior policy. We compare
G-SCOPE to the following algorithms:

• Model-Free Monte-Carlo (MFMC, Fonteneau et al.
2010): a model-free off-policy evaluation algorithm
that constructs artificial trajectories by concatenating
partial, behavior policy generated, transitions,

• Clipped Importance Sampling (CIS, Bottou et al.
2013): a model-free importance sampling algorithm
that uses a heuristic approach to clip extremely large
importance sampling ratios,

• Flat : a flat model-based approach that assumes no
structure between any two state-action pairs and sim-
ply builds an empirical next state distribution for each
state-action pair, and

• Known Structure (KS) : a model-based method that is
given the true parents, but still needs to estimate the
conditional probability tables from data generated by
the behavior policy. KS should outperform G-SCOPE,
because KS knows the structure. We introduce KS
to differentiate the evaluation error due to insufficient
samples from the evaluation error due to G-SCOPE
selecting the wrong parent variables.

Our experimental results show that (1) model-based off-
policy evaluation algorithms are more sample efficient than
model-free methods, (2) exploiting structure can dramati-
cally improve sample efficiency, and (3) G-SCOPE often
provides a good evaluation of the target policy despite its
greedy structure learning approach.

5.1. Taxi Domain

The objective in the Taxi domain Dietterich (1998) is for
the agent to pickup a passenger from one location and to
drop the passenger off at a destination. The state can be
described by four variables. We selected the initial state
according to a uniform random distribution and used a hori-
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Figure 3. Taxi domain: Median evaluation error for the target pol-
icy (shaded region: 1st − 3rd quantiles) on log-scale varying the
number of trajectories generated by the behavior policy. With-
out exploiting structure MFMC and Flat require many trajecto-
ries to achieve small evaluation error. Yet, KS and G-SCOPE
achieve small evaluation error with just a few trajectories. Be-
cause G-SCOPE adapts the complexity of the model to the sam-
ples available, it achieve smaller estimation error than even KS for
extremely few trajectories.

zon T = 200. The behavior policy selected actions uniform
randomly, while the target policy was derived by solving
the Taxi domain with the Rmax algorithm Brafman & Ten-
nenholtz (2002). We discovered that the deterministic pol-
icy returned by Rmax was problematic for CIS, because
the probability of almost all trajectories generated by the
behavior policy were 0 with respect to the target policy. To
resolve this problem, we modified the policy returned by
Rmax to ensure that every action is selected in every state
with probability at least ε = 0.05.

The Taxi domain is a useful benchmark because we know
the true structure and the total number of states is only 500.
Thus, we can compare G-SCOPE to KS and Flat.

Figure 3 presents the normalized evaluation error (on a
log-scale) for MFMC, CIS, Flat, KS, and G-SCOPE over
2,000 trajectories generated by the behavior policy. Me-
dian and quantiles are estimated over 40 independent tri-
als. For intermediate and large number of trajectories,
G-SCOPE performs about the same as if the structure is
given and achieves smaller error than the model-free al-
gorithms (MFMC and CIS). Notice that MFMC, CIS, and
Flat, which do not take advantage of the domains struc-
ture, require a large number of trajectories before they
achieve low evaluation error. Interestingly, the Flat
(model-based) approach appears to be more sample effi-
cient than MFMC, which is in line with observations that
model-based RL is more efficient than model-free RL
Hester & Stone (2009); Jong & Stone (2007). KS and
G-SCOPE, on the other hand, achieve low evaluation error
after just a few trajectories and have similar performance,

Figure 4. Random FMDP domain: Average evaluation error (±1
std. deviation) on log-scale for MFMC, KS, and G-SCOPE (with
H = 20 and 200 trajectories). G-SCOPE has slightly worse per-
formance than Known Structure, but G-SCOPE achieves signifi-
cantly lower evaluation error than MFMC.

except for very few trajectories where G-SCOPE can adapt
the model complexity to the number of samples and there-
fore achieves a lower evaluation error than the algorithm
knowing the structure. This provides one example where
greedy structure learning is effective.

5.2. Randomly Generated Factored Domains

To test G-SCOPE in a higher dimensional problem, where
we still know the true structure, we randomly generated
FMDPs with D = 20 dimensional states. The domain
of each variable was Γ = {1, 2}. For each state variable
the number of parents was uniformly selected from 1 to 4
and the parents were also chosen randomly. Afterwards,
the conditional probability tables were filled in uniformly
and normalized to ensure they specified proper probability
distributions. The FMDP was given a sparse reward func-
tion that returned 1 if and only if the last bit in the state-
vector was 1 and returned 0 otherwise. We used a hori-
zon T = 200. The behavior policy selected actions uni-
form randomly, while the target policy was derived by run-
ning SARSASutton & Barto (1998) with linear value func-
tion approximation on the FMDP for 5,000 episodes with
a learning rate 0.1, discount factor 0.9, and epsilon-greedy
parameter 0.05. After training SARSA, we extracted a sta-
tionary target policy. As in the Taxi domain, we modified
the policy returned by SARSA to ensure that every action
could be selected in every state with probability at least
ε = 0.05.

For the randomly generated FMDPs, we could not con-
struct a flat model because there are 220 = 1, 048, 576
states and the number of parameters in a flat model scales
quadratically with the size of the state-space. However, we
could still compare MFMC, CIS, KS, and G-SCOPE.

Figure 4 presents the normalized evaluation error (on a log-
scale) for MFMC, CIS, KS, and G-SCOPE given H = 20
and H = 200 trajectories from the behavior policy. Av-
erage and standard deviations are estimated over 10 inde-
pendent trials. MFMC fails because in this high-dimensional
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Figure 5. Space Invaders domain: Average evaluation error (±1
std. deviation) for MFMC, CIS, and G-SCOPE (with H = 40 and
200 trajectories). G-SCOPE achieves significantly lower evalua-
tion error than MFMC and CIS.

task there is not enough data to construct artificial trajecto-
ries for the target policy. CIS fairs only slightly better than
MFMC, because it uses all of the trajectory data. Unfor-
tunately, most of the trajectories generated by the behav-
ior policy are not probable under the target policy and its
evaluation of the target policy is pessimistic. G-SCOPE
has slightly worse performance than KS, but G-SCOPE
achieves significantly lower evaluation error than MFMC
and CIS.

5.3. Space Invaders

In the Space Invaders (SI) domain using the Arcade Learn-
ing Environment Bellemare et al. (2013), not only do we
not know the parent structure, we also cannot verify that
the factored dynamics assumption even holds (2). Thus,
SI presents a challenging benchmark for off-policy evalu-
ation. We used the 1024-bit RAM as the state vector. We
set the horizon T = 1000 so that the behavior policy would
experience a diverse set of states.

As in the previous experiment, the behavior policy selected
actions uniformly at random, while the target policy was
derived by running SARSA Sutton & Barto (1998) with
linear value function approximation on the FMDP with a
learning rate 0.1, discount factor 0.9, and epsilon-greedy
parameter 0.05. We only trained SARSA for 500 episodes,
because of the time required to sample an episode. Af-
ter training, we extracted a stationary target policy, which
ensured all actions could be selected in all states with prob-
ability at least ε = 0.05.

Figure 5 shows the normalized evaluation error for MFMC,
CIS, and G-SCOPE given H = 40 and H = 200 trajec-
tories from the behavior policy. Averages and standard de-
viations are estimated over 5 independent trials. Again, the
evaluation error of G-SCOPE is much smaller than MFMC
and CIS. In fact, MFMC and CIS perform no better than a
strategy that always predicts the target policy’s value is 0.
The poor performance of MFMC is due to the impossibil-
ity to construct artificial trajectories from samples in such
a high dimensional space.

6. Discussion
We presented a finite sample analysis of G-SCOPE that
shows how samples can be related to the evaluation error.
When m � D, the sample complexity scales logarithmi-
cally with number of states, wherem = arg maxi∈[D] |Φi|.

Our experiments show that (1) model-based off-policy
evaluation algorithms are more sample efficient than
model-free methods, (2) exploiting structure can dramati-
cally improve sample efficiency, and (3) G-SCOPE often
provides a good evaluation of the target policy despite us-
ing a greedy structure learning approach. Thus, G-SCOPE
provides a practical solution for evaluating new policies.
Our empirical evaluation on large and small FMDPs shows
our approach outperforms existing methods, which only
exploit trajectories.

We analyzed G-SCOPE under three assumptions restrict-
ing the class of FMDPs that can be considered. These three
assumptions imply that (1) including weak parent will not
make any other weak parent (significantly) more informa-
tive than it was before, (2) strong parents are more rele-
vant than non-parents, and (3) conditioned on the strong
parents non-parents are non-informative. We believe that
many real-world problems approximately satisfy these as-
sumptions. If the problem under consideration does not
satisfy them, then learning algorithms of combinatorial
computational complexity in the number of state variables
must be considered to correctly identify the true parents
Chakraborty & Stone (2011).

To the best of our knowledge, this is the first model-based
algorithm and analysis for off-policy evaluation in FMDPs.
Moreover, G-SCOPE is a tractable algorithm for learning
the structure of an FMDP even if no prior knowledge is
given about the order in which variables should be consid-
ered. So, hopefully showing the effectiveness of structure
learning for off-policy evaluation will encourage the adap-
tation of existing algorithms for learning the structure of
FMDPs and more generally dynamic Bayesian networks
for off-policy evaluation.
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